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Abstract

A logic program with function symbols is called finitely ground if there is a finite
propositional logic program whose stable models are exactly the same as the stable models
of this program. Finite groundability is an important property for logic programs with
function symbols because it makes feasible to compute such programs’ stable models using
traditional ASP solvers. In this paper, we introduce new decidable classes of finitely ground
programs called poly-bounded and k-EXP-bounded programs, which, to the best of our
knowledge, strictly contain all other decidable classes of finitely ground programs discovered
so far in the literature. We also study the relevant complexity properties for these classes
of programs. We prove that the membership complexities for poly-bounded and k-EXP-
bounded programs are EXPTIME-complete and (k+1)-EXPTIME-complete, respectively.

1. Introduction

A logic program Π with function symbols is called finitely ground if there is a finite propo-
sitional logic program Π′ such that Π and Π′ have exactly the same collection of stable
models. Therefore, a finitely ground logic program will have a finite number of stable mod-
els and each stable model is of a finite size. Finite groundability is an important property
for programs with function symbols because this makes feasible to compute such programs’
stable models using traditional ASP solvers, as as done by Alviano, Faber and Leone (2010),
Baselice, Bonatti and Criscuolo (2009), Calimeri, Cozza, Ianni and Leone (2008)

Unfortunately, in general, checking whether a program is finitely ground is undecidable.
In recent years, several decidable classes of finitely ground programs have been discovered
under the stable model semantics: ω-restricted programs (Syrjänen, 2001), λ-restricted pro-
grams (Gebser, Schaub, & Thiele, 2007), finite domain programs (Calimeri et al., 2008),
argument-restricted programs (Lierler & Lifschitz, 2009), safe programs (Greco, Spezzano,
& Trubitsyna, 2012), Γ-acyclic programs (Greco et al., 2012), and what we refer as gmt-
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bounded programs, which has been shown to be a proper superclass of all other previous
classes (Greco, Molinaro, & Trubitsyna, 2013). More recently, another decidable class of
finitely ground programs called size-restricted programs was further introduced by Calu-
atti, Greco, Molinaro and Trubitsyna (2015a), where they showed that although this class
does not properly contain the argument-restricted and gmt-bounded classes, the underlying
technique may be combined with other approaches and eventually to identify more finitely
ground programs.

In this paper, we further introduce two new decidable classes of logic programs called
poly-bounded and k-exp-bounded, where poly-bounded contains all the previous classes
mentioned above and k-exp-bounded contains poly-bounded (see Figure 1 1).

finitely-ground

k-exp-bounded

poly-bounded

size-restricted

gmt-bounded

Γ-acyclic

safe-programs

argument-restricted

finite-domain

γ-restricted

ω-restricted

Figure 1: Landscape of decidable classes of logic programs with function symbols.

It has come to our attention that there are still some simple programs that are finitely
ground but do not belong to either of the two classes gmt-bounded programs or size-
restricted programs. Let us consider a scenario of an online photo gallery, where each
paid member can view any image in the gallery, but a restriction is imposed for guest
members: Although a guest member is allowed to view the gallery images, he/she can only
view no more than three images. Moreover, since only certain images are viewable, each
such viewable image can only be succeeded through a unique image defined by the function
“next”. Also, in the case that the guest member skips a particular image, he/she cannot
view the rest of the remaining images in the sequence (whose sequence is defined via the

1. As will be formally defined in Appendix A.2, we assume in Figure 1 that the notion of size-restricted
we use throughout the paper is the one combining with the gmt-bounded approach, which was shown
in (Calautti et al., 2015a) to strictly contain the other classes discovered so far.
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Figure 2: Membership decision problem complexities.

function “next” mentioned above). This may be expressed by the following four rules:

r1 : imageViewed
(
next(X), Y

)
← guestFirstViewed(X,Y ), guestMember(Y ),

r2 : skip
(
next(X), Y

)
∨ imageViewed

(
next(X), Y

)
← imageViewed(X,Y ),

r3 : ⊥ ← imageViewed
(
next

(
next

(
next

(
next(X)

)))
, Y
)
.

Here: “guestMember(X)” encodes that “X” is a guest; “guestFirstViewed(X,Y )” encodes
that guest “Y ” initially viewed image “X”; “imageViewed(X,Y )” encodes that guest “Y ”
viewed image “X”; “skip(X,Y )” is a predicate that allows the guest member to skip the
image “X”; and lastly, “next(X)”, where “next” is a function symbol, encodes the function
that returns the next image that should succeed “X” after having viewed “X”, i.e., next(X)
= Y implies that after viewing “X”, the next image can only be “Y ”.

Let Π1 = {r1, r2, r3}. Then it follows that the program Π1 is finitely ground because
program Π1∪D will only have finite stable models for any given input database D. Indeed,
because of the constraint enforced by r3, it follows that we cannot have more than three
nesting of the function “next” within the atoms of the predicate “imageViewed”. That is,
if for some term t, we let nextk(t) denote the k-nesting of the function symbol next:

next(next(next(. . . next(t) . . .)))︸ ︷︷ ︸
k-times

,

then we get that any atom of the form imageViewed
(
nextk(t1),t2

)
in any stable model of Π1

must have k < 4 due to the constraint r3. Because of this restriction, it follows that rule
r2 will only be limited in how it can recursively enforce the generation of complex terms
through the head atom “imageViewed

(
next(X), Y

)
” and the function symbol “next”.

Surprisingly, it is not difficult to observe that Π1 is not bounded according to the
definition by Greco, Molinaro and Trubitsyna (2013), nor is it size-restricted (Calautti et al.,
2015a) because these (termination) criterions cannot detect that the atoms imageViewed(
nextk(t1), t2

)
in a stable model of the program Π1 must have k < 4. Indeed, the fact that

the recursive rule “r2” has the head atom “imageViewed
(
next(X), Y

)
” with the complex

term “next(X)”, at that point probably not clear under their termination criteria.
Motivated by this example, this paper proposes yet another decidable class of logic pro-

grams with function symbols, called poly-bounded programs, which strictly contains both
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gmt-bounded and size-restricted programs. A further generalization of the poly-bounded
programs leads to a new sequence of decidable classes called k-exp-bounded programs
for any integer k ≥ 0. The reason that we are able to obtain such new classes is that
by giving explicit treatments to “disjunctions”, “negations” and “constraints” in the un-
derlying programs, as well as leveraging the information about how atoms can possibly
be derived from the program through a fixpoint-like termination criterion, we can derive
proper upper bounds for the stable models of programs, and once such upper bounds sat-
isfy certain restrictions, i.e., polynomial and exponential boundedness, respectively, it will
lead to the underlying programs to become finitely ground. We further prove that the
membership decision problem for the poly-bounded class is EXPTIME-complete and is
(k + 1)-EXPTIME-complete for the k-exp-bounded class (see Figure 2).

The rest of the paper is organized as follows: Section 2 presents necessary terminologies
and background knowledge we will need throughout the paper. Section 3 defines fixpoint
lower and upper bounds of all stable models for a given program with function symbols.
Based on this upper bound definition, Section 4 then specifies a new decidable class of
programs called polynomially bounded programs, and proves its main properties. Section 5
then generalizes the notion of polynomially bounded programs to a novel characterization
of arbitrarily exponentially bounded programs called the k-exp-bounded for any integer
k ≥ 0 such that the polynomially bounded class of programs corresponds exactly to the
0-exp-bounded class. Section 6 studies the complexity property of these new decidable
class of programs. Section 7 considers a case study where we show a particular use of
exponentially bounded programs in the form of propositional planning under ASP. Finally,
section 8 concludes the paper with some remarks.

2. Preliminaries

In this section, we introduce necessary concepts, notations and definitions that we will need
throughout this paper. For a better flow of the development of the theories and techniques
proposed in this paper, we refer the reader to Appendix A for the background notions about
the gmt-bounded (Greco et al., 2013) and size-restricted (Calautti et al., 2015a) classes of
decidable logic programs with function symbols.

2.1 Symbols, Arguments, Terms, Atoms, Assignments and Grounding

We assume four disjoint infinite but countable sets of symbols P, V, Const and F , standing
for the sets of predicates, variables, constants and functions symbols, respectively. Each
predicate symbol p ∈ P (function symbol f ∈ F) is equipped with a natural number n ∈
N denoting its arity. For a predicate p (resp. function f) of arity n, the i-th argument of
p (resp. f) is an expression of the form p[i] (resp. f [i])2. We further denote by arity(p)(
resp. arity(f)

)
as p’s (resp. f ’s) arity.

A term t is defined inductively as follows: (1) each constant c ∈ Const and variable X ∈
V are terms; (2) for each function symbol f ∈ F of arity n and any n-sequence of terms t1,
. . ., tn, we have that f(t1, . . . , tn) is also a term. Naturally, we say that a term t is simple

2. More formally, the i-th argument of p (f) is a pair (p, i) (resp. (f, i)) but written as “p[i]” (resp. “f [i]”)
for notational convenience.
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if t ∈ V ∪Const otherwise, we say that t is complex (i.e., t mentions some function symbols
from F that may even be nested). Finally, an atom is a construct of the form p(t1, . . . , tn)
where p is a predicate symbol from P and arity(p) = n, and each ti (for i ∈ {1, . . . , n}) is
a term.

Given a term t, we denote by var(t), const(t) and funct(t) as the set of all the
variables, constants and function symbols mentioned in t, respectively. We naturally ex-
tend this to an atom A = p(t1, . . . , tn) such that var(A) =

⋃i=n
i=1 var(ti), const(A) =⋃i=n

i=1 const(ti) and funct(A) =
⋃i=n

i=1 funct(ti). Additionally for convenience later on,
we also denote by pred(A) as the predicate symbol of the atom A. Moreover, we also natu-
rally extend these notions to a set of atoms S such that var(S) =

⋃
A∈S var(A), const(S)

=
⋃

A∈S const(A) and funct(S) =
⋃

A∈S funct(A) denotes the set of variables, constants,
atoms and function symbols occurring in S, respectively. For an atom A = p(t1, . . . , tn), we
define terms(A) as the union terms(A) =

⋃i=n
i=1 terms(ti), and where for a term t, terms(t)

is defined inductively as follows: (1) if t is a constant c, then terms(t) = c; (2) if t is a vari-
able X, then terms(t) = X; and (3) if t is a complex term f(u1, . . . , um), then terms(t) ={
f(u1, . . . , um)

}
∪
⋃i=m

i=1 terms(ui). Intuitively, for an atom A, terms(A) is the set of all
subterms mentioned in A. We also naturally extend this notion to a set S of atoms such
that term(S) =

⋃
A∈S terms(A). For convenience, we further denote by varConst(S) as

the union var(S) ∪ const(S).
As usual, we say that an atom A (resp. set of atoms S) is ground if var(A) = ∅ (resp.

var(S) = ∅), i.e., A (resp. S) does not mention any variables.
Now given our pairwise disjoint (infinite but countable) sets of variables V, constants

Const and function symbols F as mentioned above, let us further denote by T (V,Const,F)
as the set of all the possible terms (and thus, is also an infinite set) that can be formed
from the symbols V, Const and F in accordance with our inductive “term” definition above.
Then given a term t ∈ T (V,Const,F), an assignment θ is a function

θ : T (V,Const,F) −→ T (V,Const,F),

where θ(t) is inductively defined as follows: (1) if t is a constant c, then θ(t) = c, else; (2) if
t is a variable X, then θ(t) = θ(X), else; (3) if t is a complex term f(t1, . . . , tn), then θ(t) =
f
(
θ(t1), . . . , θ(tn)

)
. Then naturally, we extend this notion to an atom A = p(t1, . . . , tn) such

that Aθ denotes the (transformed) atom p
(
θ(t1), . . . , θ(tn)

)
. As folklore in the literatures,

given two assignments θ1 : S1 −→ S2 and θ2 : S2 −→ S3, we denote by (θ2 ◦ θ1) as the
composition of the two assignments θ1 and θ2 (which are also functions), respectively, such
that (θ2 ◦ θ1) : S1 −→ S3 and where (θ2 ◦ θ1)(x) = θ2

(
θ1(x)

)
∈ S3, for each x ∈ S1.

Given two atoms A1 and A2, we say that A1 and A2 are unifiable if there exist two
assignments (θ1◦η1) : var(A1)−→ T (V,Const,F) and (θ2◦η2) : var(A2)−→ T (V,Const,F)
where: (1) η1 : var(A1) −→ V and η2 : var(A2) −→ V are renaming (bijective) substitutions
so that var(A1η1) ∩ var(A2η2) = ∅; and (2) θ1 : var(A1η1) −→ T (V,Const,F) and θ2 :
var(A2η2) −→ T (V,Const,F) such that A1(θ1 ◦ η1) = A2(θ2 ◦ η2). Here, we note that we
require the “initial” renaming substitutions η1 and η2 so that we do not create unwanted
clashes of variable names between the two atoms A1 and A2. For example, assuming we
have two atoms A1 = t(f(X,X, Y )) and A2 = t(g(X,Y, Y )), then we have that A1 and A2

are not unifiable. On the other hand, if we also have the two atoms A′1 = t(g(X,Y, Z, Y ))
and A′2 = t(V ), then we have that A′1 and A′2 are unifiable, because if we let θ1 = {X 7→ a,
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Y 7→ b, Z 7→ c} and θ2 = {V 7→ g(a, b, c, b)}, where {a, b, c} ⊆ Const, then we get that A′1θ1

= A′2θ2.

For a given set of atoms S and a set of constants C, we denote by S�C as the ground
set of atoms obtained from S by replacing each of the variables in S with constants from
C in all possible ways. That is, we set S�C =

{
Aθ | θ : var(A) −→ C

}
.

2.2 Terms Depth and Size

For a given term t, we denote by dep(t) as the depth of the term t defined inductively as
follows

dep(t) =

{
0 if t is a constant c or a variable X,
1 + max

(
{dep(t1), . . . ,dep(tn)}

)
if t = f(t1, . . . , tn).

Intuitively, the depth of a term t corresponds to the maximum depth of nested func-
tions mentioning variables within the term t, e.g., let t1 = f(f(X, g(c), Z), Y, Y ), t2 =
f(f(X, c, Z), Y, Y ) and t3 = f(X,Y, Y ), where {X,Y } ⊆ V are variables and {a, c} ⊆ Const
are constants, then we have that dep(t1) = 3, dep(t2) = 2 and dep(t3) = 1. We nat-
urally extend this to an atom A = p(t1, . . . , tn) and set of atoms S so that dep(A) =
max

(
{dep(t1) . . . dep(tn)}

)
and dep(S) = max

(
{dep(A) | A ∈ S}

)
, respectively.

Also, for convenience later in our study in section 4, we define the ground-size of the
atom A, where A = p(t1, · · · , tn), denoted as grsize(A), to be grsize(A) = Σn

i=1grsize(ti),
where for term t, grsize(t) is defined inductively as follows:

grsize(t) =

{
0 if t is a constant c or a variable X,
m+

∑m
i=1 grsize(ti) if t = f(t1, . . . , tm).

2.3 Disjunctive Logic Programs, Range Restrictions, Input Databases and
Intensional/Extensional Predicates

A disjunctive logic program (or simply called program) Π is a finite set of rules r of the
form:

A1 ∨ . . . ∨Ak ← B1, . . . , Bl, notC1, . . . , notCm, (1)

where Ai, Bj , Ch are atoms for all 1 ≤ i ≤ k, 1 ≤ j ≤ l and 1 ≤ h ≤ m. We denote by Hd(r),
Pos(r), and Neg(r) the sets {A1, . . ., Ak}, {B1, . . ., Bl}, and {C1, . . ., Cm}, which are
called r’s head, positive body, and negative body, respectively. Sometimes for convenience,
we may simply denote rule r by Hd(r) ← Pos(r) ∧ ¬Neg(r). When k ≤ 1 for all r ∈ Π, Π
is called a normal program; if also k = 1 and Neg(r) = ∅ for all r ∈ Π, Π is called a positive
normal program; if for a rule r, k = 0, r is called a constraint and we denote its head by ⊥;
and when Pos(r) ∪ Neg(r) = ∅ and |Hd(r)| = 1, then r is called a fact.

We denote by arg(Π) as the set of all arguments3 of all predicates occurring in Π,
pred(Π) as the set of all predicate symbols in Π, and atoms(Π) as the set of all atoms
mentioned in Π. We further denote by hd(Π) =

⋃
r∈ΠHd(r) and pos(Π) =

⋃
r∈Π Pos(r)

3. Recall an argument, defined in the beginning of section 2.1, is a position of a predicate, denoted as p[i],
where p is a predicate, and i is the position of the i-th term occurring in p.
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as the union of the head atoms and positive body atoms mentioned in Π, respectively.
Similarly as defined in section 2.1 for the case of atoms and sets of atoms, we also denote by
var(Π), const(Π) and funct(Π) as the sets of variables, constants and function symbols
occurring in the program Π, respectively. Similarly, we also denote by varConst(Π) as
the union var(Π) ∪ const(Π). A program Π is ground if var(Π) = ∅, i.e., Π does not
mention any variables.

A program Π is range restricted if for each rule, the variables occurring in the head or
in the negative body also appear in the positive body of that rule. As showed by Greco,
Molinaro and Trubitsyna (2013), in this paper, we assume that all programs are range
restricted. For a given program Π, a finite set D of facts (D can be empty) is called an
input database of Π when we consider program Π ∪D.

We assume that predicate symbols in pred(Π) are partitioned into two different classes
as follows: (1) extensional (or input) predicate symbols, whose relations can only be derived
from facts; and (2) intensional predicates symbols, whose relations can only be derived from
rules with non-empty bodies. For convenience, we denote by ext(Π) and int(Π), as the set
of those extensional and intensional predicate symbols previously mentioned, respectively.

2.4 Stable Models and Limited Arguments of Programs

Now for a given program Π, by HU(Π) and HB(Π), we denote Π’s Herbrand universe and
Herbrand base, respectively. Specifically, HU(Π) is the set of all ground terms that are
built using the constants and function symbols in Π (if Π does not contain any constant,
we introduce a constant in Π’s domain), while HB(Π) is the set of all atoms that care built
from terms in HU(Π) and predicate symbols of Π. Clearly, both HU(Π) and HB(Π) can
be infinite. We say that a set I of atoms is an interpretation of Π iff I ⊆ HB(Π). A rule
r′ is a ground instance of r ∈ Π if r′ is obtained from r by substituting each variable in r
by some ground term from HU(Π). We use ground(r) to denote all ground instances of
r, and ground(Π) =

⋃
r∈Π ground(r) as the grounding of the program Π, which could be

infinite. Given an interpretation I and a ground rule r′, we say that I satisfies r′, denoted
as I |= r′, iff I ∩ Hd(r′) 6= ∅ whenever both I ⊆ Pos(r′) and I ∩ Neg(r′) = ∅ holds. Then
we say that I is a model of a ground program Π′, denoted as I |= Π′, iff I |= r′, for all r′ ∈
Π′.

Given an interpretation I ⊆ HB(Π) and the grounding Π′ = ground(Π) of Π, we denote
by (Π′)I as the reduced (or reduct) of the (ground) program Π′ with respect to I such that
it is denoted as the set of rules {Hd(r)← Pos(r) | r ∈ Π′ and Neg(r) ∩ I = ∅}. Then we
say that I is a stable model of Π iff I is the minimal set that satisfies all the rules in (Π′)I

(Gelfond & Lifschitz, 1988, 1991).

An argument p[i] in arg(Π) is said to be limited iff for every finite set of facts D and
for every stable model M of program Π∪D, the set {ti | p(t1, · · · , ti, · · · , tn) ∈M} is finite.
Moreover, program Π is said to be limited iff every argument in arg(Π) is limited.

2.5 Embeddings of Ground Atoms

Given a set of ground atoms S1, i.e., var(S1) = ∅) and a set of atoms (not necessarily
ground) S2, we say that S1 is embeddable into S2, denoted as S1 � S2, iff for each atom
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A1 ∈ S1, there exist an atom A2 ∈ S2 and an assignment θ : var(A2) −→ terms(A1) such
that A2θ = A1. Naturally, we denote by S1 6� S2 if S1 is not embeddable into S2.

Intuitively, if S1 � S2, then each ground atom contained in S1 will have a corresponding
(not necessarily ground) atom in S2. In other words, S2 represents no less information than
S1 does. For instance, let S1 =

{
p
(
a, f(f(b)), f(f(b))

)
, q(b, b, c), r(a), r(b), r(c)

}
be a

set of ground atoms, and S2 =
{
p
(
X, f(f(Y )), f(f(Y ))

)
, q(V,W,X), r(W )

}
and S′2 ={

p
(
X, f(f(X)), f(f(Y ))

)
, q(V, V,X), r(U)

}
be two sets of atoms. Then we have that S1

� S2 but S1 6� S′2.
It is observed that S1 � S2, because for each of the ground atoms p

(
a, f(f(b)), f(f(b))

)
,

q(b, b, c), r(a), r(b), r(c) ∈ S1 and atoms p
(
X, f(f(Y )), f(f(Y ))

)
, q(V,W,X), r(W ) ∈ S2, we

can have that p
(
a, f(f(b)), f(f(b))

)
= p
(
X, f(f(Y )), f(f(Y ))

)
θ21, q(b, b, c) = q(V,W,X)θ22,

r(a) = r(W )θ23, r(b) = r(W )θ24 and r(c) = r(W )θ25, where the assignments θ21, . . .. θ25

are defined as: θ21 = {X 7→ a, Y 7→ b}, θ22 = {V 7→ b, W 7→ b, X 7→ c}, θ23 = {W 7→ a},
θ24 = {W 7→ b} and θ25 = {W 7→ c}.

On the other hand, we note that S1 6� S′2, because for the atom A1 = p
(
a, f(f(b)), f(f(b)

)
)
∈ S1, we cannot find any atom A2 ∈ S′2 and assignment θ : var(A2) −→ terms(A1)

for which A1 = A2θ. More precisely, since the only candidate of such atom A2 from S′2
is p
(
X, f(f(X)), f(f(Y ))

)
, then it is not too difficult to see that we cannot have such an

assignment θ from the variables X, Y and Z of the atom A2 onto the constants a and b of
the atom A1, because A1 and A2 are not unifiable. Note though that if we have the atom
A2 = p

(
X,V, f(f(Y ))

)
instead of p

(
X, f(f(X)), f(f(Y ))

)
, then by setting the assignment

θ as {X 7→ a, V 7→ f(f(b)), Y 7→ b}, we have that A1 = A2θ.

2.6 Definite Program Normal Form, Firing Graphs, Strongly Connected
Components (SCCs) and Argumentation Graphs

For a given program Π, we define its definite normal form, denoted as Πdef, to be the
program obtained from Π via the following transformation:

{
Hd(r′)← Pos(r′) ∧ ¬Neg(r′) | r′ is a rule such that ∃r ∈ Π where:

(1) Hd(r′) ∈ Hd(r);

(2) Pos(r′) = Pos(r);

(3) Neg(r′) = Neg(r) ∪
(
Hd(r) \ {Hd(r′)}

)}
.

Intuitively, Πdef (with “def” standing for definite program) is the normal program
obtained from Π by “shifting” (Dix, Gottlob, & Marek, 1996). That is, for each rule r′

of Πdef, only one atom still occurs in the head of r′, while all other head atoms in the
corresponding rule r in Π are shifted to the negative body of the new generated rule r′.

Given a program Π and its definite normal form Πdef, we denote by Ω(Πdef) as the
firing graph of Πdef, which is a directed graph such that with Ω(Πdef) = (V,E), V = Πdef

(i.e., the vertices of Ω(Πdef) are the rules of Πdef itself) and there is an edge 〈r, r′〉 ∈ E iff
the head atom Hd(r) and some body atom in Pos(r′) are unifiable. Intuitively, this means
that r may cause r′ to “fire.”

We say that a rule r ∈ V (where V = Π) is in a cycle if there is a path in the firing graph
Ω(Πdef) such that r is reachable to itself. Then a strongly connected component (SCC) of
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Ω(Πdef) is a maximal set of nodes C ⊆ Πdef where every node of C is in a cycle. In this
case, we say that such a set of nodes C is an SCC of the program Πdef. Note that since
each individual node trivially reaches itself, even a single node itself can be an SCC, in this
case we will call it a trivial SCC. For convenience, we denote by scc(Πdef) as the set {C1,
. . ., Cs}, which contains exactly the SCCs C1, . . ., Cs of Ω(Πdef). For two distinct SCCs C,
C′ ∈ scc(Πdef) (i.e., C 6= C′), we say that C′ depends on C, denoted C ≺ C′, if there exists
some rules r ∈ C and r′ ∈ C′ such that Hd(r) and some atom in Pos(r′) are unifiable.

The argumentation graph of the program Πdef, where Πdef is the definite normal form
of Π), denoted as ∆(Πdef) = (V,E), is a directed graph with nodes V = arg(Πdef), and
there is an edge (q[j], p[i]) ∈ E iff there exists some rule r ∈ Πdef, such that

1. there exists some atom p(t1, . . . , ti, . . . , tn) such that p(t1, . . . , ti, . . . , tn) = Hd(r);

2. there exists some positive body atom q(u1, . . . , uj , . . . , um) ∈ Pos(r),

and the terms ti and uj share a common variable. Intuitively, an edge (q[j], p[i]) of ∆(Πdef)
indicates that there can be a derivation of terms from argument q[j] to argument p[i]. We
further say that an argument p[i] depends on an argument q[j] if there is a path from q[j]
to p[i] in the graph ∆(Πdef).

2.7 Recursive Rules/Atoms and SCC Stratification

For a given program Π, Πdef its definite normal form and some rule r ∈ Πdef, we say that
the head atom Hd(r) is mutually recursive with a body atom B ∈ Pos(r) if there exists an
SCC C of the firing graph Ω(Πdef) which contains r, and there exists another rule r′ also
in C (which can also be r) such that Hd(r′) and B are unifiable. We denote by recrPos(r)
as the set of mutually recursive atoms in Pos(r) with Hd(r).

Symmetrically, we denote by domPos(r) the subset of the (remaining) positive body
atoms Pos(r)\recrPos(r) (i.e., domPos(r)⊆ Pos(r)\recrPos(r)) such thatB ∈ domPos(r)
implies pred(B) ∈ int(Π). Here, we note that if r is in some SCC C of the firing graph
Ω(Πdef), then the atoms of domPos(r) are only derivable from the heads of rules belonging
to some other SCC C′ that is not C, i.e., C′ 6= C. Note that it is possible that the union
domPos(r) ∪ recrPos(r) may not necessarily mention all the atoms of Pos(r). In such a
case, as we assumed in Section 2.3, we view those remaining atoms as of the extensional

predicate symbols ext(Π) of Π, i.e., pred
(
Pos(r)\(domPos(r) ∪ recrPos(r))) ⊆ ext(Π).

As usual in the literatures (e.g., Greco et al., 2013), these atoms of the extensional relations
are derived via the so-called database facts. For convenience, we denote by extPos(r) as
the set of atoms in Pos(r)\(domPos(r) ∪ recrPos(r)) of a rule r.

Let Π be a program, Πdef its definite normal form, Ω(Πdef) the firing graph of Πdef

and scc(Πdef) the set of all SCCs of Ω(Πdef). Then an SCC stratification of scc(Πdef)
is a sequence scc(Πdef)[0], . . ., scc(Πdef)[K] such that each of the scc(Πdef)[i] (for i ∈
{0, . . . ,K}) are subsets of scc(Πdef)

(
i.e., scc(Πdef)[i] ⊆ scc(Πdef)

)
, and are defined
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inductively as follows:

scc(Πdef)[0] =
{
C | C ∈ scc(Πdef) and there does not exists some rule r ∈ C and

atom B ∈ Pos(r) such that for (some other) C′ ∈ scc(Πdef)\{C}
and rule r′ ∈ C′, and Hd(r′) and B are unifiable

}
; (2)

scc(Πdef)[i+1] =
{
C | C ∈ scc(Πdef)\

( j=i⋃
j=0

scc(Πdef)[j]
)

and there exists some rule r ∈ C

and atom B ∈ Pos(r) such that for some C′ ∈ scc(Πdef)[i]

and rule r′ ∈ C′, and Hd(r′) and B are unifiable
}

(3)

(for each i ∈ {0, . . . ,K − 1}).

Basically, the SCC stratification of scc(Πdef) groups and orders the elements of scc(Πdef)
(i.e., the SCCs) into the layers corresponding to the sequence scc(Πdef)[0], . . ., scc(Πdef)[K],
such that for each i ∈ {0, . . ., K−1}, the set of SCCs scc(Πdef)[i+1] contains exactly those
SCC C that depends on some SCC C′ ∈ scc(Πdef)[i] of the previous layer. Obviously,
scc(Πdef) is finite because Π is finite. Also note that scc(Πdef)[0], · · · , (Πdef)[K] form a
partition of the set scc(Πdef).

We note that the union of the SCC stratification scc(Πdef)[0] ∪ . . . ∪ scc(Πdef)[K] =⋃i=K
i=0 scc(Πdef)[i] may not necessarily contain all the SCCs of scc(Πdef). This is because it

is possible that some C ∈ scc(Πdef) does not have any rule r in it that has some intensional
body atom B that unifies with some head atom Hd(r′) of a rule r′ ∈ Πdef. We note in this
case that all the rules in C are “dead” or redundant rules.

For instance, if we assume Π =
{
r1 : p(h(X)) ← q(X), r2 : p

(
g
(
g(X)

))
← p(g(X))

}(
note that Π is already in definite normal form and q ∈ ext(Π) is an extensional predicate

symbol
)
, then scc(Πdef) =

{
{r1}, {r2}

}
. Also note that SCC {r2} does not depend on

SCC {r1} because Hd(r1) = p(h(X)) is not unifiable with the only body atom p(g(X)) ∈
Pos(r2). In this case, it is easy to see that rule r2 will not play any part in the derivation
of “well-founded” atoms and thus, is a dead rule.

For convenience, when it is clear from the context, we will simply denote a rule r in
some SCC C ∈ scc(Πdef)[i] of the stratum scc(Πdef)[i] (for i ∈ {1, . . . ,K}) of the SCC
stratification: scc(Πdef)[0], . . ., scc(Πdef)[K], by the notion r ∈ scc(Πdef)[i], instead of
stating that for some C ∈ scc(Πdef)[i], r ∈ C.

Example 1. Assume our program Π to be the set consisting of the following rules:

r1 : p(X) ← u(X), (4)

r2 : q(f(X)) ← q(X), p(X), t(X), (5)

r3 : r(f(X)) ← r(X), q(X), t(X), (6)

r4 : s(f(X)) ← s(X), r(X), t(X). (7)
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r1

r2

r3

r4

〈r1, r2〉

〈r2, r3〉

〈r3, r4〉

〈r2, r2〉

〈r3, r3〉

〈r4, r4〉

Figure 3: The graph Ω(Πdef) of the rules r1-r4 from Example 1.

Note that Πdef = Π), and t and u are the only extensional predicate symbols. Consider
Ω(Πdef) = (V,E), where V = {r1, r2, r3, r4}, and E =

{
〈r1, r2〉, 〈r2, r2〉, 〈r2, r3〉, 〈r3, r3〉,

〈r3, r4〉, 〈r4, r4〉
}

(see Figure 3).

It is further noted that scc(Πdef) = {C1, C2, C3, C4}, where C1 = {r1}, C2 = {r2}, C3 =
{r3}, and C4 = {r4}. Then it follows that for each rule ri (i = 1, 2, 3, 4), we have

(1) domPos(r1) = ∅, recrPos(r1) = ∅ and extPos(r1) = {u(X)};
(2) domPos(r2) = {p(X)}, recrPos(r2) = {q(X)} and extPos(r2) = {t(X)};
(3) domPos(r3) = {q(X)}, recrPos(r3) = {r(X)} and extPos(r3) = {t(X)}; and
(4) domPos(r4) = {r(X)}, recrPos(r4) = {s(X)} and extPos(r4) = {t(X)}.

Finally, by setting scc(Πdef)[0] = {C1}, scc(Πdef)[1] = {C2}, scc(Πdef)[2] = {C3}, and
scc(Πdef)[3] = {C4}, respectively, we obtain the sequence of sets scc(Πdef)[0], scc(Πdef)[1],
scc(Πdef)[2], scc(Πdef)[3], which forms an SCC stratification of scc(Πdef). 2

2.8 Restricted Arguments

We will need the notion of restricted arguments introduced in previous works (Greco et al.,
2013; Lierler & Lifschitz, 2009).

Definition 1. The set of restricted arguments, denoted as ar(Π), is the set of arguments
of Π, i.e., ar(Π) ⊆ arg(Π), such that there exists an assignment φ : arg(Π) −→ N, where
for each rule r ∈ Π, each atom p(t1, . . . , tn) ∈ Hd(r), and each variable X of ti, p[i] ∈
ar(Π) iff

(1) there is q(u1, . . . , um) ∈ Pos(r) with X occurring in uj, and

(2) φ
(
p[i]
)
− φ

(
q[j]
)
≥ dep

(
X, ti

)
− dep

(
X,uj

)
.

Here dep
(
X, ti

) (
resp. dep

(
X,uj

))
denotes the maximum term depth of the variable X in

term ti (resp. uj).
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Generally speaking, the restricted arguments from ar(Π) of Π are the arguments where
their edges in the argumentation graph do not induce a recursive “growing cycle” of complex
terms.

Example 2. Assume Π and Π′ to be two programs such that Π contains the single rule:

r : p
(
f(X)

)
← p(X),

and Π′ the rules:

r′1 : p
(
f(Y )

)
← q(Y ),

r′2 : q(Z)← p
(
f(Z)

)
.

Then we have that ar(Π) = ∅ because for any assignment φ :
{
p[1]
}
−→ N, it is impossible

to satisfy the inequality:

φ
(
p[1]
)
− φ

(
p[1]
)
≥ dep

(
X, f(X)

)
− dep

(
X,X

)
(8)

because, since φ
(
p[1]
)
− φ

(
p[1]
)

= 0 and dep
(
X, f(X)

)
− dep

(
X,X

)
= 1 − 0 = 1, for the

terms “f(X)” and “X” in the head “p
(
f(X)

)
” and body “p(X)” of r′, respectively, then

we have that (8) becomes 0 ≥ 1, which is clearly false.
On the other hand, we have that ar(Π′) =

{
p[1], q[1]

}
= arg(Π′) because, if we choose

the assignment φ :
{
p[1], q[1]

}
−→ N such that φ

(
p[1]
)

= 1 and φ
(
q[1]
)

= 0, then we have
that the two inequalities:

φ
(
p[1]
)
− φ

(
q[1]
)
≥ dep

(
Y, f(Y )

)
− dep

(
Y, Y

)
, (9)

φ
(
q[1]
)
− φ

(
p[1]
)
≥ dep

(
Z,Z

)
− dep

(
Z, f(Z)

)
, (10)

corresponding to the head variables “Y ” and “Z” of the rules r′1 and r′2, respectively, be-
comes:

1− 0 ≥ 1− 0 ≡ 1 ≥ 1, (11)

0− 1 ≥ 0− 1 ≡ −1 ≥ −1. (12)

respectively, which is clearly true. 2

3. Lower and Upper Bounds for Progression

Our idea of discovering a new decidable class of programs is described as follows: for a given
program Π: (1) we first specify a lower bound L(Π) of the progression corresponding to
all facts that definitely will be derived from Π; and (2) then using the lower bound L(Π),
we further propose another progression based procedure to specify an approximation upper
bound U(Π) for all stable models S of program Π∪D for all input databases D (D can be
empty); and finally (3) by imposing a proper polynomial bound on U(Π), we are eventually
able to derive a new decidable class of programs with function symbols that are finitely
ground.

Now for a given program Π and its definite normal form Πdef as defined in Section 2.6,
and via the Herbrand base of Π, we specify a procedure that computes the set of all facts
that must be true or false derived from Π, i.e., the “lower bound” of the stable models of
Π.
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3.1 Deriving Lower Bound

In this section, we first propose a notion of how we derive such a “lower bound” as described
above.

Definition 2. [Deriving lower bound] Let Π be a program and Πdef be its definite normal
form as described in Section 2.7. Then Lk(Π) (k ≥ 0) is inductively defined as follows4:

L0(Π) =
{
〈>,+〉, 〈⊥,−〉

}
∪ (13){

〈A,+〉 | there exists a rule “A← >” ∈ Πdef and A is a ground atom
}
∪{

〈Aθ,−〉 | there exist a constraint “⊥ ← A” ∈ Πdef and an assignment

θ : var(A) −→ terms
(
atoms(Π)

) }
∪{

〈Aθ,+〉 | there exist a constraint “⊥ ← notA” ∈ Πdef,
}

; (14)

Lk+1(Π) =Lk(Π) ∪{
〈A1θ1,+〉 | there exist rules “A1 ← B1, B̂d1”, “A2 ← notB2, B̂d2” ∈ Πdef

and assignments θi : var
(
{Ai, Bi}

)
−→ terms

(
Lk(Π)

)
(i = 1, 2),

such that:

(1) A1θ1 = A2θ2 and (B1θ1 = B2θ2 or {B1, B2} = ∅);

(2) B̂d1θ1 ⊆ Lk(Π) and B̂d2θ2 ⊆ Lk(Π)
}
∪ (15)

{
〈A1θ1,−〉 | there exist rules “A′1 ← A1, B1, B̂d1”, “A′2 ← A2, notB2, B̂d2”

∈ Πdef and assignments θi : var
(
{Ai, Bi}

)
−→ terms

(
Lk(Π)

)
(i = 1, 2), such that:

(1) A1θ1 = A2θ2 and (B1θ1 = B2θ2 or {B1, B2} = ∅);

(2) B̂d1θ1 ⊆ Lk(Π) and B̂d2θ2 ⊆ Lk(Π);

(3) A′1θ1 ∈ Lk(Π)− and A′2θ2 ∈ Lk(Π)−
}
∪ (16)

4. For ease of presentation in the following, for some given rules “A1 ← B1, B̂d1”,“A2 ← notB2, B̂d2” ∈
Πdef, we denote by {B1, B2} = ∅ the possibility that both B1 and B2 does not actually exists in the

description “A1 ← B1, B̂d1” and “A2 ← notB2, B̂d2” of the two rules. This saves having to write the
other case when we actual have just “A1 ← B̂d1” and “A2 ← B̂d2”, respectively.
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{
〈A1θ1,+〉 | there exist rules “A′1 ← notA1, B1, B̂d1”, “A′2 ← notA2, notB2, B̂d2”

∈ Πdef and assignments θi : var
(
{Ai, Bi}

)
−→ terms

(
Lk(Π)

)
(i = 1, 2), such that:

(1) A1θ1 = A2θ2 and (B1θ1 = B2θ2 or {B1, B2} = ∅);

(2) B̂d1θ1 ⊆ Lk(Π) and B̂d2θ2 ⊆ Lk(Π);

(3) A′1θ1 ∈ Lk(Π)− and A′2θ2 ∈ Lk(Π)−
}

; (17)

L∞(Π) =
∞⋃
i=0

Li(Π),

where for � ∈ {+,−} and S ⊆ L∞(Π), we denote by S� as the set
{
p(t) | 〈p(t),�〉 ∈ S

}
(as

such, the sets Lk(Π)− stands for the definitely false atoms:
{
p(t) | 〈p(t),−〉 ∈ Lk(Π)−

}
)5.

In (15), (16) and (17), we further denote B̂di (i = 1, 2) as the remaining body atoms of

the rules “A′i ← Ai, Bi, B̂di”, and where by the expression “B̂diθi ⊆ Lk(Π)”, we mean that

for all positive and negative atoms A′′i θi and notB′′i θi in B̂diθi, A
′′
i θi ∈ Lk(Π)+ and B′′i θi ∈

Lk(Π)−.

Here we view the two symbols: “>” and “⊥”, as mentioned in (13), as the inter-
preted propositional atoms truth and falsity, respectively (and whose interpretation is self-
explanatory). For convenience, we will omit explicitly writing that “〈>,+〉” and “〈⊥,−〉”
are in the set L0(Π) ⊆ L∞(Π) since we will assume it from the context.

Let us take a closer look at Definition 2. Generally speaking, L∞(Π) induces two subsets
of atoms of Π which, by instantiating with their ground instances from the input databases,
are known to be definitely true and definitely false, as contained in L∞(Π)+ and L∞(Π)−,
respectively. Indeed, the base case (14) of the forms 〈A,+〉 and 〈Aθ,�〉

(
where � ∈ {+,−}

)
are derived from the facts, and positive and negative atomic constraints of the program Π,
respectively. Then the sets (15), (16) and (17) as specified in the inductive step, represent
the propagations of the positive and negative facts, respectively, using facts already derived
from the previous stages. For instance, let us consider (15), the tuple 〈A1θ1,+〉 is derived

from the rules A1 ← B1, B̂d1 and A2 ← not B2, B̂d2 ∈ Πdef and the assignments θ1 and
θ2, under the two conditions (1) and (2) as described in the definition, i.e., (15). These
conditions allow the resolution rule to be used to derive the fact A1θ1 from Π. A similar
concept applies to the derivation of the negative fact 〈A1θ1,−〉 as described in (16), and
the other positive facts from (17).

Finally, we further note that it can be the case that Lk(Π)+ ∩ Lk(Π)− 6= ∅, which
implies that the program Π is inconsistent.

5. In this paper, we use X, Y, Z, etc., (and possibly with subscripts) to denote tuples of variables only,
while we use t, u, v, etc., to denote tuples of arbitrary terms.
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Example 3. Let Π be a program consisting of the following rules:

r1 : ⊥ ← q(X),

r2 : p
(
f(X)

)
← p(X), r(X), not q(X),

r3 : r(X)← p(X), r
(
f(X)

)
,

r4 : ⊥ ← r(X), p
(
g(X)

)
, not q(X),

r5 : ⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y ).

Then we have that terms
(
atoms(Πdef)

)
=
{
X, Y , f(X), g(X), g(Y )

}
(please see

section 2.1 for the notion of terms(S), for some set of atoms S), i.e., all the possible terms
and sub-terms mentioned in any atom of Πdef. Then according to (14) of Definition 2, we
get for the first step, L0(Π):

L0(Π) =
{
〈q(X),−〉, 〈q(Y ),−〉,

〈
q
(
f(X)

)
,−
〉
,
〈
q
(
g(X)

)
,−
〉
,
〈
q
(
g(Y )

)
,−
〉}
,

because we have from (14) that

L0(Π) =
{
〈q(X)θ,−〉 | r1 = “⊥ ← q(X)” ∈ Πdef and θ : {X} −→ terms

(
atoms(Πdef)

)}
.
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Then for the next step L1(Π), we get that

L1(Π) = L0(Π) ∪{〈
r(X),−

〉 | r4 = “⊥ ← r(X), p
(
g(X)

)
, not q(X)” ∈ Πdef, θ1 = {X 7→ X}, (18)

r5 = “⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y )” ∈ Πdef, θ2 = {Y 7→ X}, (19)

q(X)θ1 = q(Y )θ2 ∈ L0(Π)− and p
(
g(X)

)
θ1 = p

(
g(Y )

)
θ2

}
∪{〈

r(Y ),−
〉 | r4 = “⊥ ← r(X), p

(
g(X)

)
, not q(X)” ∈ Πdef, θ1 = {X 7→ Y },

r5 = “⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y )” ∈ Πdef, θ2 = {Y 7→ Y },

q(X)θ1 = q(Y )θ2 ∈ L0(Π)− and p
(
g(X)

)
θ1 = p

(
g(Y )

)
θ2

}
∪{〈

r
(
f(X)

)
,−
〉 | r4 = “⊥ ← r(X), p

(
g(X)

)
, not q(X)” ∈ Πdef, θ1 =

{
X 7→ f(X)

}
,

r5 = “⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y )” ∈ Πdef, θ2 =

{
Y 7→ f(X)

}
,

q(X)θ1 = q(Y )θ2 ∈ L0(Π)− and p
(
g(X)

)
θ1 = p

(
g(Y )

)
θ2

}
∪{〈

r
(
g(X)

)
,−
〉 | r4 = “⊥ ← r(X), p

(
g(X)

)
, not q(X)” ∈ Πdef, θ1 =

{
X 7→ g(X)

}
,

r5 = “⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y )” ∈ Πdef, θ2 =

{
Y 7→ g(X)

}
,

q(X)θ1 = q(Y )θ2 ∈ L0(Π)− and p
(
g(X)

)
θ1 = p

(
g(Y )

)
θ2

}
∪{〈

r
(
g(Y )

)
,−
〉 | r4 = “⊥ ← r(X), p

(
g(X)

)
, not q(X)” ∈ Πdef, θ1 =

{
X 7→ g(Y )

}
,

r5 = “⊥ ← r(Y ), not p
(
g(Y )

)
, not q(Y )” ∈ Πdef, θ2 =

{
Y 7→ g(Y )

}
,

q(X)θ1 = q(Y )θ2 ∈ L0(Π)− and p
(
g(X)

)
θ1 = p

(
g(Y )

)
θ2

}
,

for which, we finally get that L2(Π) = L1(Π) = L∞(Π), i.e., we cannot infer any more
certainly true or false atoms.

In particular, it is observed how we derive the (definitely false) atoms of the form “r(X)”,
in the step L1(Π), through the use of the resolution rule. For instance, if we consider the
constraints r4 and r5 under the respective assignments θ1 = {X 7→ X} and θ2 = {Y 7→ X}
in the lines marked by (18) and (19) above, then we get that r4θ1 = “⊥ ← r(X), p

(
g(X)

)
,

not q(X)” and r5θ2 = “⊥ ← r(X), not p
(
g(X)

)
, not q(X)”, respectively.

Since we already know that the negative body atom q(X) of r4θ1 and r5θ2 is certainly
false due to that we have obtained 〈q(X),−〉 in the previous step L0(Π), it follows that we
can reduce the two constraints r4θ1 and r5θ2 into r∗4 = “⊥ ← r(X), p

(
g(X)

)
” and r∗5 = “⊥

← r(X), not p
(
g(X)

)
”, respectively.

Then loosely speaking, because r∗4 and r∗5 are now in the form “⊥ ← A, B” and “⊥ ←
A, not B”, respectively, we can finally apply the resolution rule to infer that the atom r(X)
must be definitely false as well. Therefore, the pair 〈r(X),−〉 is included in L1(Π). 2
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Proposition 1. [Monotonicity] For a given program Π, we have that for all 0 ≤ i ≤ j,
Li(Π) ⊆ Lj(Π).

Proposition 2. [Lower bound for stable models] Let Π be a program. Then for every
input database D and stable model M of Π∪D, we have that L∞(Π)+�const(Π∪D) ⊆ M and
for each α ∈ L∞(Π)−�const(Π∪D), α /∈ M6.

Proof. For a given input databaseD, if the program Π∪D is inconsistent, then the statement
is clearly true. Now we consider the case that the program Π ∪D is consistent, and hence
it has a stable model M . We prove the result by induction on Lk(Π) for k ≥ 0. Indeed, the
base case clearly holds when k = 0 because L0(Π)�const(Π∪D) corresponds to the grounding
of both the positive (i.e., rules “A ← >” or constraints “⊥ ← notA”) and negative facts
(i.e., constraints “⊥ ← A”) from Πdef. Suppose that the result also holds for k > 0. Now
we consider the case k + 1. From Definition 2, we know that a new atom A1θ1 is derived
in Lk+1(Π)+ based on two cases of (15) and (17) in the definition, respectively. We first
consider case (15). Obviously, the new atom A1θ1 is derived based on two rules from Πdef:

A1 ← B1, B̂d1 and A2 ← notB2, B̂d2. From the conditions illustrated in (15) and the fact
that Lk(Π)+�const(Π∪D) ⊆ M , and ∀A ∈ Lk(Π)−�const(Π∪D), A /∈ M , we can easily obtain
that A1θ1 /∈ M . A similar argument is also for the case of (17).

On the other hand, for each new atom A1θ1 in Lk+1(Π)−�const(Π∪D) derived from (16)
in Definition 2, in a similar way, we can also show that A1θ1 /∈ M .

3.2 Deriving Upper Bound

Based on Definition 2, now we define an upper bound for a given program Π as follows.

Definition 3. [Deriving upper bound] Let Π be a program, Πdef be its definite normal
form, scc(Πdef)[0], . . ., scc(Πdef)[K] be the SCC stratification of scc(Πdef) (see Section
2.7) and S ⊆ L∞(Π). Then we define U i(Π, S) (i ≥ 0) inductively based on the three
subcases: (1) i = 0; (2) 1 ≤ i ≤ K; and (3) i > K, as follows7:

i = 0:

U0(Π, S) =
{
Hd(r)θ | there exist a rule r ∈ scc(Πdef)[0] and an assignment

θ : var(r) −→ terms
(
atoms(Πdef)

)
such that:

(1) pred
(
Pos(r)

)
∩ int(Π) = ∅;

(2) Pos(r)θ ∩ S− = ∅ and Neg(r)θ ∩ S+ = ∅
}

; (20)

6. Recall from Section 2.1 that for a set of atoms S and set of constants C, S�C denotes the grounding of
S under the constants mentioned in C.

7. See Section 2.7 for the definitions of domPos(r) and recrPos(r) positive body atoms of a rule r ∈ Πdef.
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1 ≤ i ≤ K:

U i(Π, S) =U i−1(Π, S) ∪{
Hd(r)θ | there exist a rule r ∈ scc(Πdef)[i] and an assignment

θ : var(r) −→ terms
(
atoms(Πdef) ∪ U i−1(Π, S)

)
such that:

(1) terms
(
extPos(r)θ

)
⊆ terms

(
atoms(Πdef)

)
;

(2) domPos(r)θ ⊆ U i−1(Π, S);

(3) Pos(r)θ ∩ S− = ∅ and Neg(r)θ ∩ S+ = ∅
}

; (21)

i > K :

U i(Π, S) =U i−1(Π, S) ∪
{
Hd(r)θ | there exist a rule r ∈

j=K⋃
j=0

scc(Πdef)[j] and an assignment

θ : var(r) −→ terms
(
atoms(Πdef) ∪ U i−1(Π, S)

)
such that:

(1) terms
(
extPos(r)θ

)
⊆ terms

(
atoms(Πdef)

)
;

(2) domPos(r)θ ⊆ UK(Π, S);

(3) recrPos(r)θ ⊆ U i−1(Π, S);

(4) Pos(r)θ ∩ S− = ∅ and Neg(r)θ ∩ S+ = ∅
}
. (22)

Finally, we define U∞(Π, S) =
⋃∞

i=0 U i(Π, S) to be its fixpoint.

Now we take a closer look at Definition 3. In a nutshell, we define the upper bound
U i(Π, S) (i ≥ 0) inductively through three subcases: (1) i = 0; (2) 1 ≤ i ≤ K; and (3) i >
K, which we explain as follows:

i = 0: This initial step first considers rules r ∈ scc(Πdef)[0], which are actually those rules
r ∈ Πdef, where both the classes of positive body atoms domPos(r) and recrPos(r)
are empty, i.e., pred

(
Pos(r)

)
∩ int(Πdef) = ∅. Intuitively, this first step corresponds

to deriving the atoms of rules that do not depend on the other rules of Πdef, apart
from database facts. Also, we note that because we only consider rules from the
lowest stratum scc(Πdef)[0], then rules r′ ∈ scc(Πdef)[0] for which pred

(
Pos(r)

)
∩

int(Πdef) 6= ∅ will not actual “fire” under any assignment θ because
(
based on our

definition of the SCC stratification of scc(Πdef)
)
, the fact that r′ is in the lowest

stratum
(
i.e., scc(Πdef)[0]

)
implies that there are no rules in Πdef whose head unifies

with any of the positive body atoms domPos(r′) ∪ recrPos(r′) of r′;

1 ≤ i ≤ K: Then based on the atoms derived from the initial step U0(Π, S), we induc-
tively define the steps U i(Π, S) (for i ∈ {1, . . . ,K}) based on the SCC stratification
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of scc(Πdef). Indeed, at each step U i(Π, S), we consider the heads of those rules r in
the stratum scc(Πdef)[i] of the SCC stratification scc(Πdef)[0], . . ., scc(Πdef)[K] of
Πdef, for which, their domain (positive) body atoms domPos(r) have already been es-
tablished from the previous steps, i.e., domPos(r)θ ⊆ U i−1(Π, S) for some assignment
θ: var(r) −→ terms

(
atoms(Πdef) ∪ U i−1(Π, S)

)
. Here, we note that the assign-

ment θ considers all the possible terms as well as subterms (see Section 2.1 for the
definition of term(t) which considers all the subterms of a term t). In addition, we
also note that the extension body atoms in extPos(r) are only restricted to mention
terms from terms

(
atoms(Πdef)

)
. In fact, even throughout the remaining steps, we

will fix this restriction on the extensional atoms extPos(r), for any rule r because
these extensional atoms will not play in the further growth of complex terms.

i > K: Finally, having already established the derivation of possible head relation types of
the rules in scc(Πdef)[j] (for j ∈ {1, . . . ,K}), the remaining steps where i > K (which
can be infinite) further consider the applications of the rules based on recursion.

Assuming that we have already derived U i−1(Π, S), for i > K, then we further derive
U i(Π, S) based on U i−1(Π, S) as follows: for each rule r ∈

⋃j=K
j=0 scc(Πdef)[j] (i.e., the

union of all SCC stratum) and each assignment θ: var(r) −→ terms
(
atoms(Πdef)

∪ U i−1(Π, S)
)

where the following four conditions hold:

(1) terms
(
extPos(r)θ

)
⊆ terms

(
atoms(Πdef)

)
; (23)

(2) domPos(r)θ ⊆ UK(Π, S); (24)

(3) recrPos(r)θ ⊆ U i−1(Π, S); (25)

(4) Pos(r)θ ∩ S− = ∅ and Neg(r)θ ∩ S+ = ∅, (26)

we add Hd(r)θ into the next stage U i(Π, S). In particular, note that we only limit θ
to map the variables of r to the terms of Πdef and that of the earlier steps U j(Π, S)

)
(0 ≤ j ≤ i − 1). As already mentioned and explained above, the first of these
conditions, (23) enforces that the atoms of extensional relations in extPos(r) can only
be mapped to terms from terms

(
atoms(Πdef)

)
. The next condition (24) enforces

that the domain atoms in domPos(r) are confined only to the Kth-step UK(Π, S).
Similarly to the case for the atoms in extPos(r), we restrict the atoms in domPos(r)
because they will not really play a part in the further propagation of complex terms
through recursion. In contrast, the third condition (25) now allows those (mutually)
recursive atoms in recrPos(r) to finally consider any complex term that can grow
within the steps of U i−1(Π, S). Finally, the last condition (26) enforces us to only
consider r if it is also consistent with the subset S ⊆ L∞(Π) of the lower bound.

We further note that for any of the three cases: (1) i = 0; (2) 1 ≤ i ≤ K; and (3) i >
K above, we only derive the head Hd(r)θ if it is also the case that (under the assignment
θ) both the conditions Pos(r)θ ∩ S− = ∅ and Neg(r)θ ∩ S+ = ∅. These aforementioned
conditions enforce us to only consider rules that will be consistent with the subset S ⊆
L∞(Π) of the lower bound. Figure 4 provides a conceptual diagram of the ideas behind the
upper bound as specified through Definition 3.

Proposition 3. [Monotonicity I] For all 0 ≤ i ≤ j and S ⊆ L∞(Π), U i(Π, S) ⊆ U j(Π, S).

767



Asuncion, Zhang, Zhang, & Li

U0(Π, S)scc(Πdef)[0]

U1(Π, S)scc(Πdef)[1]

do
m
Po
s(r

)θ
⊆ U

0 (Π
, S

)

U2(Π, S)scc(Πdef)[2]

do
m
Po
s(r

)θ
⊆ U

1 (Π
, S

)

U3(Π, S)scc(Πdef)[3]

do
m
Po
s(r

)θ
⊆ U

2 (Π
, S

)

do
m
Po
s(r

)θ
⊆ U

3 (Π
, S

)

do
m
Po
s(r

)θ
⊆ U

K
−1 (Π

, S
)

UK(Π, S)scc(Πdef)[K] do
m
Po
s(r

)θ
⊆ U

K (Π
, S

)

re
cP
os

(r)
θ ⊆
U
K (Π

, S
)

do
m
Po
s(r

)θ
⊆ U

K (Π
, S

)

re
cP
os

(r)
θ ⊆
U
K

+1 (Π
, S

)

do
m
Po
s(r

)θ
⊆ U

K (Π
, S

)

re
cP
os

(r)
θ ⊆
U
K

+2 (Π
, S

)

do
m
Po
s(r

)θ
⊆ U

K (Π
, S

)

re
cP
os

(r)
θ ⊆
U
K

+3 (Π
, S

)

do
m
Po
s(r

)θ
⊆ U

K (Π
, S

)

re
cP
os

(r)
θ ⊆
U
i−

1 (Π
, S

)

UK+1(Π, S)

j=K⋃
j=0

scc(Πdef)[j]

UK+2(Π, S)

j=K⋃
j=0

scc(Πdef)[j]

UK+3(Π, S)

j=K⋃
j=0

scc(Πdef)[j]

U i(Π, S)

j=K⋃
j=0

scc(Πdef)[j]

Figure 4: Conceptualization of the upper bound U(Π, S)i as specified in Definition 3.

Proposition 4. [Monotonicity II] For all i ≥ 0 and S1, S2 ⊆ L∞(Π), S1 ⊆ S2 implies
U i(Π, S2) ⊆ U i(Π, S1).

Proof. With respect to (20), (21) and (22) of Definition 3 above, if S1 ⊆ S2, then Pos(r)θ
∩ S−2 = ∅

(
Neg(r)θ ∩ S+

2 = ∅, resp.
)

implies Pos(r)θ ∩ S−1 = ∅
(
Neg(r)θ ∩ S+

1 = ∅,
resp.

)
.

Proposition 5. [Finiteness] For a program Π and any S ⊆ L∞(Π), we have that U i(Π, S)
is a finite set for all i ≥ 0.

Proof. By induction. Clearly, based on (20) of Definition 3, we have that U0(Π, S) is finite
because there are only a finite number of rules in Πdef and only a finite number of terms
(and subterms) in terms

(
atoms(Πdef)

)
. Then assuming that U j(Π, S) is finite for 1 ≤ j

≤ i, it follows from the descriptions in (21)-(22) of Definition 3 that U i+1(Π, S) must be a
finite set as well because all the new atoms added to U j+1(Π, S) are obtained only through
assignments from terms in terms

(
U j(Π, S)

)
, which we already know to be finite.

Theorem 1. [Upper bound for stable models] Let Π be a program and S ⊆ L∞(Π).
Then for every input database D and stable model M of Π ∪D, M � U∞(Π, S).

Example 4. Let Πi (i ≥ 0) be the programs defined as follows: for i = 0 , we set:

Π0 =
{
p1

(
X, f(Y ), f(Z)

)
← p0(X,Y, Z)

}
.
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While for i > 0, we set:

Πi =
{
pi
(
f(X), Y, Z

)
← pi

(
X, f(Y ), Z

)
, (27)

pi
(
f(X), Y, Z

)
← pi

(
X,Y, f(Z)

)}
; (28)

Πi+1 =
{
pi+1(Y,X,X) ← pi(X,Y, Z)

}
, (29)

where each pi is a different predicate. Finally, for some given k > 1, we specify the program
Π[k] = Π0 ∪ Π1 ∪ Π2 ∪ . . . ∪ Πk−1 ∪ Πk.

Now we show how we compute U∞
(
Π[k], ∅

)
. Firstly, based on the notion of the SCCs of

the firing graph Ω
(
Π[k]

)
of Π[k] as we defined in Sections 2.6 and 2.7, we get that scc

(
Π[k]

)
= {Π0, Π1, Π2, . . ., Πk−1, Πk }, and where: scc

(
Π[k]

)[0]
= {Π0}, scc

(
Π[k]

)[1]
= {Π1},

scc
(
Π[k]

)[2]
= {Π2}, . . ., scc

(
Π[k]

)[k−1]
= {Πk−1}, scc

(
Π[k]

)[k]
= {Πk}, forms the SCC

stratification of scc
(
Π[k]

)
. Then based on (20) and (21) of Definition 3, we compute the

first steps, i = 0 to i = k, of U i
(
Π[k], ∅

)
inductively as follows:

U0
(
Π[k], ∅

)
=
{
p1

(
X, f(Y ), f(Z)

)
θ | “p1(X,Y, Z) ← p0(X,Y, Z)” ∈ Π0 and

θ : {X,Y, Z} −→ terms
(
atoms

(
Π[k]

))}
,

=
{
p1

(
X, f(Y ), f(Z)

) | X,Y, Z ∈ {X,Y, Z, f(X), f(Y ), f(Z)
}}

, (30)

and for i ∈ {1, 2, . . . , k − 2, k − 1}:

U i
(
Π[k], ∅

)
= U i−1

(
Π[k], ∅

) ∪{
pi
(
f(X), Y, Z

)
θ | “pi(X,Y, Z) ← pi

(
X, f(Y ), Z

)
” ∈ Πi or

“pi(X,Y, Z) ← pi
(
X,Y, f(Z)

)
” ∈ Πi and

θ : {X,Y, Z} −→

terms
(
atoms

(
Π[k]

)
∪ U i−1

(
Π[k], ∅

))}
= U i−1

(
Π[k], ∅

) ∪{
pi
(
f(X), Y, Z

) | “pi(X,Y, Z) ← pi
(
X, f(Y ), Z

)
” ∈ Πi or

“pi(X,Y, Z) ← pi
(
X,Y, f(Z)

)
” ∈ Πi and

X,Y, Z ∈ terms
(
atoms

(
Π[k]

)
∪ U i−1

(
Π[k], ∅

))}
(31)
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U i+1
(
Π[k], ∅

)
= U i

(
Π[k], ∅

) ∪{
pi+1(Y,X,X)θ | r = “pi+1(Y,X,X) ← pi(X,Y, Z)” ∈ Πi+1,

θ : {X,Y, Z} −→

terms
(
atoms

(
Π[k]

)
∪ U i

(
Π[k], ∅

))
and

domPos(r) =
{
pi(X,Y, Z)θ

}
⊆ U i

(
Π[k], ∅

)}
= U i−1

(
Π[k],P(∅

) ∪{
pi+1(Y,X,X) | r = “pi+1(Y,X,X) ← pi(X,Y, Z)” ∈ Πi+1,

X, Y, Z ∈ terms
(
atoms

(
Π[k]

)
∪ U i

(
Π[k], ∅

))
and

pi(X,Y, Z) ∈ U i
(
Π[k], ∅

)}
, (32)

Then finally, we get from (22) of Definition 3 that for i > k, we get that:

U i
(
Π[k], ∅

)
= U i−1

(
Π[k], ∅

) ∪{
pi
(
f(X), Y, Z

) | r′ = “pi(X,Y, Z) ← pi
(
X, f(Y ), Z

)
” ∈ Πi or

r′ = “pi(X,Y, Z) ← pi
(
X,Y, f(Z)

)
” ∈ Πi,

X, Y, Z ∈ terms
(
atoms

(
Π[k]

)
∪ U i−1

(
Π[k], ∅

))
and

recrPos(r)θ ⊆ U i−1
(
Π[k], ∅

)}
(33)

U i+1
(
Π[k], ∅

)
= U i

(
Π[k], ∅

) ∪{
pi+1(Y,X,X) | r = “pi+1(Y,X,X) ← pi(X,Y, Z)” ∈ Πi+1,

X, Y, Z ∈ terms
(
atoms

(
Π[k]

)
∪ U i

(
Π[k], ∅

))
and

domPos(r)θ ⊆ Uk
(
Π[k], ∅

)}
. (34)

In particular, we note in (34) that because we limit domPos(r)θ to be only contained within
the set Uk

(
Π[k], ∅

)
of the kth-step

(
because recrPos(r) = ∅ for the rule in (34)

)
, then the

growth of terms that we consider for the steps i > k is only through the recursive rules
r′ in (33) because recrPos(r′) 6= ∅. It is for the condition that we confine the atoms of

domPos(r)θ to those derived from the kth-step Uk
(
Π[k], ∅

)
that all arguments of predicate

symbols in program Π[k] are limited. 2

4. Polynomially Bounded Programs

Proposition 6. [Finite upper bound implies finite stable models] For any program
Π and any set S ⊆ L∞(Π), if U∞(Π, S) is a finite set, then Π is also finitely ground.
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Proof. Assume that for some given program Π and some set S ⊆ L∞(Π), we have that
U∞(Π, S) is a finite set. Then clearly, since by Proposition 5 we have that each U i(Π, S) is
a finite set for all i ≥ 0, then there must exists some k ∈ N such that Uk(Π, S) = U∞(Π, S).
Now let us assume without loss of generality that scc(Πdef)[0], . . ., scc(Πdef)[K] is the SCC
stratification of the definite normal form Πdef of scc(Πdef) (see Section 2.7).

Then with the SCC stratification: scc(Πdef)[0], . . ., scc(Πdef)[K] of the definite normal
form Πdef of Π above, and for each i = 0 to i = K, let us denote by Πdef

i as the program
containing the set of rules such that:

Πdef
i =

{
r | r ∈ C and C ∈

j=i⋃
j=0

scc(Πdef)[j]
}
,

i.e., Πdef
i contains exactly all the rules mentioned in the SCCs from scc(Πdef)[0] to

scc(Πdef)[i]. Then with the k ∈ N such that Uk(Π, S) = U∞(Π, S) (i.e., as described above
since U∞(Π, S) is a finite set and by Proposition 5), we will now show by induction on i
that the program Πdef

i is limited (please see again Section 2.4 for the notion of limited).

Basis: i = 0:
Then from Definition 3, we have that U0(Π, S) will be given by the set (20). There-
fore, since no further additional atoms are derived for all the other stages k > 0 of
Uk(Π, S) (i.e., since Uk(Π, S) = U∞(Π, S)), then it follows that the depth of terms in
all the possible atoms that can be derived by the rules of Πdef

0 are bounded and thus,
all arguments are limited. Indeed, even because all the production of the mutually
recursive head atom hd(r)θ with the body atoms recPos(r)θ

(
see (20) of Definition

3
)
, of each rule r ∈ Πdef

0 , are bounded (i.e., because Uk(Π, S) = U∞(Π, S)), then all
the recursive arguments in arg(Πdef

0 ) must be limited.

Inductive step: Now assume that Πdef
i is limited.

Then now let us consider Πdef
i+1. Then similarly to the base case above, since no

further additional atoms are derived for all the stages k > 0 of Uk(Π, S), then it
follows that the depth of terms mentioned in the recursive arguments corresponding
to the mutually recursive head atom hd(r)θ with the body atoms recPos(r)θ, of each
rule r ∈ Πdef

i+1

(
please see again (21)-(22) of Definition 3

)
, are bounded and thus, are

limited. On the other hand, since all the arguments in arg(Πdef
i ) are limited (ind.

hyp.), then it follows that atoms in domPos(r)θ have arguments that are limited in
Πdef

i so thus, all the arguments in arg(Πdef
i+1) must therefore be limited.

Finally, the finite stable models for Π follows from the fact that all the arguments in
arg(Πdef) are limited.

According to Proposition 6, it is clear that if U∞(Π, S) (for some S ⊆ L∞(Π)) is a
finite set, then Π is finitely ground. Also, from Definitions 2 and 3, we can see that if
for each atom in U∞(Π, S), its term depth is bounded by a fixed integer, then U∞(Π, S)
must be a finite set. So our attempt is to impose a bound B on dep

(
U∞(Π, S)

)
such that

dep
(
UB(Π, S)

)
= dep

(
U∞(Π, S)

)
. Based on this idea, we eventually are able to define

a new class of programs called polynomially bounded programs by defining a term depth
bound for UB(Π, S) to be a polynomial in the size of program Π.
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Given dep
(
UB(Π, S)

)
= dep

(
U∞(Π, S)

)
, on the other hand, from Theorem 1, we know

that for any S ⊆ L∞(Π), UB(Π, S) forms a finite upper bound for all stable models of Π.
People may think that an easy way of getting such upper bound is simply to set S = ∅.
However, from a computational viewpoint, we would prefer to have a relatively tight upper
bound, instead of having an arbitrary polynomial upper bound. According to Proposition
4, this means that we should have a big set S ⊆ L∞(Π).

Firstly, given a program Π, we define

P(Π) = N +N3, (35)

where N = |Πdef| ·maxArt(Π) ·maxPos(Π) ·maxDep(Π), and such that

1. maxArt(Π) denotes the product of the maximum arities of predicate and function
symbols occurring in Π, i.e., maxArt(Π) = m×n, where m and n are the maximum
arities of the predicates and function symbols occurring in Π, respectively;

2. maxPos(Π) denotes the maximum number of atoms in the positive body of a rule in
Π;

3. maxDep(Π) denotes the maximum depth of a term mentioned in an atom of Π, i.e.,

maxDep(Π) = max
(
{dep(ti) | p(t1, . . . , ti, . . . , tn) ∈ atoms(Π)}

)
.

Intuitively, P(Π) gives an approximation of the minimum bound on the number of
iterations of Uk(Π, S) that has to be done in order to determine if an infinite propagation of
terms may actually take place. In a nutshell, iterating through Uk(Π, S), for 1 ≤ k ≤ P(Π),
considers all possible transpositions and propagations of an argument, say p[i], within the
program Π as we iterate through each step.

At the same time, such iteration will compute the maximum possible depth of any
restricted arguments, as well as the possible “undoing” of these complex terms because
we also incorporated the factor maxDep(Π) into the number P(Π), which considers the
maximum depth of a complex term mentioned in all the atoms of Π. Indeed, from the
definition of P(Π) in (35), the factor maxArt(Π) considers all possible transpositions of p[i]
within the arities of predicates and functions. In addition, the number |Πdef| ·maxPos(Π)
also factors in the possible transposition that can be propagated through each positive atom
in the program.

In summary, the number of iterative steps P(Π) does three things: (i) the number N
= |Πdef| ·maxArt(Π) ·maxPos(Π) ·maxDep(Π) considers the iterative steps required to
generate the deepest term of a restricted argument because it bounds the length of the
longest possible path that can derive a complex term of a restricted argument; (ii) the
number N3 further adds the additional steps that are required to “undo” the complex
terms compounded in the restricted arguments from doing the aforementioned first N -
steps because it is the product of the number of the deepest possible term (bounded by
N) with that of the maximum cycle length (also bounded by N) that can “undo” the
complexity of the term and where the one more factor of N (which makes the term “cubed”
in (35)) considers the possibility that each can take N -steps to exhaust each of the possible
positions of arguments in atoms; and finally (iii) iterating P(Π)-steps considers all possible
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transpositions and propagations of an argument, which allows us to detect any growing
cycles corresponding to an unlimited growth of complex terms within the argument, as well
as to detect recursive information about function applications.

Example 5. Let Π2 be a program consisting of the following rules:

r1 : p1

(
X, g(Y ), h(Z)

)
← p0

(
X,Y, Z

)
,

r2 : p2

(
X, g(Y ), h(Z)

)
← p1

(
X,Y, Z

)
,

r3 : p3

(
X, g(Y ), h(Z)

)
← p2

(
X,Y, Z

)
,

r4 : p
(
X,Y, Z

)
← p3

(
X,Y, Z

)
,

r5 : p
(
f(X), Y, Z

)
← p

(
X, g(Y ), Z

)
,

r6 : p
(
f(X), Y, Z

)
← p

(
X,Y, h(Z)

)
,

where “p0” is an extensional predicate. Then it follows that all arguments apart from p[1]
are argument restricted. This is because, although the argumentation graph of Π2 has
a cycle about the arguments p[2] and p[3] (with themselves), they do not propagate the
growth of complex terms. On the other hand, the argument p[1] is on a cycle propagating
complex terms due to both of the rules r5 and r6 above. Now let S = ∅.

Then from rules r1 - r4, we would have that p
(
X, g3(Y ), h3(Z)

)
∈ U3(Π2, S). Through

the iterative applications of rules r5 and r6, we have that argument p[1] grows in depth
through the function f . On the other hand, the depth that p[1] can grow is bounded by
k + l where k and l are the maximum depths reached by the arguments p[2] and p[3],
respectively. In particular, we note that: (1) it takes 4-steps (via rules r1 - r4) to reach the
maximum depth of the (restricted) arguments p[2] and p[3]; (2) it takes a further 6-steps
(via rules r5 - r6) to “undo” the built-up of those complex terms, and hence by the 10th-step,
U10(Π2, S) = U∞(Π2, S). Incidentally, it is not difficult to check that 10 < P(Π2). 2

Let S be a set of atoms and Π a program. Then given an argument p[i] ∈ arg(Π),
we denote by depp[i]

(
S
)

as the maximum term depth of the argument p[i] as mentioned in
some atom in S:

depp[i]

(
S
)

= max
({

dep(ti) | p(t1, . . . , ti, . . . , tn) ∈ S
})
,

where we define depp[i]

(
∅
)

= 0 when S = ∅. We are now ready to define the notion of
polynomially limited arguments.

Definition 4. [Poly-limited arguments] Let Π be a program and p a predicate in pred(Π).
We define polyLAp(Π) to be the set of poly-limited arguments of p as follows:{
p[i] | i ∈ {1, . . . ,arity(p)} and depp[i]

(
U 2 ·P(Π)(Π, S)

)
= depp[i]

(
U 3 ·P(Π)(Π, S)

)}
, (36)

where S = LP(Π)(Π).

Intuitively, polyLAp(Π) denotes the set of arguments p[i]
(
i ∈

{
1, . . ., arity(p)

})
that

do not grow in depth beyond the stage of iterations 2 · P(Π) of Uk(Π, S), where S is the
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set of atoms obtained from the lower bound LP(Π)(Π). Specifically, for an argument p[i],
we have that condition (36) holds for each SCC C of the activation graph Ω(Π), where p
∈ pred(C). Conceptually, we can think of the number of iterations 3·P(Π) as three sections:

P(Π) 2 · P(Π) 3 · P(Π)

generate atoms initial depth recursive depth

where the first section “P(Π)” generates all the atoms (as will be revealed in Lemma 2 in
Appendix B.3); the next section “2 · P(Π)” will be our reference for the initial depth of
terms; while the last section “3 ·P(Π)” is the final test to see if terms are still growing under
recursion, which indicates that a possible propagation of infinite terms can take place. From
the size of the number P(Π) that such recursions would have been considered from 2 · P(Π)
to 3 · P(Π).

Now let us denote polyLA(Π) =
⋃

p∈ pred(Π) polyLAp(Π) as the set of all poly-limited
arguments of arg(Π), then we have the following result.

Proposition 7. [Containing restricted arguments] Given a program Π, ar(Π) ⊆
polyLA(Π).

Definition 5. [ poly-bounded programs] Given a program Π, we say that Π is polynomi-
ally bounded, or simply called poly-bounded, iff polyLA(Π) = arg(Π). We also denote
by poly-bounded as the class of all the poly-bounded programs.

Intuitively, Definition 5 says that if a program is poly-bounded, then we have that all
arguments cannot grow nor increase in ground-size beyond the number of 2 ·P(Π) iterations
of Uk(Π, S), where S = LP(Π)(Π). Note that Definition 5 defines the polynomial bound
2 · P(Π) for computing Uk(Π, S), instead of P(Π). This is due to the possibility that the
growth of term depth in Π may run through multiple arguments, from which we may only
gain sufficient information to predict if the iteration will continue or stop, by computing
the second run of iterations through all arguments.

Let Π be the program with just the two single rule (note that Πdef = Π):

r1 : p(X,X,X,X,X) ← b(X,X,X,X,X),

r2 : p
(
Y, Z,W, f(V ), X

)
← p(X,Y, Z,W, V ),

where the second rule propagates all arguments one position to the right where p[4] contains
a function in the head. Then all arguments p[i] (1 ≤ i ≤ 5) are in a path of a growing cycle
in the argumentation graph GL(Π). Then with the sequence of SCC:

〈
{r1}, {r2}

〉
, it forms

the SCC stratification of scc(Πdef) =
{
{r1}, {r2}

}
(see Section 2.7). Therefore, for steps 0

≤ i ≤ 12 of U i(Π, ∅), the following sequence of atoms will be generated:
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p
(
f(V ), f(V ), f(V ), f(V ), f(V )

)
∈ U0(Π, ∅),

p
(
f(V ), f(V ), f(V ), f2(V ), f(V )

)
∈ U1(Π, ∅),

p
(
f(V ), f(V ), f2(V ), f2(V )

)
, f(V )

)
∈ U2(Π, ∅),

p
(
f(V ), f2(V ), f2(V ), f2(V ), f(V )

)
∈ U3(Π, ∅),

p
(
f2(V ), f2(V ), f2(V ), f2(V ), f(V )

)
∈ U4(Π, ∅),

p
(
f2(V ), f2(V ), f2(V ), f2(V ), f2(V )

)
∈ U5(Π, ∅),

p
(
f2(V ), f2(V ), f2(V ), f3(V ), f2(V )

)
∈ U6(Π, ∅),

...
...

...

p
(
f3(V ), f3(V ), f3(V ), f4(V ), f3(V )

)
∈ U12(Π, ∅).

In particular, we note that in the second step
(
i.e., U1(Π, ∅), it only uses the recursive

rule in the SCC {r2}
)
, so we get from (21) of Definition 3: U1(Π, ∅) =

{
Hd(r2)θ =

p
(
Y, Z,W, f(V ), X

)
θ | θ : {V,W,X, Y, Z} −→ terms

(
atoms(Πdef) ∪ U0(Π, ∅)

)}
. Then

with k = 6, we have that depp[4]

(
Uk(Π, ∅)

)
< depp[4]

(
U2·k+1(Π, ∅)

)
. In general, the num-

ber P(Π) is the upper-bound for the number K through which we may be able to detect
such recursive information as well as the bound on detecting the failing terms growth of
restricted arguments.

Example 6. Consider again the program Π1 = {r1, r2, r3} we discussed in Section 1 and
its definite normal form Πdef

1 = {r1, r′2, r′′2, r3} given as follows (note that the disjunctive
rule r2 ∈ Π1 is transformed into the two definite rules r′2, r′′2 ∈ Πdef

1 ):

r1 : imageViewed
(
next(X), Y

)
← guestFirstViewed(X,Y ), guestMember(Y ),

r′2 : imageViewed
(
next(X), Y

)
← imageViewed(X,Y ), not skip

(
next(X), Y

)
,

r′′2 : skip
(
next(X), Y

)
← imageViewed(X,Y ), not imageViewed

(
next(X), Y

)
,

r3 : ⊥ ← imageViewed
(
next

(
next

(
next

(
next(X)

)))
, Y
)
.
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By (14) of Definition 2 and the constraint r4, the initial step L0(Π1) will be obtained as
follows:

L0(Π1)

=
{〈

imageViewed
(
next

(
next

(
next

(
next(X)

)))
, Y
)
θ,−

〉 |
θ : {X,Y } −→ terms

(
atoms(Πdef

1 )
)}
.

=
{〈

imageViewed
(
next

(
next

(
next

(
next(X)

)))
, Y
)
,−
〉 | X,Y ∈ terms

(
atoms(Πdef

1 )
)}
,

=
{〈

imageViewed
(
next 4(X), Y

)
,−
〉 | X,Y ∈ terms

(
atoms(Πdef

1 )
)}
,

=
{〈

imageViewed
(
next 4(Y ), X

)
,−
〉
,
〈
imageViewed

(
next 4(Y ), next i+1(X)

)
,−
〉
,〈

imageViewed
(
next 4(Y ), Y

)
,−
〉
,
〈
imageViewed

(
next 4(X), X

)
,−
〉

〈
imageViewed

(
next 4+i(X), X

)
,−
〉
,
〈
imageViewed

(
next 4+i(X), Y

)
,−
〉
,〈

imageViewed
(
next 4+i(X), next i+1(X)

)
,−
〉 | i ∈ {1, 2, 3}}, (37)

i.e., we evaluate the atom “imageViewed
(
next

(
next

(
next

(
next(X)

)))
, Y
)
” for all the X, Y

∈ terms
(
atoms(Π1)

)
, and where we know those atoms are certainly false by the constraint

r4. Then since we cannot infer further certainly true or false atoms from the step L0(Π1)
of the lower bound, we have that L0(Π1) = L1(Π1) = L∞(Π1).

Now we compute the upper bound U i(Π1, S), where S = L0(Π1), and such that L0(Π1)
= L∞(Π1) as computed above. Firstly, we note that scc(Πdef

1 )[0] =
{
{r1}

}
, scc(Πdef

1 )[1] ={
{r′2}, {r′′2}, {r3}, {r4}

}
, corresponds to the SCC stratification of scc(Πdef

1 ), and such that
{r1}, {r′2}, {r′′2}, {r3} and {r4} are the SCCs of Ω(Πdef

1 ) (see Sections 2.6 and 2.7). Then
from (20) of Definition 3 we have:

U0(Π1, S) =
{
Hd(r1)θ | θ : var(r1) −→ terms

(
atoms(Πdef

1 )
)}

=
{
imageViewed

(
next(X), Y

)
θ | θ : {X,Y } −→ terms

(
atoms(Πdef

1 )
)}

=
{
imageViewed

(
next(X), Y

) | X,Y ∈ terms
(
atoms(Πdef

1 )
)}
.

On the other hand, from (a) (21) of Definition 3, (b) the only positive body atoms of r′2
and r′′2 are recrPos(r′2) =

{
imageViewed(X,Y )

}
= Pos(r′2) and domPos(r′′2) =

{
imageViewed

(X,Y )
}

= Pos(r′′2), respectively, and (c) r3 and r4 are constraints (which will not play any
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role in generating atoms in the upper bound), we have that:

U1(Π1, S) = U0(Π1, S) ∪{
Hd(r′2)θ | θ : var(r′2) −→ terms

(
atoms(Πdef

1 ) ∪ U0(Π1, S)
)
,

Pos(r′2) ∩ S− = ∅
}
∪{

Hd(r′′2)θ | θ : var(r′′2) −→ terms
(
atoms(Πdef

1 ) ∪ U0(Π1, S)
)

and

domPos(r′′2)θ ⊆ U0(Π1, S)
)

and Pos(r′′2) ∩ S− = ∅
}

= U0(Π1, S) ∪{
imageViewed

(
next(X), Y

)
θ | θ : var(r′2) −→

terms
(
atoms(Πdef

1 ) ∪ U0(Π1, S)
)
, Pos(r′2) ∩ S− = ∅

}
∪{

skip
(
next(X)

)
θ | θ : var(r′′2) −→ terms

(
atoms(Πdef

1 ) ∪ U0(Π1, S)
)

and{
imageViewed(X,Y )θ

}
⊆ U0(Π1, S)

)
and Pos(r′′2) ∩ S− = ∅

}
.

Now further from (22) of Definition 3, we get the remaining steps U i(Π1, S) (for i > 1)
as follows:

U i(Π1, S) = U i−1(Π1, S) ∪{
imageViewed

(
next(X), Y

)
θ | θ : var(r′2) −→ terms

(
atoms(Πdef

1 ) ∪ U i−1(Π1, S)
)
,{

imageViewed(X,Y )θ
}
⊆ U i−1(Π1, S)

)
and Pos(r′2) ∩ S− = ∅

}
∪ (38){

skip
(
next(X)

)
θ | θ : var(r′′2) −→ terms

(
atoms(Πdef

1 ) ∪ U i−1(Π1, S)
)

and{
imageViewed(X,Y )θ

}
⊆ U1(Π1, S)

)
and Pos(r′′2) ∩ S− = ∅

}
. (39)

Because we require domPos(r′′2)θ =
{
imageViewed(X,Y )θ

}
⊆ U1(Π1, S) in (39), i.e.,

domPos(r′′2)θ to be confined only to the atoms derived from the step U1(Π1, S), it follows
that it is only through the set (38) above to generate a possibly infinite growth of complex
terms via the recursive application of rule r′2. On the other hand, because of the fact that S−

contains the set of atoms given by the set (37), it follows through the condition Pos(r′2) ={
imageViewed(X,Y )θ

}
∩ S− = ∅ of (38) that the depth of the terms as derived in the atom

Hd(r′′2)θ is bounded by the lower bound L0(Π1) = S. Therefore, it follows that program Π1

is poly-bounded.
Now let D =

{
guestFirstViewed(panda, john) ← >, guestMember(john) ← >

}
be an

input database. Then it follows that Π1 ∪ D will only have a finite set of stable models
with the following form:

Mk = D ∪
{
imageViewed

(
next i(panda), john

)
, skip

(
next i+1(panda)

) | i ≤ k},
where k ∈ {1, 2, 3}. 2
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Theorem 2. [Finite groundness] If Π is poly-bounded, then for every input database
D (D can be empty), program Π ∪D is finitely ground.

Example 7. Consider the program Π[k] of Example 4 once again. Because in the steps (34)
(where i > k) we restrict domPos(r)θ of those rules r considered in (34) to be the only one of
the previous step k, it follows that depp[i]

(
U 2 ·P(Π[k])

(
Π[k], S

))
= depp[i]

(
U 3 ·P(Π[k])

(
Π[k], S

))
,

for all p[i] ∈ arg
(
Π[k]

)
. Thus, program Π[k] is poly-bounded. 2

As we have seen from Example 7 above, the depth of the terms mentioned in any atom
in UP(Π[k])

(
Π[k], S

)
is bounded by the polynomial P(Π[k]). The next result shows that a

stable model of the program Π[k] can actually have a term depth that is exponential to the
size of program.

Proposition 8. Let D = {p(a, a, a)}, where a ∈ Const is a constant, be a database and
Π[k] (k > 1) be the program as defined in Example 4. Then we have that depp[i](M) ≥
O(2P(Π[k])) for any stable model M of Π[k].

Proof. First, we note that Π[k] is a positive normal program, so it follows that M =

L∞
(
Π[k] ∪ D

)+
is actually its unique stable model. Now we know that through itera-

tive applications of rules (27) and (28), the term depth of pk[1] is doubled from that of
p(k−1)[1] obtained from the previous program Π[k − 1], while the last rule (29) simply
makes pk+1(Y,X,X) be ready for the next program Π[k+ 1]. It can be shown that for each
k > 1, we have

deppk[1]

(
Lk
(
Π[k] ∪D

))
= 2k.

Now because
∣∣Π[k]def

∣∣ = 2 + 3k and maxArt
(
Π[k]

)
·maxPos

(
Π[k]

)
= 3 for all k > 1, we

have from (35) that P
(
Π[k]

)
= 3(2 + 3k) +

[
3(2 + 3k)

]3
. Let l(k) = P

(
Π[k]

)
, then it follows

that

depp(2l(k))[1]

(
L2l(k)+1

(
Π[2l(k)]

))
< depp3l(k)[1]

(
L3l(k)

(
Π[3l(k)]

))
,

holds for all k > 1.

4.1 Comparison with Other Decidable Classes of Programs with Function
Symbols

In this section, we compare our new poly-bounded class with the two classes gmt-bounded
(Greco et al., 2013) and size-restricted (Calautti et al., 2015a) since they currently contain
all the decidable classes of logic programs with function symbols. Thus, it is sufficient
to show that our poly-bounded class strictly contains these two aforementioned classes
in order to show that our new class now forms the largest decidable class of programs
with function symbols. For reference, we provide overviews of the gmt-bounded and size-
restricted classes of programs in Appendixes A.2 and A.1, respectively.

The following two theorems (Theorems 3 and 4) simply indicate that our poly-bounded
programs form the largest decidable class of finitely ground programs, that are discovered
in literature so far. We first present a result about the complexity upper bound of deciding
gmt-bounded and size-restricted classes.
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Proposition 9. [ gmt-bounded and size-restricted membership complexity] Decid-
ing whether a program Π is gmt-bounded or size-restricted is in PSPACE.

Proof. We first show that deciding whether Π is gmt-bounded is in PSPACE. Indeed, since
enumerating all basic cycles in a directed graph is space bounded by O(n + e), where n
is the number of nodes and e is the number of edges (Johnson, 1975), and since the size
of the labelled argumentation graph and each cycle length is polynomial in the size of the
program Π, it follows from Definition 8 (see Appendix A) that deciding gmt-boundedness
is in PSPACE. On the other hand, from Calautti, Greco, Molinaro and Trubitsyna (2015a),
we know that for a given set of limited arguments A, deciding whether Π is size-restricted
under the arguments in A is in NP. This follows that when A is the gmt-limited , deciding
whether Π is size-restricted is also in PSPACE.

Theorem 3. [Strictly contains gmt-bounded] The poly-bounded class strictly contains
the gmt-bounded class.

Theorem 4. [Strictly contains size-restricted] The poly-bounded class strictly con-
tains the size-restricted class.

Example 8. Let Π be a program consisting of the following rules:

r1 : q
(
h(X), Y

)
← p1(X,Y ),

r2 : r
(
X, g(Y )

)
← p2(X,Y ),

r3 : s(X,Z) ← q(X,Y ), r(Y,Z),

r4 : t
(
f(X)

)
← t(X), s

(
g(Y ), h(Z)

)
,

where p1 and p2 are extensional predicate symbols. Clearly, we have that Πdef = Π and
scc(Πdef) =

{
C1, C2, C3, C4

}
, where C1 = {r1}, C2 = {r2}, C3 = {r3}, and C4 = {r4}, which

correspond to the SCC of the firing graph Ω(Πdef)8.
Moreover, for each rule ri (i ∈ {1, 2, 3, 4}), we have (1) extPos(r1) =

{
p1(X)

}
, domPos(r1)

= ∅, recrPos(r1) = ∅; (2) extPos(r2) =
{
p2(X)

}
, domPos(r1) = ∅, recrPos(r1) = ∅; (3)

extPos(r3) = ∅, domPos(r3) =
{
q(X,Y ), r(Y,Z)

}
, recrPos(r3) = ∅; and (4) extPos(r4) =

∅, domPos(r4) =
{
s
(
g(Y ), h(Z)

)}
, recrPos(r4) =

{
t(X)

}
.

Then we obtain the SCC sequence scc(Πdef)[0], scc(Πdef)[1], scc(Πdef)[2], where
scc(Πdef)[0] = {C1, C2}, scc(Πdef)[1] = {C3} and scc(Πdef)[2] = {C4}, which is the SCC
stratification sequence of scc(Πdef) (see Section 2.7). Then according to Definition 3, we
can compute the upper bound U i(Π, ∅) for the three subcases: = 0, i = 1, 2, and i > 2.
Here we set the input S ⊆ L∞(Π) to be empty, i.e., S = ∅).

For the initial step i = 0:

U0(Π, ∅) =
{
Hd(r1)θ | θ : var(r1) −→ terms

(
atoms(Πdef)

)} ∪{
Hd(r2)θ | θ : var(r2) −→ terms

(
atoms(Πdef)

)}
=
{
q
(
h(X), Y

)
θ | θ : var(r1) −→

{
X, Y, Z, h(X), h(Z), g(Y ), f(X)

}} ∪{
r
(
X, g(Y )

)
θ | θ : var(r2) −→

{
X, Y, Z, h(X), h(Z), g(Y ), f(X)

}}
,

8. See Sections 2.6 and 2.7 for the notions of the firing graph Ω(Πdef) and SCC scc(Πdef).
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where terms
(
atoms(Πdef)

)
=
{
X, Y , Z, h(X), h(Z), g(Y ), f(X)

}
, i.e., all the terms and

subterms mentioned in atoms(Πdef).

Then from (21) of Definition 3, we have the following for i = 1 and i = 2, respectively:

U1(Π, ∅) = U0(Π, ∅) ∪ {Hd(r3)θ | θ : var(r3) −→ terms
(
atoms(Πdef) ∪ U0(Π, ∅)

)
and

domPos(r3)θ ⊆ U0(Π, ∅)
}

= U0(Π, ∅) ∪
{
s(X,Z)θ | θ : var(r3) −→

{
X, Y, Z, h(X), h(Z), g(Y ), f(X)

}
∪{

h(X), h(Y ), h(Z), h
(
h(X)

)
, h
(
h(Z)

)
, h
(
g(Y )

)
, h
(
f(X)

)}
∪{

g(X), g(Y ), g(Z), g
(
h(X)

)
, g
(
h(Z)

)
, g
(
g(Y )

)
, g
(
f(X)

)}
and domPos(r3) =

{
q(X,Y )θ, r(Y,Z)θ

}
⊆ U0(Π, ∅)

}
= U0(Π, ∅) ∪

{
s
(
h
(
θ(X)

)
, g
(
θ(Y )

))
|

θ : {X,Y } −→
{
X, Y, Z, h(X), h(Z), g(Y ), f(X)

}}
,

U2(Π, ∅) = U1(Π, ∅) ∪ {Hd(r4)θ | θ : var(r4) −→ terms
(
atoms(Πdef) ∪ U1(Π, ∅)

)
and

domPos(r4)θ ⊆ U1(Π, ∅)
}

= U1(Π, ∅) ∪
{
t
(
f(X)

)
θ | θ : var(r4) −→

{
X, Y, Z, h(X), h(Z), g(Y ), f(X)

}
∪
{
h(X), h(Y ), h(Z), h

(
h(X)

)
, h
(
h(Z)

)
, h
(
g(Y )

)
, h
(
f(X)

)}
∪
{
g(X), g(Y ), g(Z), g

(
h(X)

)
, g
(
h(Z)

)
, g
(
g(Y )

)
, g
(
f(X)

)}
and domPos(r4) =

{
s
(
g(Y ), h(Z)

)
θ
}
⊆ U1(Π, ∅)

}
,

(40)

Finally, based on previous steps, from (22) of Definition 3, we have U3(Π, ∅):

U3(Π, ∅) = U2(Π, ∅) ∪ {Hd(r)θ | θ : var(r) −→ terms
(
atoms(Πdef) ∪ U2(Π, ∅)

)
and

(1) terms
(
extPos(r)θ

)
⊆ terms

(
atoms(Πdef)

)
;

(2) domPos(r)θ ⊆ U2(Π, ∅);
(3) recrPos(r)(r)θ ⊆ U2(Π, ∅)

}
.

Since rule r4 is the only rule where recrPos(r4) =
{
t(X)

}
6= ∅, it is clear that any new

atoms that will be added in U3(Π, ∅), U4(Π, ∅), U5(Π, ∅), etc., will be through the head atom
t
(
f(X)

)
of r4. On the other hand, from U2(Π, ∅), we observe that rule r4 will not actually

be trigged under any assignment because its domain atom s
(
g(Y ), h(Z)

)
∈ domPos(r4) is

not unifiable with any atoms of U1(Π, ∅). Hence, then we can never initiate the recursive
application of rule r4 will never be proceeded. This follows that U3(Π, ∅) = U2(Π, ∅) =
U∞(Π, ∅). 2
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From Example 8, we can see that there are cases where the lower bound L∞(Π) is
empty, but the program will still terminate from the computation of the upper bound
alone. Also note that program Π in Example 8 is neither gmt-bounded nor size-restricted,
but terminates because U3(Π, ∅) = U2(Π, ∅) = U∞(Π, ∅) as we have shown above. We will
make this result precise in Proposition 13 of Section 6.

5. Exponentially Bounded Programs

In the previous section, we studied the case when the number of the bound is polynomial
in the size of the program. Although imposing such a polynomial bound is already enough
to strictly contain all the previous decidable classes of programs with function symbols, as
stated in Theorems 3 and 4, we observe that there are some applications where programs
terminate in exponential number of steps in the size of the underlying program. So in this
section, we further generalize our notion of polynomial bounded programs to a notion of
exponentially bounded programs.

For this purpose, we firstly introduce some useful notions. Given a program Π and an
integer k ≥ 0, we define another number expΠ(k) inductively as follows:

(1) expΠ(0) = P(Π), and

(2) expΠ(k + 1) = 2expΠ(k).

Intuitively, the number expΠ(k) denotes the k-nested number of the expression:

22
...
2P(Π)

.

Note that expΠ(0) = P(Π) while expΠ(1) = 2P(Π).

Definition 6. Given a program Π, a predicate p ∈ pred(Π) and an integer k ≥ 0, we
denote by k-ExpLAp(Π) as the following set of arguments:{
p[i] | i ∈ {1, . . . ,arity(p)} and depp[i]

(
U 2 · expΠ(k)(Π, S)

)
= depp[i]

(
U 3 · expΠ(k)(Π, S)

)}
,

where S = LexpΠ(k)(Π).

Similarly to the case of polyLAp(Π) in Definition 4, k-ExpLAp(Π) denotes the set of
arguments of the predicate p that does not increase in depth beyond the iterations expΠ(k)
of Uk(Π, S), where S is the set of (not necessarily ground) atoms obtained from LexpΠ(k)(Π).
More generally, we call the arguments in the set

⋃
p∈ pred(Π) k-ExpLAp(Π) as the k-exp-

limited arguments of arg(Π), which we denote by k-ExpLA(Π). Clearly, when k = 0, we
have that 0-ExpLA(Π) = polyLA(Π).

Definition 7. [ k-exp-bounded programs] Given a program Π and an integer k ≥ 0, we
say that Π is k-exponentially bounded, or simply called k-exp-bounded, iff k-ExpLA(Π) =
arg(Π). We also denote by k-exp-bounded as the class of all the k-exp-bounded programs.
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Theorem 5. [Finite groundness] Given a program Π and an integer k ≥ 0, if Π is k-
exp-bounded, then for every input database D (D can be empty), program Π∪D is finitely
ground.

Proposition 10. [ 0-exp-bounded is poly-bounded] The class of 0-exp-bounded pro-
grams is exactly the poly-bounded class.

6. Computational Complexity

In this section, we study the complexity properties of membership decision for both poly-
bounded and k-exp-bounded programs, as well as upper bounds of their respective combined
complexities.

Theorem 6. [ poly-bounded membership complexity] Deciding whether a program Π is
poly-bounded is EXPTIME-complete. The hardness holds even if Π’s maximum function
arity is 2.

According to Theorem 6, we can see that comparing to other decidable classes, the
membership of poly-bounded programs requires extra computations, which is consistent
with the fact that this class of programs strictly contains all previous decidable classes.

Now, we denote by poly-bounded-∅ as the class of programs that are poly-bounded,
where S = ∅ in Condition (36) in Definition 4, i.e., programs that are poly-bounded
even if the computation of the lower bound LP(Π)(Π) is omitted. Then the following two
propositions are a direct consequence of Lemma 7 that is used in the proof of Theorem 6
(see B.7).

Proposition 11. Deciding whether a program is in poly-bounded-∅ class is EXPTIME-
complete.

Proof. (Membership) This follows from Theorem 6 since it is a special case of poly-bounded
where we do not compute the lower bound LP(Π)(Π).

(Hardness) Hardness follows from the program ΠM(s) = Πord
M(s) ∪ Πstr

M(s) ∪ Πedges
M(s) ∪

Πtrans
M(s) ∪ Πaccept

M(s) ∪ Πunbound
M(s) as constructed in the hardness proof of Theorem 6

(
see B.7

)
and the result of Lemma 7 within the proof, where we assumed the lower bound to be empty(
see B.7 for Lemma 7

)
.

Proposition 12. Given a poly-bounded program Π and a database D, the combined
complexity of taking Π ∪ D as input is 2-NEXPTIME-hard (lower-bound), and is in 4-
EXPTIME (upper-bound).

Proof. (Lower-bound) This follows from Theorems 3 and 4 that poly-bounded class contains
both the gmt-bounded and size-restricted classes. On the other hand, from the fact that
both classes already contain the ω-restricted class (Greco et al., 2013; Calautti et al., 2015a),
which has been proved by Syrjänen (2001) to be 2-NEXPTIME-complete in combined
complexity, this concludes that the combined complexity of the poly-bounded class is at
least 2-NEXPTIME-hard.
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(Upper-bound) Before proceeding the proof, we first introduce the notion of term and
atom size. For a given term t, we define termSize(t) as the size of term t as follows:

termSize(t) =

{
1 if t is a constant c or a variable X
1 +

∑m
i=1 termSize(ti) if t = f(t1, . . . , tm).

Intuitively, differently from “grsize” as introduce in Section 2.2 and only for the purpose
of this proof, our notion termSize is to define the size of the possible number of different
simple terms and function symbols that may occur in all the subterms of t. Similarly, we
also define a similar notion for atoms. As such, for a given atom A = p(t1, . . . , tn), we
set atomSize(A) = 1 +

∑i=n
i=1 termSize(ti). Intuitively, atomSize(A) also increments

the size of
∑i=n

i=1 termSize(ti) by one because we also want to take the occurrence of the
predicate symbol in A = p(t1, . . . , tn) (which is p) as one that can vary place holder for all
different predicate symbols in pred(Π).

Now we are ready to prove the upper-bound. According to Definition 4 and Lemma 3
as used in the proof of Theorem 2 (see B.3), the fact that Π is poly-bounded sets a bound
on the maximum size of terms in each atoms in the upper bound UP(Π)(Π, S).

On the other hand, recalling that maxArt(Π) denotes the product of both the maximum
arity of a relational and function symbol in pred(Π) ∪ funct(Π) while maxDep(Π) denotes
the maximum depth of a term mentioned in the program pred(Π) (see their definitions in
the third paragraph of section 4). Then, since each application of rules in the derivation
of atoms in UP(Π)(Π, S) can utmost increase each term’s depth by “maxDep(Π)” in each
new derived atom, and where for the previous term depths, the depth for future atom can
increase by maxArt(Π)-times (see for instance, Proposition 8), then the maximum depth
that an atom A can be derived in the program Π through P(Π)-times applications of its
rules is bounded by

maxArt(Π)P(Π) ·maxDep(Π) ≤ 2

[
P(Π)·maxArt(Π)+maxDep(Π)

]
= maxAtomDep(Π).

Therefore, the maximum size atomSize(A) that an atom A can be derived through the
rules of Π is bounded by

maxArt(Π)maxAtomDep(Π) ≤ 2

[
maxArt(Π)·maxAtomDep(Π)

]
= maxAtomSize(Π).

On the other hand, if we further take the predicate symbols in pred(Π), the constants
mentioned in const(Π ∪ D), as well as the function symbols in funct(Π) into account,
then the possible number of different atoms A of size atomSize(A) ≤ maxAtomSize(Π)
that can be derived from the rules of Π is bounded by∣∣pred(Π) ∪ const(Π ∪D) ∪ funct(Π)

∣∣maxAtomSize(Π)

≤ 2

[
| pred(Π)∪const(Π∪D)∪funct(Π) |·maxAtomSize(Π)

]
= maxAtoms(Π).

(i.e., 3-EXP). That is, we can think of the simple terms (i.e., the variables and constants)
mentioned in each atom (for which whose size is bounded by “maxAtomSize(Π)”) as “place
holders” for the different predicates, constants as well as function symbols mentioned in Π.
Then finally, since (at the worst case), we need to consider each of the possible subsets,
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whose size is bounded by 2maxAtoms(Π), in the checking for a stable model (which we do
by performing the reduct (see Section 2.4) of the program and then the “fixpoint-type”
operation to determine if the atoms consider are well-founded with respect to the reduct),
then it follows that the whole process of checking if Π ∪ D has a stable model by taking
both Π and D as input is in 4-EXPTIME.

Proposition 13. poly-bounded-∅ class strictly contains both the gmt-bounded and the
size-restricted classes.

Proof. (⊆) Membership follows from the proofs of Theorems 3 and 4
(
see B.4 and B.5,

respectively
)

where we assume, without loss of generality due to Proposition 4, that the
lower bound corresponding to set S is ∅.

(() The program in Example 8 as well as the program ΠM(s) = Πord
M(s) ∪ Πstr

M(s) ∪
Πedges

M(s) ∪ Πtrans
M(s) ∪ Πaccept

M(s) ∪ Πunbound
M(s) in the hardness proof of Theorem 6 are neither

gmt-bounded nor size-restricted but is in the poly-bounded-∅ class. This completes the
proof of Proposition 13.

Finally we have the following membership complexity result for the classes of k-exp-
bounded logic programs.

Theorem 7. [k-exp-bounded membership complexity] For k ≥ 1, deciding whether a
program Π is k-exp-bounded is (k + 1)-EXPTIME-complete.

7. Case Study: Propositional Planning via ASP with Functions

In this section, we consider the propositional planning problem, from which, we demonstrate
how our k-exp-bounded programs will be useful in the planning domain.

First we present the overview of propositional planning. Following the notions intro-
duced by Bylander (1994), a propositional planning system is a tuple (P,O, I,G), where:

• P = {c1, . . . , c|P|} is a finite set of propositional atoms, called the conditions;

• O is a finite set of operators, where each operator is armed with a tuple (δ, λ, κ, ι):

– δ ⊆ P is a set of positive preconditions;

– λ ⊆ P is a set of negative preconditions;

– κ ⊆ P is a set of positive postconditions;

– ι ⊆ P is a set of negative postconditions; and

– δ ∩ λ = ∅ and κ ∩ ι = ∅.

• I ⊆ P is the set of initial states; and

• G = (M,N ) is the goal:

– M⊆ P is a set of positive goals;

– N ⊆ P is a set of negative goals; and

– M∩N = ∅.
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A state in the system is specified by a subset S ⊆ P, indicating that p ∈ P is true in state
S iff p ∈ S. I specifies what conditions are true and false in the initial state, i.e., p ∈ P is
initially true if p ∈ I and initially false otherwise. A state S is called a goal state ifM⊆ S
and S ∩ N = ∅. O is the set of operators that can change one state to another. Given
a state S and an operator o = (δ, λ, κ, ι), we say that o is legal at state S if δ ⊆ S and
λ ∩ S = ∅, and illegal otherwise; the resulting state o(S) obtained from S by applying the
operator o is then defined as follows:

o(S) :=

{
(S ∪ κ) \ ι if o is legal at S;

S otherwise.

A finite sequence of operators (o1, o2, . . . , on) is called a solution if the state

on(· · · o2(o1(I)) · · · )

is a goal state. A solution is said to be succinct if there are no integers i and j such that
1 ≤ i < j ≤ n and oi(· · · o2(o1(I)) · · · ) = oj(· · · o2(o1(I)) · · · ).

To encode a planning problem into answer set programming (ASP), we consider a lan-
guage in a Herbrand domain, where

• initial, goal_pos and goal_neg are three unary predicates that encode the sets of
initial conditions, positive goals and negative goals, respectively;

• precond_pos, precond_neg, postcond_pos and postcond_neg are four binary pred-
icates that encode the sets of positive preconditions, negative preconditions, positive
postconditions and negative postconditions, respectively;

• action and stage are two unary predicates that encode the set of operators and
stages involving in an intended solution;

• maxStage0 is a predicate with arity 2 · |P|+ 1, while atom maxStage0(T,X,Y) is for
deriving the complex term T under the (successor) function s up to the depth 2|P|.

• Using similar notions to the “ordering axioms” in the rules of the program Πord
M(s) in

the hardness proof of Theorem 6 (see Appendix B.7), the predicates minNum(X) and
maxNum(Y) of arity |P| denote the minimum and maximum enumerations, respectively,
and simply set the maximum depth at 2|P| (see rule (43));

• Also using similar notions to the “ordering axioms” in the rules of the program Πord
M(s)

in the hardness proof of Theorem 6 (see Appendix B.7), the predicates ≤ and ≺
denote the less-then-equal and the successor relations among the numbering scheme
using the |P|-length tuples, respectively.

We further use υ to denote the set of all extensional predicates. Then each propositional
planning system can be encoded by a database over υ, where by a database over υ we mean
a finite set of ground atoms built from υ.
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Let s be an unary Herbrand function symbol representing the immediate successor
relation between stages. Now we specify Πplan to be the program as follows:

maxStage0(0,X,X) :- minNum(X). (41)

maxStage0(s(T),X,Z) :- maxStage0(T,X,Y),Y ≺ Z,X ≤ Z. (42)

maxStage(s(T)) :- maxStage0(T,X,Y), minNum(X), maxNum(Y). (43)

cond(c1) :-. (44)

...

cond(c|P|) :-. (45)

stage(0) :-. (46)

true(0,P) :- initial(P). (47)

eq(T,T) :- stage(T). (48)

eq(A,A) :- action(A). (49)

do(T,A) :- action(A),unsuc(T),not not do(T,A). (50)

not do(T,A) :- action(A),unsuc(T),not do(T,A). (51)

:- do(T,A),do(T,B),not eq(A,B). (52)

illegal(T,A) :- stage(T),precond pos(A,P),not true(T,P),cond(P). (53)

illegal(T,A) :- stage(T),precond neg(A,P),true(T,P),cond(P). (54)

true(s(T),P) :- do(T,A),postcond pos(A,P),not illegal(T,A),.

not maxStage(s(T)),cond(P). (55)

false(s(T),P) :- do(T,A),postcond neg(A,P),not illegal(T,A),

not maxStage(s(T)),cond(P). (56)

true(s(T),P) :- true(T,P),stage(s(T)),not false(s(T),P),.

not maxStage(s(T)). (57)

:- true(T,P),false(T,P). (58)

stage(s(T)) :- do(T,A),not maxStage(s(T)). (59)

diff(T,S) :- true(T,P),stage(S),not true(S,P). (60)

diff(T,S) :- stage(T),not true(T,P),true(S,P). (61)

:- stage(T),stage(S),not eq(T,S),not diff(T,S). (62)

unsuc(T) :- stage(T),goal pos(P),not true(T,P). (63)

unsuc(T) :- stage(T),goal neg(P),true(T,P). (64)

done :- stage(T),not unsuc(T). (65)

:- not done. (66)

where: action, initial, goal pos, goal neg, precond pos, precond neg, postcond pos

and postcond neg are extensional (or base) predicates; and rules (44)-(45) encode the
possible conditions c1, . . ., c|P| such that each ci (for i ∈ {1, . . . , |P|}) are constants encoding
the condition ci ∈ P.
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Here predicate maxStage (as mentioned in the head of rule (43)) encodes the maximum
possible stage that can be derived via the ordering relations minNum, maxNum, ≤ and ≺, and
where these ordering relations can be defined in a similar manner as the program Πord

M(s) in

the hardness proof of Theorem 6 (see Appendix B.7). As such, the presence of the literal
“not maxStage(s(T))” in the bodies of rules (55), (56), (57) and (59) bounds the recursive
buildup of the complex terms through the successor function symbol s since the maximum
stage will be in the lower bound LP(Πplan)(Πplan)9.

In particular, the first rule (41) is for deriving the initial enumeration, “0”, which is
the first argument (i.e., maxStage0[1]) of the predicate “maxStage0”. More precisely, we
have that the head atom “maxStage0(0,X,X)” with “minNum(X)” in the body of (41),
derives “0” with “X” first corresponding to our minimal enumeration. Next, the rule (42)
counts each nesting of applications of the successor function “s(T)” in terms of the distance
between the enumeration values “X” and “Z” so that the number of nesting of the term
“s(T)” actually corresponds to the (increasing) distance between the enumeration values
“X” and “Z”. In particular, we note that the application of the function “s(T)” in the
first term of the predicate “maxStage0” in rule (42) is bounded because of the two body
atoms “Y ≺ Z” and “X ≤ Z” of (42) acting as “guards.” Then lastly, the rule (43) projects
the maximum depth of the terms “s(T)” into the predicate “maxStage” by considering the
term “T” of the body atom “maxStage0” when the distance between the minimum and
maximum enumeration (i.e., minNum(X) and maxNum(Y)) is at the maximum.

Then we can compute that program Πplan terminates after possible 2n configurations
of n states are reached, where n = |2P | ≤ 2P(Πplan) = expΠplan

(1), i.e., the size of all pos-

sible states. Therefore, it follows that UexpΠplan
(1)(Πplan, S) = U 2·expΠplan

(1)(Πplan, S) =
U 3·exp·Πplan

(1)(Πplan, S) = U∞(Πplan, S), where S = LexpΠplan
(1)(Πplan). So Πplan is 1-exp-

bounded.

8. Concluding Remarks

Answer set programming with function symbols has demonstrated its useful applications
in various situations. For this purpose, discovering finitely ground programs with function
symbols has been an important topic in ASP research. On the other hand, in traditional
logic programming paradigm, the problem of program termination has also been extensively
studied under the top-down evaluation approach over the years (Baselice et al., 2009; Bon-
atti, 2004; Bruynooghe, Codish, Gallagher, Genaim, & Vanhoof, 2007; Genaim & Codish,
2005; Marchiori, 1996; Nguyen, Giesl, Schneider-Kamp, & Schreye, 2007; Nishida & Vidal,
2010; Ohlebusch, 2001; Schneider-Kamp, Giesl, Serebrenik, & Thiemann, 2009; Schneider-
Kamp, Giesl, Ströder, Serebrenik, & Thiemann, 2010; Schreye & Decorte, 1994; Serebrenik
& Schreye, 2005; Voets & Schreye, 2011). However, as pointed by Greco, Molinaro and Tru-
bitsyna (2013), under the stable model semantics, these methods are generally inapplicable
to identify new finitely ground programs.

In this paper, by proposing the stable model polynomial and k-exponential upper bounds
for logic programs, we discovered new decidable classes of finitely ground programs, which

9. For clarity and better presentation, we omit the rules of Πord
M(s) about the ordering relations as mentioned

above.

787



Asuncion, Zhang, Zhang, & Li

strictly contain all previous existing decidable classes of logic programs. The overall land-
scape of finitely ground programs is described by Figure 1 illustrated in Section 1.

We should also mention that the decidable classes of finitely ground programs discovered
in this paper are of practical values. Section 7 has shown a case how an exponential bounded
program has to be used in solving propositional planning problem. Nevertheless, according
to our complexity results, checking whether a program is polynomial or exponential bounded
is inevitably hard in general.
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Appendix A. Overview of gmt-bounded and size-restricted Classes

A.1 gmt-bounded Programs

A labeled argumentation graph of a program Π is a graph GL(Π) = (V,E), where V =
arg(Π), and there is an edge (q[j], p[i], 〈α, r, h, k〉

)
10 in E iff (i) r ∈ Π; (ii) p(t1, . . . , ti, . . . , tn)

is the h-th atom of Hd(r); (iii) q(u1, . . . , uj , . . . , um) is the k-th atom of Pos(r); (iv) α is
further defined as follows: (a) α = ε if uj = ti; (b) α = f if uj = X and ti = f(. . . , X, . . .);
(c) α = f if uj = f(. . . , X, . . .) and ti = X.

A path ρ in GL(Π) is a non-empty sequence (a1, b1, 〈α1, r1, h1, k1〉
)
, . . ., (as, bs, 〈αs, rs,

hs, ks 〉
)

such that bi = ai+1 for 1 ≤ i ≤ s − 1. If a1 = bs, then ρ is called a cyclic path.
Then based on the path ρ, we define: (i) λ1(ρ) = α1, . . ., αs (i.e., the sequence of function
symbols); (ii) λ2(ρ) = r1,. . ., rs (i.e., the sequence of rules); and (iii) λ3(ρ) = 〈r1, h1, k1〉,
. . ., 〈rs, hs, ks〉 (i.e., the sequence of rules with atoms). Given a cycle π of GL(Π), we denote
by τ(π) as the set of all the cyclic paths that can be obtained from π. Thus, given two
cycles π1 and π2, we denote by π1 ≈ π2 iff there exist some ρ1 ∈ τ(π1) and ρ2 ∈ τ(π2) such
that λ3(ρ1) = λ3(ρ2), i.e., π1 and π2 go through the same rules and atoms in Π. We say
that a cycle π is basic if it does not contain occurrences of the same edges (although it may
contain the occurrences of the same nodes). A node p[i] depends on a node q[j] in GL(Π)
iff there is a path from q[j] to p[i]. Finally, we say that a node p[i] depends on a cycle π of
GL(Π) iff it depends on a node q[j] appearing in π. Note that nodes appearing on π depends
on the cycle π itself. The activation graph of Π, denoted GA(Π), is the graph (V,E) s.t.
V = Π and there exists an edge (ri, rj) ∈ E iff ri activates rj (Greco et al., 2013). We say
that ri activates rj iff there exists two ground rules ri ∈ ground(r′i) and rj ∈ ground(r′j)
and a set of ground atoms D such that (1) D 6|= r′i; (2) D |= r′j ; and (3) D ∪ Hd(r′j) |= r′j .

Given a program Π and its labelled argumentation graph GL(Π), we define the recursive
information on function applications in the rules through the so-called grammars GΠ and
G′Π as the 4-tuples (N,T,R, S) and (N ′T,R′, S), respectively, where N = {S, S1, S2} and N ′

= {S} are the sets of non-terminal symbols; T = {f | f ∈ funct(Π)} ∪ {f | f ∈ funct(Π)}
is the set of terminal symbols; S is the start symbol; and lastly, R is the set of production
rules:

10. We assume without loss of generality that the atoms in Hd(r) and Pos(r) of all the rules r ∈ Π have
some sort of ordering.
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• S → S1fiS2, ∀fi ∈ funct(Π),

• S1 → fiS1f iS1 | ε, ∀fi ∈ funct(Π),

• S2 → (S1 | fi)S2 | ε, ∀fi ∈ funct(Π),

and R′ the set of production rules:

• S → fiSf iS | ε, ∀fi ∈ funct(Π).

Thus, we denote by L(GΠ) and L(G′Π) as the languages of the set of strings generated by
the grammars GΠ and G′Π, respectively. For example, assuming funct(Π) = {f, g}, then
the three strings: (1) ggf ; (2) fgg; and (3) ggfgg are strings of L(GΠ), while the three
strings: (1) ff ; (2) fggf ; and (3) fggfgg are strings of L(G′Π). Then given a cycle π of
GL(Π), we say that π is:

• growing if there is ρ ∈ τ(π) s.t. λ1(ρ) ∈ L(GΠ);

• balanced if there is ρ ∈ τ(π) s.t. λ1(ρ) ∈ L(G′Π);

• failing otherwise.

Intuitively, a growing cycle π allows propagation of more complex terms; a balanced cycle
π denotes no propagation of complex terms; and the cycle π is failing otherwise.

Definition 8. (Greco et al., 2013) Given a set of arguments A, we define Ψ(gmt,Π)(A) to
be the set of arguments q[k] such that for each basic cycle π that q[k] depends on, at least
one of the following conditions holds:

1. π is not active or is not growing;

2. π contains an edge (s[j], p[i], 〈f, r, l1, l2〉
)

and letting p(t1, . . . , tn) be the l1-th atom in
the head of r, for every variable X in ti, there is an atom b(u1, . . . , um) in Pos(r)
such that X appears in a term uh and b[h] ∈ A;

3. there is a basic cycle π′ in GL(Π) such that π′ ≈ π, π′ is not balanced, and π only
passes through arguments in A.

By Ψi
(gmt,Π)(A), we further denote the set of arguments inductively defined by:

Ψ0
(gmt,Π)(A) = Ψ(gmt,Π)(A), and

Ψi+1
(gmt,Π)(A) = Ψi+1

(gmt,Π)

(
Ψi

(gmt,Π)(A)
)
.

Then by Ψ∞(gmt,Π)(A), we denote its fixpoint
⋃∞

i=0 Ψi
(gmt,Π)(A).

It is not difficult to verify from Definition 8 that A1 ⊆ A2 implies Ψ(gmt,Π)(A1) ⊆
Ψ(gmt,Π)(A2) although the relationship A ⊆ Ψ(gmt,Π)(A) does not hold in general.

Then a program Π is gmt-bounded iff Ψ∞(gmt,Π)

(
ar(Π)

)
= arg(Π) (Greco et al., 2013),

where ar(Π) denotes the set of restricted arguments (or sometimes just restricted for con-
venience) of Π (Lierler & Lifschitz, 2009). Formally, ar(Π) is the set of arguments of Π
such that there exists an assignment φ : ar(Π) −→ Z+ so that for all rules r ∈ Π, all
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atoms p(t1, . . . , tn) ∈ Hd(r), and all variables X of ti, if p[i] ∈ ar(Π), then we have: (1)
there is q(u1, . . . , um) ∈ Pos(r) with X occurring in uj and q[j] ∈ ar(Π), and (2) φ

(
p[i]
)
−

φ
(
q[j]
)
≥ dep

(
X, ti

)
− dep

(
X,uj

)
. Here dep

(
X, ti

)
denotes the maximum term depth of

the variable X in term ti (Greco et al., 2013). Generally speaking, the restricted arguments
ar(Π) of Π are the arguments where their edges in the argumentation graph do not form a
growing cycle.

For a given set of arguments A ⊆ arg(Π) and an argument p[i] ∈ arg(Π), we say that
p[i] is gmt-limited under A iff p[i] ∈ Ψ∞(gmt,Π)(A).

Example 9. Assume Π to be the program in (Greco et al., 2013) consisting of the following
rules:

count(lc(a, lc(b, lc(c, nil))), 0), (67)

f-count(X,L, I)← count
(
lc(X,L), I

)
, (68)

count
(
L, s(I, 1)

)
← f-count(X,L, I). (69)

Then it can be checked that Ψ∞(gmt,Π)

(
ar(Π′)

)
= arg(Π), so Π′ is gmt-bounded. Indeed,

the arguments count[1], f-count[1] and f-count[2] only depends on the failing cycle between
the arguments f-count[2] and count[1] of the cycle between the rules (68) and (69). There-
fore, we have that Ψ(gmt,Π)(∅) =

{
count[1], f-count[1], f-count[2]

}
. Then finally, because

the two rules (68) and (69) passes through the arguments in Ψ(gmt,Π)(∅) (which is in a
failing cycle), then it follows that even though the cycle among the arguments count[2]
and f-count[3] is growing, it will still terminate because the two rules activating the cycle
(between count[2] and f-count[3]) passes through the arguments in Ψ(gmt,Π)(∅) =

{
count[1],

f-count[1], f-count[2]
}

. Then since this implies that Ψ(gmt,Π)

(
Ψ(gmt,Π)(∅)

)
=
{
count[2],

f-count[3]
}

such that Ψ(gmt,Π)

(
Ψ(gmt,Π)(∅)

)
∪ Ψ(gmt,Π)(∅) = arg(Π), then it follows from

Definition 8 that Π is gmt-bounded. 2

A.2 size-restricted Programs

Now we introduce another class of programs called size-restricted programs (Calautti et al.,
2015a). For a given program Π, each of its rules of the form (1) is replaced by the following
k normal positive rules:

Ai ← B1, . . . , Bl, 1 ≤ i ≤ k,

where constraints are omitted, and we denote this positive normal program as st(Π). Since
the minimal model of st(Π) contains every stable model of Π, the finiteness of the minimal
model of st(Π) implies the finiteness of the stable model of Π (Calautti, Greco, Spezzano,
& Trubitsyna, 2015b), and hence, in the rest of this section, the definition of size-restricted
program will be based on positive normal programs (Calautti et al., 2015a).

Let Π be a (positive normal) program. By Ω(Π), we denote it as the firing graph of Π,
which is a directed graph where 〈r, r′〉 is an edge of Ω(Π) iff there exists two rules (can be
the same) r, r′ ∈ Π such that Hd(r) and some atom in Pos(r′) are unifiable. Intuitively,
this means that r may cause r′ to “fire.” Then the strongly connected component (SCC) of
Ω(Π) is the maximal set of nodes C where every node of C always reaches itself. In this
case, we also call such C is a SCC of program Π
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For a given program Π, we assume that all distinct SCCs of Ω(Π) are enumerated as
C1, . . ., Cn, and as such, we denote by ext-arg(Π) as the set {p[i/j] | Cj is an SCC of Π
and p[i] ∈ arg(Π)}.

Then the extended argumentation graph of a positive normal program Π, denoted as
∆(Π), is a directed graph with nodes ext-arg(Π), and there is an edge (q[j, k], p[i, l]) iff:

• k = l and there is a rule r ∈ Ck such that: (1) pred
(
Hd(r)

)
= p; (2) there exists

some B ∈ Pos(r) s.t. pred(B) = q; (3) the i-th term Hd(r) and j-th of B have a
common variable; and (4) there is a rule r′ ∈ Π s.t. Hd(r′) and B unify, or

• k 6= l, p = q, i = j and there are two rules r1 ∈ Ck and r2 ∈ Cl s.t. pred
(
Hd(r1)

)
=

p and (r1, r2) is an edge of Ω(Π).

Intuitively, an edge (q[j, k], p[i, l]) of ∆(Π) indicates that there can be a derivation of terms
from q[j] in component Ck to p[i] in component Cl. We further say that an extended
argument p[i/l] depends on an extended argument q[j/k] if there is a path from q[j/k] to
p[i/l] in the graph ∆(Π).

For some rule r ∈ Π, we say that the head atom is mutually recursive with an atom B ∈
Pos(r) if there is an SCC C of Π containing r and another rule r′ (which can also be r) such
that Hd(r′) and B unify. We denote by recrPos(r) as the set of mutually recursive atoms
in Pos(r) with Hd(r). For a given program Π and a set A of limited arguments of Π, a rule
r ∈ Π is said to be A-relevant if Hd(r) contains at least one variable which does not appear
in Pos(r) \ recrPos(r) and does not appear is some term ti of some atom p(t1, . . . , tn) ∈
Pos(r) s.t. p[i] ∈ A. Intuitively, rules that are not A relevant will not be considered in the
analysis an SCC since they cannot initiate a propagation of infinite terms.

Now we define the notion of a size of a term. The size of a term t, denoted size(t), is
defined recursively as follows:

size(t) =

{
x if t is a variable X
m+

∑m
i=1 size(ti) if t = f(t1, . . . , tm),

where x is the integer variable corresponding to X. Thus, the size of an atom A =
p(t1, . . . , tn), denoted as size(A), is the vector

(
size(t1), . . ., size(tn)

)
. For example, for

atom A = p(a,X, f(X, g(X,Y )), we have that size(A) = (0, x, 2x+ y + 4).

Now we define the domain of an argument and a predicate as introduced in
(Calautti et al., 2015a). Given a program Π and a set arguments A, the domain of an
argument p[i] ∈ arg(Π) w.r.t. A, denoted DA(p[i]), is Z if p[i] ∈ A, and N otherwise.
Thus, the domain of a predicate symbol p of arity n is DA(p) = DA(p[1]) × . . . × DA(p[n]).

Definition 9. (Calautti et al., 2015a) Given a program Π and a set A of limited arguments,
let C be a SCC of Ω(Π) with pred(C) = {p1, . . . , pn}. We say that an argument pi[j] of C
is A-size-restricted in C iff:

1. For every rule r ∈ C such that Hd(r) = pi(t1, . . . , tm), for every variable X occurring
in tj, there exists a term uk of body atom q(u1, . . . , um′) s.t. X occurs in uk and q[k]
∈ A, or
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2. There exists n vectors vh ∈ DA(ph), 1 ≤ h ≤ n, such that for every A-relevant rule r
∈ C there exists an atom B in Pos(r) such that if pred

(
Hd(r)

)
= pk and pred(B)

= pl, then the following holds:

(a) the constraint vl · size(B) ≥ vk · size
(
Hd(r)

)
is satisfied for every non-negative

values of the integer variables in it;

(b) pk = pi implies that either vi[j] 6= 0 or the constraint vl · size(B) > vi ·
size

(
Hd(r)

)
is satisfied for every non-negative values of the integer variables

in it.

Generally speaking, item 2 above imposes a restriction on the rules implying a kind of
“failing-cycle” since the nesting of the terms in the head must be less than or equal to that
in the body.

Finally, we are ready to define size-restricted programs as introduced by Greco, Molinaro
and Trubitsyna (2015a). Let Π be a program and A a set of limited arguments of Π. Then
an argument p[i] is A-size-restricted in Π if for every SCC Cl of Π where p ∈ pred(Cl), we
have that: (1) p[i] is A-size-restricted in Cl; and (2) p[i/l] depends only on the extended
arguments q[j/k] such that q[j] is A-size-restricted in Ck. Then, by RA(Π), we denote the
set of all the A-size-restricted arguments of Π.

Although a direct application of the size-restricted criterion does not directly capture the
restricted arguments (Lierler & Lifschitz, 2009) nor the gmt-bounded classes (Greco et al.,
2013), it can nevertheless be incorporated by setting the initial set of “limited” arguments
A to be that derived from other bounded classes (Calautti et al., 2015a).

Formally, a program Π is called size-restricted, iff arg(Π) = Ψ∞(sr,Π)(A∪B), where A =

ar(Π) and B are the sets of restricted and gmt-limited arguments of Π, respectively, and
the fixpoint operator Ψ∞sr,Π is defined as follows: (1) Ψ1

(sr,Π)(S) = Ψ(sr,Π)(S) = S ∪ RS(Π);

(2) Ψi+1
(sr,Π)(S) = Ψ(sr,Π)

(
Ψi

(sr,Π)(S)
)
; and (3) Ψ∞(sr,Π)(S) =

⋃∞
i=0 Ψi

(sr,Π)(S).

As addressed in (Calautti et al., 2015a), using this definition, the class of size-resticted
programs strictly contains the class of gmt-bounded programs, and hence forms the decid-
able class of logic programs with function symbols containing all previous decidable classes.

Example 10. Assume Π to be the program consisting of the single rule:

r1 : q
(
f(X), h(Y ), h(Z)

)
← p

(
X, g(Z,Z), g(Y, Y )

)
,

r2 : p(X,Y, Z)← q(X,Y, Z).

Then since the cycle between the four arguments p[2], p[3], q[2] and q[3] are balanced,
and where the cycle between the two arguments p[1] and q[1] is growing, then it fol-
lows from Definition 8 that Π cannot be gmt-bounded (unless if instead, the four ar-
guments p[2], p[3], q[2] and q[3] have a failing cycle). On the other hand, since we get that
size

(
Hd(r1)

)
= (1 + x, 1 + y, 1 + z) and size(B) = (x, 2 + 2z, 2 + 2y), where B ∈ Pos(r1)

=
{
p
(
X, g(Z,Z), g(Y, Y )

)}
, then under the vector v = (1, 1, 1), we get that v · size(B) ≥

v · size
(
Hd(r1)

)
holds for all the non-negative integer values of the variables mentioned in

the vectors size
(
Hd(r1)

)
and size(B). Therefore, it follows that Π is size-restricted. 2
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Appendix B. Proofs

B.1 Proof of Theorem 1

Theorem 1. Let Π be a program and S ⊆ L∞(Π). Then for every input database D and
stable model M of Π ∪D, M � U∞(Π, S).

Proof. Suppose that M is a stable model of Π′ = ground(Π∪D) such that M 6� U∞(Π, S).
Then since M is a stable model of Π′, it follows that M is a minimal model of (Π′)M

(
where

(Π′)M denotes the reduct of Π′ on M
)
. Let M ′ = M \ {a ∈ M | a 6� U∞(Π, S)}, i.e., M ′

is the set obtained from M by deleting all the atoms that are not embeddable in U∞(Π, S).
Then since M 6� U∞(Π, S) (which implies that there exists some a ∈ M such that a 6�
U∞(Π, S)), it follows that M ′ ⊂ M where M ′ � U∞(Π, S).

Lemma 1. M ′ |= (Π′)M .

Proof. On the contrary, we assume that ∃r ∈ (Π′)M such that Pos(r) ⊆ M ′ where M ′ ∩
Hd(r) = ∅. Then since all rules in (Π′)M only have positive bodies and M ′ � U∞(Π, S),
it follows by backtracking that all the atoms in Pos(r) are embeddable into Uk(Π, S),
for some stage k, i.e., Pos(r) � Uk(Π, S), for some k ≥ 0. Moreover, since Neg(r) ∩
S+�const(Π∪D) = ∅ 11 (since r ∈ (Π′)M and S+�const(Π∪D) ⊆ M by Proposition 2) and
Pos(r) ∩ S−�const(Π∪D) = ∅ (also by Proposition 2 and since Pos(r) ⊆ M ′ ⊂ M), then

from the definition of Uk+1(Π, S) (see Definition 3), it follows that Hd(r) � Uk+1(Π, S).
On the other hand, from the definition of M ′, it implies M ′ ∩ Hd(r) 6= ∅ due to M |= (Π′)M ,
Pos(r) ⊆ M ′ ⊂ M and Neg(r) ∩ M = ∅ (i.e., Hd(r) ∈ M). Obviously, this contradicts
the assumption that M ′ ∩ Hd(r) = ∅.

Therefore, from Lemma 1, we get a contradiction that M is a minimal model of (Π′)M .

B.2 Proof of Proposition 7

Proposition 7. Given a program Π, ar(Π) ⊆ polyLA(Π).

Proof. We prove this result for UP(Π)(Π, S) where S = ∅. It then follows from Proposition
4 that the result also holds for the case where S = LP(Π)(Π).

On the contrary, assume that there exists some p[i] ∈ ar(Π) such that p[i] /∈ polyLA(Π).
Then from the definition of polyLA(Π) we get depp[i]

(
U 2 ·P(Π)(Π, ∅)

)
< depp[i]

(
U 3 ·P(Π)(Π,

∅)
)
. First, the key thing to observe here is that there can only be utmost P = |Πdef| ·

maxArt(Π) · maxPos(Π) < P(Π) different positions that argument p[i] can be propagated
in Πdef. Now, the first iterations comprising of P -steps considers the possibility that p[i]

11. For convenience, we assume that Neg(r) stands for the negative body of r prior to its reduced form in
the reduct (Π′)M .
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could skip a propagation onto itself. However, by the 2 ·P + 1-step, we would have already
considered all the possible propagations of p[i]. Therefore by the pigeonhole principle, where
we view P here as the number of holes and the number of iteration steps as the pigeons,
it follows that p[i] would have been propagated onto itself if it still grows a complex term
by that stage (because even growth due to the successive applications of rules alone would
have been considered in the first P -steps). In fact, since even at stage U 3 ·P(Π)(Π), where
3 · P < 3 · P(Π), the argument p[i] still contains a complex term that grows in depth, then
p[i] must be in a growing cycle, which contradicts the assumption that p[i] ∈ ar(Π).

B.3 Proof of Theorem 2

Theorem 2. If Π is poly-bounded, then for every input database D (D can be empty),
program Π ∪D is finitely ground.

Proof. Before we get into the main proof of Theorem 2, we first introduce the following
lemma whose result is going to be used in our main proof.

Lemma 2. Given a program Π, some S ⊆ L∞(Π), some rule r ∈ Πdef and assignment θ′ :
var(r) −→ terms

(
U∞(Π, S)

)
, if for some k > P(Π) we have that Pos(r)θ′ ⊆ Uk−1(Π, S)

such that Hd(r)θ′ ∈ Uk(Π, S) and Hd(r)θ′ = Bη′, for some B ∈ pos(Π) and corresponding
assignment η′, then there also exists some assignment θ : var(r) −→ terms

(
atoms(Πdef)∪

U i−1(Π, S)
)

such that Hd(r)θ ∈ U i(Π, S), and where: (1) 1 ≤ i ≤ K; (2) r ∈ scc(Πdef)[i];

(3) scc(Πdef)[0], scc(Πdef)[1], . . ., scc(Πdef)[i], . . ., scc(Πdef)[K], corresponds to the SCC
stratification of scc(Πdef) (see Section 2.7); and (4) Hd(r)θ = Bη, for some corresponding
assignment η.

Proof. Let Hd(r)θ′ = A ∈ Uk(Π, S)\UP(Π)(Π, S) (for some k > P(Π)), B ∈ pos(Π) and η′ :

var(B) −→ terms(A) such that Bη′ = A. Then since A ∈ Uk(Π, S)\UP(Π)(Π, S)
(
which

implies that A /∈ UP(Π)(Π, S)
)
, then given the size of the bound P(Π)

(
see (35)

)
, then it

follows that the rule r ∈ Πdef is “recursive” in the sense that recrPos(r) 6= ∅, due to (22)
of Definition 3. On the other hand, because of (21) of Definition 3, that recursive rule r ∈
Πdef would have also been applied at some step U i(Π, S), where r ∈ scc(Πdef)[i], and such
that: scc(Πdef)[0], scc(Πdef)[1], . . ., scc(Πdef)[i], . . ., scc(Πdef)[K], corresponds to the
SCC stratification of scc(Πdef) (i.e., Hd(r)θ = A′ ∈ U i(Π, S) for some assignment θ) and
K ≤ P(Π). Then, assuming that Hd(r)θ = A′, since we get from (21) that the assignment
θ : var(r) −→ terms

(
atoms(Πdef) ∪ U i−1(Π, S)

)
considers all terms and subterms of all

the atoms in atoms(Πdef), then it follows that through such the assignment θ, we can unify
A′ and B as well, i.e., there exists another assignment η : var(B) −→ terms(A′) such that
Bη = A′. This completes the proof of Lemma 2.

Intuitively, Lemma 2 says that the atoms contained in UP(Π)(Π, S) are enough to consider
all the possible “types” and “subtypes” of terms that can be derived in the heads of rules
in Πdef and up to whose terms depth are not greater than maxDep(Π) (because the as-
signment θ, as mentioned in the proof above, considers all the assignment of var(r) onto
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terms
(
atoms(Πdef)

)
in the step U i(Π, S)). Now we are ready to proceed to the main

proof of Theorem 2.

We prove this main result for UP(Π)(Π, S) where S = ∅. It then follows from Proposition
4 that the result also holds for the case where S = LP(Π)(Π).

Let p[i] ∈ polyLA(Π). Then based on the definition of polyLA(Π) as described in
(36), we have that the following condition holds:

depp[i]

(
U 2 ·P(Π)(Π, S)

)
= depp[i]

(
U 3 ·P(Π)(Π, S)

)
.

Then we have the following lemma.

Lemma 3. depp[i]

(
U 2 ·P(Π)(Π, S)

)
= depp[i]

(
U 3 ·P(Π)(Π, S)

)
iff depp[i]

(
U (k+2) ·P(Π)(Π, S)

)
= depp[i]

(
U (k+3) ·P(Π)(Π, S)

)
holds for all k ≥ 1.

Proof. (“=⇒”) On the contrary, we assume that there exists some k ≥ 1 such that
depp[i]

(
U (k+2) ·P(Π)(Π, S)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, S)

)
. Then now let us further prove the

following lemma.

Lemma 4. There exists a homomorphism

h : U (k+3) ·P(Π)(Π, ∅) −→ 2

(
U 3 · P(Π)(Π,∅)

)
such that

depp[i]

(
U (k+2) ·P(Π)(Π, ∅)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, ∅)

)
iff

depp[i]

(
h
(
U (k+2) ·P(Π)(Π, ∅)

))
< depp[i]

(
h
(
U (k+3) ·P(Π)(Π, ∅)

))
,

where for S ⊆ 2

(
U (k+3) · P(Π)(Π,∅)

)
, we have h(S) denotes the set of atoms⋃
A∈S

h(A) ⊆ U 3 ·P(Π)(Π, ∅).

Before proceeding to the actual proof of Lemma 4, we first provide some explanation of

the homomorphism h : U (k+3) ·P(Π)(Π, ∅)−→ 2

(
U 3 · P(Π)(Π,∅)

)
. Intuitively, the homomorphism

h is a mapping of the atoms in U (k+3) ·P(Π)(Π, ∅) to the set of atoms in 2

(
U 3 · P(Π)(Π,∅)

)
of

the stage 3 · P(Π). Here, as indicated in the description of the lemma, the homomorphism
h has the property that

depp[i]

(
U (k+2) ·P(Π)(Π, ∅)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, ∅)

)
iff

depp[i]

(
h
(
U (k+2) ·P(Π)(Π, ∅)

))
< depp[i]

(
h
(
U (k+3) ·P(Π)(Π, ∅)

))
,

i.e., loosely speaking, a term grows in depth from stage (k+ 2) · P(Π) to (k+ 3) · P(Π) iff it
also grew in depth at stage 2 · P(Π) to 3 · P(Π)

(
which contradicts the earlier assumption

)
. In

particular, we note in the latter that the numbers 2 · P(Π) and 3 · P(Π) are also (k+2) · P(Π)
and (k + 3) · P(Π), respectively, when k = 0.
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Proof. We construct the homomorphism by induction from l = 0 to l = 2·P(Π) such that the

property holds for each of the homomorphism hl : U l+(k+1) ·P(Π)(Π, ∅) −→ 2

(
U l+P(Π)(Π,∅)

)
.

Clearly, we note here that when l = 0 and l = 2·P(Π), then we will have that l+(k+1) · P(Π)
= (k + 1) · P(Π) and l + (k + 1) · P(Π) = (k + 3) · P(Π), respectively.

Basis: We map each atom A ∈ U (k+1) ·P(Π)(Π, ∅) into UP(Π)(Π, ∅) via the homomorphism
h0 as follows:

h0(A) ={
Hd(r)θ | r ∈ Πdef and θ : var(r) −→ varConst(Π), and

∃j ∈
{

0, . . . , (k + 1) · P(Π)− 1
}

and corresponding

assignment θ′ : var(r) −→ terms
(
U j(Π, ∅)

)
s.t.

Pos(r)θ′ ⊆ U j(Π, ∅), Hd(r)θ′ ∈ U j+1(Π, ∅) and

Hd(r)θ′ = A
}
.

Intuitively, each atom A ∈ U (k+1) ·P(Π)(Π, ∅) is mapped into the set of all the possible
atom types mentioned in any head of a rule r ∈ Πdef that can be used to derive A
in some stage U j(Π, ∅)

(
for j ∈

{
0, . . ., (k + 1) · P(Π) − 1

})
. More precisely, we get

from Lemma 2 that h0

(
A
)
⊆ UP(Π)(Π, ∅) because the stages U j(Π, ∅)

(
for j ∈ {1, . . .,

P(Π)}
)

would have derived all such atom types.

Inductive step: Assume that we had defined the homomorphism
hj : U j+(k+1) ·P(Π)(Π, ∅) −→ 2U

j+P(Π)(Π,∅) for j ∈ {0, . . . , l}.

Then for each atom A ∈
(
U (l+1)+(k+1) ·P(Π)(Π, ∅) \ U l+(k+1) ·P(Π)(Π, ∅)

)
, we further

define hl+1(A) to be the following set of atoms such that:

hl+1(A) ={
Hd(r)θ | r ∈ Πdef and θ : var(r) −→ term

(
U l+P(Π)(Π, ∅)

)
such that:

(1) ∃θ′ : var(r) −→ terms
(
U l+(k+1) ·P(Π)(Π, ∅)

)
s.t. Pos(r)θ′ ⊆ U l+(k+1) ·P(Π)(Π, ∅),
Hd(r)θ′ ∈ U (l+1)+(k+1) ·P(Π)(Π, ∅) and Hd(r)θ′ = A;

(2) recrPos(r)θ ⊆
⋃

B ∈ recrPos(r)

hl(B) and

(
Pos(r) \ recrPos(r)

)
θ ⊆ U l+P(Π)(Π, ∅)

}
.

Intuitively, hl+1 : U (l+1)+(k+1) ·P(Π)(Π, ∅) −→ 2U
(l+1)+P(Π)(Π,∅) is an extension of the

previous one hl : U l+(k+1) ·P(Π)(Π, ∅) −→ 2U
l+P(Π)(Π,∅) by setting hl+1(A) = Hd(r)θ,

for each A ∈
(
U (l+1)+(k+1) ·P(Π)(Π, ∅) \ U l+(k+1) ·P(Π)(Π, ∅)

)
, and such that the cor-

responding positive body atoms are from those already mapped from the previ-
ous stage, i.e., recrPos(r)θ ⊆

⋃
B∈recrPos(r) hl(B) and

(
Pos(r) \ recrPos(r)

)
θ ⊆
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U l+P(Π)(Π, ∅), where recrPos(r) denotes the mutually recursive atoms of Pos(r) with
Hd(r) (see Section 2.7 for definition of “recrPos(r)”). Then since we have from the
ind. hyp. that

⋃
B∈recrPos(r) hl(B) ⊆ U l+P(Π)(Π, ∅), then it follows from the definition

of U (l+1)+P(Π)(Π, ∅)
(
see (22) in Definition 3

)
that hl+1

(
U (l+1)+(k+1) ·P(Π)(Π, ∅) \

U l+(k+1) ·P(Π)(Π, ∅)
)
⊆ U (l+1)+P(Π)(Π, ∅). Therefore, it follows that h = h 2 ·P(Π) is

well defined. Moreover, it further follows from the definition of the homomorphism h
that depp[i]

(
U (k+2) ·P(Π)(Π, ∅)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, ∅)

)
iff

depp[i]

(
h
(
U (k+2) ·P(Π)(Π, ∅)

))
< depp[i]

(
h
(
U (k+3) ·P(Π)(Π, ∅)

))
.

This completes the proof of Lemma 4.

Then our contradiction finally follows from the homomorphism h : U (k+3) ·P(Π)(Π, ∅)
−→ 2

(
U 3 · P(Π)(Π,∅)

)
of Lemma 4 and since the size of the bound P(Π)

(
see (35) for definition

of P(Π)
)

would have already considered the growth of p[i] in UP(Π)(Π, ∅) from the non-
recursive application of rules in Πdef, and where the other cycles propagating complex
terms in U 2 ·P(Π)(Π, ∅) would also propagate onto U 3 ·P(Π)(Π, ∅). This ends the proof of
Lemma 3.

(“⇐=”) Similarly, to prove this direction, we also use the homomorphism

h : U (k+3) ·P(Π)(Π, ∅) −→ 2

(
U 3 · P(Π)(Π,∅)

)
as was defined (constructively) in the proof Lemma 4. Indeed, assume by contradiction
that for some k ≥ 1, we have that depp[i]

(
U (k+2) ·P(Π)(Π, S)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, S)

)
but where depp[i]

(
U 2 ·P(Π)(Π, S)

)
= depp[i]

(
U 3 ·P(Π)(Π, S)

)
. Then we get a contradiction

by the definition of the homomorphism h : U (k+3) ·P(Π)(Π, ∅) −→ 2

(
U 3 · P(Π)(Π,∅)

)
as defined

constructively in the proof of Lemma 4 since the homomorphism “h” has the property that:

depp[i]

(
U (k+2) ·P(Π)(Π, ∅)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, ∅)

)
iff

depp[i]

(
h
(
U (k+2) ·P(Π)(Π, ∅)

))
< depp[i]

(
h
(
U (k+3) ·P(Π)(Π, ∅)

))
.

This ends the proof of Theorem 2.

B.4 Proof of Theorem 3

Theorem 3. The poly-bounded class strictly contains gmt-bounded class.

Proof. (“(”) This follows from program Π of Example 3 that is poly-bounded but not
gmt-bounded.

(“⊆”) We prove this result for UP(Π)(Π, S) where S = ∅. It then follows from Proposition
4 that the result also holds for the case where S = LP(Π)(Π).

We show that Ψ∞(gmt,Π)

(
ar(Π)

)
⊆ polyLA(Π) by induction on i for Ψi

(gmt,Π)

(
ar(Π)

)
.
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Basis: Assume on the contrary that for some q[l] ∈ Ψ0
(gmt,Π)

(
ar(Π)

)
we have that q[l] /∈

polyLA(Π). Then by the definition of Ψ0
(gmt,Π)

(
ar(Π)

)
, we have that q[l] ∈ ar(Π)

because Ψ0
(gmt,Π)

(
ar(Π)

)
= ar(Π). Therefore, we have from Proposition 7 that this

is a contradiction.

Step: Assuming that Ψi
(gmt,Π)

(
ar(Π)

)
⊆ polyLA(Π), let us also assume on the con-

trary that for some q[l] ∈ Ψi+1
(gmt,Π)

(
ar(Π)

)
\ Ψi

(gmt,Π)

(
ar(Π)

)
, we have that q[l] /∈

polyLA(Π). Then by the definition of polyLA(Π), it follows that depq[l]

(
U 2 ·P(Π)(Π,

∅)
)
< depq[l]

(
U 3 ·P(Π)(Π, ∅)

)
. Then we have that q[l] is still growing in depth in the

stages between 2 · P(Π) and 3 · P(Π), which indicates that q[l] is in some basic cy-
cle π in the argumentation graph GL(Π). Moreover, since we also have that q[l] ∈
Ψi+1

(gmt,Π)

(
ar(Π)

)
\ Ψi

(gmt,Π)

(
ar(Π)

)
, then we have that for each basic cycle π′ that

q[l] depends on, at least one of the following conditions holds:

1. π′ is not active or is not growing ;

2. π′ contains an edge (s[j], p[i], 〈f, r, l1, l2〉
)

and letting p(t1, . . . , tn) be the l1-th
atom in the head of r, for every variable X in ti, there is an atom b(u1, . . . , um)
in Pos(r) such that X appears in a term uh and b[h] ∈ Ψi

(gmt,Π)

(
ar(Π)

)
;

3. there is a basic cycle π′′ in GL(Π) such that π′′ ≈ π′, π′′ is not balanced, and π′′

only passes through arguments in Ψi
(gmt,Π)

(
ar(Π)

)
.

Then since q[l] is still growing in U 2 ·P(Π)(Π, ∅), it follows that π is both active and
growing, which implies that Item 1 above cannot apply to π. On the other hand,
we have that Item 2 cannot apply to π either because nothing guarded it to have
grown even up to the 2 · P(Π)th-stage, because all arguments b[h] ∈ Ψi

(gmt,Π)

(
ar(Π)

)
,

as mentioned in Item 2, must have all grown as well, and since Ψi
(gmt,Π)

(
ar(Π)

)
⊆ polyLA(Π) (by the ind. hyp.) Therefore, we must have that only Item 3 can
apply. But then, because π′′ only passes through Ψi

(gmt,Π)

(
ar(Π)

)
, and where we

have Ψi
(gmt,Π)

(
ar(Π)

)
⊆ polyLA(Π) (ind. hyp.) and such that by the definition of

polyLA(Π), we have that all the arguments in it are not growing past the 2 · P(Π)th-
stage, then this contradicts that π′′ ≈ π as well.

B.5 Proof of Theorem 4

Theorem 4. The poly-bounded class strictly contains the size-restricted class.

Proof. (“(”) This follows from program Π of Examples 3 and 8 that is poly-bounded but
not size-restricted.

(“⊆”) We prove this result for UP(Π)(Π, S) where S = ∅. It then follows from Proposition
4 that the result also holds for the case where S = LP(Π)(Π).
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Let A = Ψ∞(gmt,Π)

(
ar(Π)

)
. Then, since ar(Π) ⊆ A, it will be sufficient to show that

Ψ∞(sr,Π)(A) ⊆ polyLA(Π), which we do by induction on k for Ψk
(sr,Π)(A).

Basis: Since Ψ1
(sr,Π)(A) = A ∪ RA(Π), we show that A ∪ RA(Π) ⊆ polyLA(Π). For the

sake of contradiction, assume that there exists some p[i] ∈ A ∪ RA(Π)
(
where i ∈ {1,

. . ., arity(p)}
)

such that p[i] /∈ polyLA(Π). Then since we had by Theorem 3 that
A ⊆ polyLA(Π), then p[i] /∈ A and p[i] ∈ RA(Π). Now, since p[i] /∈ polyLA(Π),
then this implies that there exists some p[i] ∈ arg(Π) such that

(
U 2 ·P(Π)(Π, S)

)
<

depp[i]

(
U 3 ·P(Π)(Π, S)

)
. Then it follows by Lemma 3 as used in the proof of Theorem

2 that depp[i]

(
U (k+2) ·P(Π)(Π, S)

)
< depp[i]

(
U (k+3) ·P(Π)(Π, S)

)
holds for all k ≥ 1.

Then clearly, this implies that for: k = 1; k = 2; k = 3; . . ., we get that:

depp[i]

(
U 3 ·P(Π)(Π, S)

)
< depp[i]

(
U 4 ·P(Π)(Π, S)

)
< depp[i]

(
U 5 ·P(Π)(Π, S)

)
< . . . .

Therefore, since the depth of the terms mentioned in the argument p[i] continues to
grow indefinitely, then it follows that this contradicts that p[i] ∈ A ∪ RA(Π).

Step: Assume we have Ψj
(sr,Π)(A) ⊆ polyLA(Π) for j ∈ {1, . . ., k}. Now assume on

the contrary that for some p[i] ∈
(
Ψk+1

(sr,Π)(A) \ Ψk
(sr,Π)(A)

)
, we have that p[i] /∈

polyLA(Π). Then this again implies that there exists some p[i] ∈ arg(Π) such that(
U 2 ·P(Π)(Π, S)

)
< depp[i]

(
U 3 ·P(Π)(Π, S)

)
. Then it follows again by Lemma 3 as was

used in the proof of Theorem 2 that depp[i]

(
U (k+2) ·P(Π)(Π, S)

)
< depp[i]

(
U (k+3) ·P(Π)(Π,

S)
)

holds for all k ≥ 1. Then clearly, this implies that for: k = 1; k = 2; k = 3; . . .,
we get that:

depp[i]

(
U 3 ·P(Π)(Π, S)

)
< depp[i]

(
U 4 ·P(Π)(Π, S)

)
< depp[i]

(
U 5 ·P(Π)(Π, S)

)
< . . . .

Then again, as used in the base case above, since the depth of the terms mentioned in
the argument p[i] continues to grow indefinitely, then it follows that this contradicts
that p[i] ∈

(
Ψk+1

(sr,Π)(A) \ Ψk
(sr,Π)(A)

)

B.6 Proof of Theorem 5

Theorem 5. Given a program Π and some number k ≥ 0, if Π is k-exp-bounded, then
for every input database D (D can be empty), program Π ∪D is finitely ground.

Proof. The proof follows in the same way we did for Theorem 2 and Lemma 3 only this
time, we set the bound to expΠ(k), as defined in the beginning of Section 5, instead of the
(polynomial) bound P(Π) as we did for the poly-bounded class.
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B.7 Proof of Theorem 6

Theorem 6. Deciding whether a program Π is poly-bounded is EXPTIME-complete. The
hardness holds even if Π’s maximum function arity is 2.

Proof. (Membership) Based on Proposition 9, we only need to consider condition (9) in
Definition 4, and compute at most 3 ·P(Π) iterations of the upper bound, i.e., U3·P(Π)(Π, S),
to check if polyLA(Π) = arg(Π), where S = LP(Π)(Π).

Then it is clear that the P(Π)-steps of iterations for computing the lower bound and
upper bound as described in Definitions 2 and 3, respectively, can be done in time

O(

P(Π)-times︷ ︸︸ ︷
P(Π)P(Π) · . . . · P(Π)P(Π)) = O(P(Π)P(Π)).

Therefore, since O(P(Π)P(Π)) = O(2k) =⇒ O
(

log(P(Π)P(Π))
)

= O
(

log(2k)
)

=⇒ O
(
(P(Π)) ·

log(P(Π))
)

= O(k) =⇒ O(k) ≤ O
(
(P(Π))2

)
. Then it follows that deciding if Π is poly-

bounded can be done in time O(2 p(P(Π))) for some polynomial p(n).

(Hardness) Let L be an arbitrary decision problem in EXPTIME. Then from the defini-
tion of complexity class EXPTIME (Papadimitriou, 1994), there exists some deterministic
Turing machine M such that for any string s, s ∈ L iff M accepts s in at most 2p(|s|) steps
for some polynomial p(n). Consider a Turing machine M to be the tuple 〈Q, Γ, 2, Σ, δ, q0,
F 〉, where (1) Q 6= ∅ is a finite set of states; (2) Γ 6= ∅ is a finite set of alphabet symbols;
(3) 2 ∈ Γ is the “blank” symbol; (4) � ∈ Γ is the “left-end-marker” symbol; (5) Σ ⊆ Γ \
{2, �} is the set of input symbols; (6) δ : (Q \ F ) ×

(
Γ \ {�}

)
−→ Q × Γ × {L,R} is the

transition function; (7) q0 ∈ Q is the initial state; and lastly, (8) F = (Faccept ∪ Freject) ⊆ Q
is the set of fina states such that Faccept ∩ Freject = ∅ and Faccept (Freject) is the accepting
(rejecting) states.

Now given a string s = a0 . . . a|s|−1 such that ai ∈ Σ for 0 ≤ i < |s|, we construct a
program ΠM(s) = Πord

M(s) ∪ Πstr
M(s) ∪ Πedges

M(s) ∪ Πtrans
M(s) ∪ Πaccept

M(s) ∪ Πunbound
M(s) .

Program Πord
M(s) is to generate the linear ordering on the p(|s|)-length tuples that will

encode the computation time/steps as well as the individual cell-positions in the tape. In
particular, Πord

M(s) is specified as follows:

Πord
M(s) =

{
num(ni)← > | 0 ≤ i ≤ |Γ| − 1

}
∪ (70)

{
nummin

k

( k-times︷ ︸︸ ︷
n0, . . . , n0

)
← > | 0 ≤ k ≤ p(|s|)− 1

}
∪ (71)

{
nummax

k

( k-times︷ ︸︸ ︷
n|Γ|−1, . . . , n|Γ|−1

)
← > | 0 ≤ k ≤ p(|s|)− 1

}
∪ (72){

ni ≺ ni+1 ← > | 0 ≤ i < |Γ| − 1
}
∪ (73){

ni < nj ← > | 0 ≤ i < j ≤ |Γ| − 1
}
∪ (74)
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{
XU ≺ XV ← U ≺ V, num(X1), . . . , num(Xp(|s|)−1)

| X = X1 . . . Xp(|s|)−1

}
∪ (75){

XUY ≺ XV Z← U ≺ V, num(X1), . . . , num(Xl),

nummax
|Y| (Y), nummin

|Z| (Z)

| X = X1 . . . Xl, |Y| = |Z| and |X|+ |Z|+ 1 = p(|s|)
}
∪ (76){

XUY < XV Z← U < V, num(X1), . . . , num(Xl),

num(Y1), . . . , num(Ym),

num(Z1), . . . , num(Zm)

| X = X1 . . . Xl, Y = Y1 . . . Ym, Z = Z1 . . . Zm

and l +m+ 1 = p(|s|)
}
∪ (77){

XUY ≤ XV Z← U < V, num(X1), . . . , num(Xl),

num(Y1), . . . , num(Ym),

num(Z1), . . . , num(Zm)

| X = X1 . . . Xl, Y = Y1 . . . Ym, Z = Z1 . . . Zm

and l +m+ 1 = p(|s|)
}
∪ (78){

X ≤ X← num(X1), . . . , num(Xl) | X = X1 . . . Xl

}
. (79)

• The symbols ni, for i ∈ {0, . . ., |Γ| − 1}, are constant symbols and is used to denote
the number i. So n1, · · · , n|Γ|−1 denotes numbers 1, . . ., |Γ| − 1, respectively.

• The five sets (70)-(74) encode our numbering scheme so that the range from

n0 . . . n0︸ ︷︷ ︸
p(|s|)-times

to n|Γ|−1 . . . n|Γ|−1︸ ︷︷ ︸
p(|s|)-times

spans at least 2p(|s|)-steps. This is important because: |Γ|K = 2p(|s|) =⇒ log(|Γ|K) =

log(2p(|s|)) =⇒ K · log(|Γ|) = p(|s|) =⇒ K = p(|s|)
log(|Γ|) < p(|s|). 12

• For some 0 ≤ i ≤ |Γ|p(|s|), the (overlined-and-bolded) i denotes the p(|s|)-length tuple
enumeration of the number i. For example,

0 = n0 . . . n0︸ ︷︷ ︸
(p(|s|)−1)-times

n0,

1 = n0 . . . n0︸ ︷︷ ︸
(p(|s|)−1)-times

n1,

2 = n0 . . . n0︸ ︷︷ ︸
(p(|s|)−1)-times

n2,

...,

|Γ|p(|s|) = n|Γ|−1 . . . n|Γ|−1︸ ︷︷ ︸
p(|s|)-times

.

12. Without loss of generality, we assume |Γ| ≥ 2 so that log(|Γ|) > 1.
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• “≺,” “<” and “≤” as mentioned in rules (70)-(79) of Πord
M(s), denote the successor,

less-than and less-than-or-equal relations, and their corresponding extensions to p(|s|)-
arity tuples using lexicographic ordering, respectively.

Program Πstr
M(s) generates all possible strings of lengths from 1 to |Γ|p(|s|) under the alphabets

of Γ:

Πstr
M(s) =

{
s0

0(�,0,0)← >}∪ (80){
s0

0

(
ai−1, i, i

)
← > | 1 ≤ i ≤ |s|

}
∪ (81){

s0
0

(
2,T,T

)
← n− 1 < T

}
∪ (82){

sk0(Z,T1,T4)← si0(X,T1,T2), sj0(Y,T3,T4),

T1 ≤ T2,T2 ≺ T3,T3 ≤ T4

| Z ∈ { (X ◦ Y ), (Y ◦X) } and 0 ≤ i, j < k ≤ p(|s|)
}
∪ (83){

s0(�,T,T)← num(T1), . . . , num(Tp(|s|)),

s0
(
a,T,T

)
← num(T1), . . . , num(Tp(|s|))

| a ∈ Γ \ {�} and T = T1 . . . Tp(|s|)
}
∪ (84){

sk(Z,T1,T4)← si(X,T1,T2), sj(Y,T3,T4),

T1 ≤ T2,T2 ≺ T3,T3 ≤ T4

| Z ∈ { (X ◦ Y ), (Y ◦X) } and 0 ≤ i, j < k ≤ p(|s|)
}
∪ (85){

si0
(
X ◦ (Y ◦ Z),T1,T4

)
← si0

(
(X ◦ Y ) ◦ Z,T1,T4

)
,

si0
(
(X ◦ Y ) ◦ Z,T1,T4

)
← si0

(
X ◦ (Y ◦ Z),T1,T4

)
,

si
(
X ◦ (Y ◦ Z),T1,T4

)
← si

(
(X ◦ Y ) ◦ Z,T1,T4

)
,

si
(
(X ◦ Y ) ◦ Z,T1,T4

)
← si

(
X ◦ (Y ◦ Z),T1,T4

)
| 0 ≤ i ≤ p(|s|)

}
∪ (86){

s0(X,T1,T2)← si0(X,T1,T2),

s(X,T1,T2)← si(X,T1,T2) | 0 ≤ i ≤ p(|s|)
}
∪ (87){

X ∼= X ← s
(
X,T1,T2

)
,

X ◦ Y ∼= X ′ ◦ Y ′ ← s
(
X ◦ Y,T1,T2

)
, s
(
X ′ ◦ Y ′,T1,T2

)
,

X ∼= X ′, Y ∼= Y ′,

(X ◦ Y ) ◦ Z ∼= X ′ ◦ (Y ′ ◦ Z ′)← s
(
(X ◦ Y ) ◦ Z,T1,T2

)
,

s
(
X ′ ◦ (Y ′ ◦ Z ′),T1,T2

)
,

X ∼= X ′, Y ∼= Y ′, Z ∼= Z ′
}
, (88)

where:

• For each alphabet a ∈ Γ \ {�}, we have that the constant symbol “a” denotes the
alphabet “a” and 2 is the blank symbol;

Without loss of generality, we assume |Γ| > 2, therefore, it is sufficient to use strings of
length from 1 to |Γ|p(|s|) to encode all possible 2p(|s|) M(s) tape configurations.
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In program Πstr
M(s), we define the function “◦” which has arguments as two strings s1

and s2 so that s1 ◦ s2 denotes the concatenation of s1 and s2. Then due to the transitivity
rules (83) and (85), it follows that it would only take O

(
p(|s|)

)
-steps to generate all such

strings of lengths from 1 to |Γ|p(|s|). Here, predicate s0 is used to represent the input string
on the tape, and predicates si0

(
for i ∈ {0, . . . , p(|s|)} and such that each si0 are different

predicates
)

are used to generate the initial string; while predicate s represents an arbitrary
string on the tape, which is generated from predicates si

(
for i ∈ {0, . . . , p(|s|)} and such

that each si are different predicates
)
. We further note here that the last set of rules in (86)

is simply for the closure of the associative property of the strings. Lastly, the last three
rules in (88) is an inductive definition for deriving the associativity relations “∼=” between
the strings.

Before proceeding to the definition of the other programs, we first introduce the following
Lemma 5 which shows that the program Πstr

M(s) indeed generates all the strings of length

from 1 to |Γ|p(|s|) corresponding to the tape configuration of the machine M . First we
denote that from here on, given some complex term x such that x is mentioned in some
atom of the form “s(x,n1,n2), ” we denote by str(x) as the string corresponding to the
(complex) term x in the natural way. For instance, if (say) x =

(
(a ◦ b) ◦ (b ◦ c)

)
◦ d, then

str(x) denotes string “abbcd. ”

Lemma 5. Let x be a string of symbols from Γ such that 1 ≤ |x| ≤ 2p(|s|), and n1 and n2

two numbers describing tape sections s.t. 0 ≤ n1 < n2 ≤ 2p(|s|) and n2 − n1 = |x|. Then
there exists some s(y,n1,n2) ∈ LP(ΠM(s))(ΠM(s))

+ such that str(y) = x.

Proof. We prove by induction on i for i = 0 to i = p(|s|) that the set of strings

S i
(n1,n2) =

{
str(y) | si(y,n1,n2) ∈ LP(ΠM(s))(ΠM(s))

+ and 1 ≤ k ≤ 2i
}

(89)

contains all strings x s.t. 1 ≤ |x| ≤ 2i and contained in tape positions n1 to n2, where n2

− n1 = |x|. Indeed, it is not too difficult to see that this holds for the base case when i
= 0 via the rule (85). Thus, assume now that S j

(n1,n2), for 1 ≤ j ≤ i, contains all strings

of lengths 1 to 2i from any arbitrary tape positions n1 to n2. Now let x be any arbitrary
string of symbols from Γ s.t. 2i < |x| ≤ 2i+1 and n2, n1 ∈ {1, . . . , p(|s|)} be two numbers
such that n2 − n1 = |x|. Then it follows that x = x1x2 such that 1 ≤ |x1| ≤ 2i and 1 ≤
|x2| ≤ 2i, and there exists another number n1 < m < n2 such that m − n1 = |x1| and n2

− (m + 1) = |x2|. Then by the ind. hyp., we have that x1 and x2 are both contained in
the sets S i

(n1,m) and S i
(m+1,n2), respectively. Therefore, via the rules (87) above, it follows

that x will be in the set of strings S i+1
(n1,n2) as well.

Programs Πedges
M(s) and Πtrans

M(s) described below then encodes the machine M(s)’s configu-

ration changes based on the corresponding state transitions in M(s), for that we view that
the input string s is accepted by machine M(s) as the problem of reachability from the
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initial configuration of M(s) to M(s)’s final (accepting) configuration.

Πedges
M(s) ={
cf
(
Xt, q,X ◦ a,0,Xtp ‖ c ◦ Y,Ytp,N

)
` cf

(
Yt, q

′, X ′ ◦ c,0,Ytp ‖ d ◦ Y ′,Ztp,N
)

← Xt ≺ Yt,Xtp ≺ Ytp,Ytp ≺ Ztp,

s
(
X ◦ a,0,Xtp

)
, s
(
c ◦ Y,Ytp,N

)
, s
(
(X ◦ b) ◦ c,0,Ytp

)
, s(Y,Ztp,N),

X ′ ∼= X ◦ b, Y ∼= d ◦ Y ′

| δ(q, a) = (q′, b, R) and c, d ∈ Γ, and N = |Γ|p(|s|) }∪ (90)

{
cf
(
Xt, q,X ◦ c,0,Xtp ‖ a ◦ Y,Ytp,N

)
` cf

(
Yt, q

′, X ′ ◦ d,0,Ztp ‖ c ◦ Y ′,Xtp,N
)

← Xt ≺ Yt,Ztp ≺ Xtp,Xtp ≺ Ytp,

s
(
(X ◦ c) ◦ a,0,Xtp

)
, s(Y,Ytp,N), s

(
X ◦ c,0,Ztp

)
, s
(
b ◦ Y,Xtp,N

)
,

X ∼= X ′ ◦ d, Y ′ ∼= b ◦ Y
| δ(q, a) = (q′, b, L) and c, d ∈ Γ, and N = |Γ|p(|s|) }; (91)

Πtrans
M(s) =

{
cf(X) 
0 cf(Y)← cf(X) ` cf(Y),

cf(X) 
k cf(Z)← cf(X) 
i cf(Y), cf(Y) 
j cf(Z)

| 0 ≤ i, j < k ≤ p(|s|)
}
. (92)

Here notation “cf
(
Xt, q,X ◦ c,0,Xtp ‖ a ◦ Y,Ytp,N

)
” mentioned in (90), and denoted as

“cf(X)” in (92), represents the machine’s configuration. More precisely, assuming δ(q, a)
= (q′, b, R), the expression

“ cf
(
Xt, q,X ◦ c,0,Xtp ‖ a ◦ Y,Ytp,N

)
` cf

(
Yt, q

′, X ′ ◦ c,0,Ytp ‖ d ◦ Y ′,Ztp,N
)
, ” (93)

where X ′ ∼= X◦b and Y ∼= d◦Y ′ as mentioned in the head of the rules in (90), are relations13

encoding the machine M ’s changes in configuration from time “Xt” to (its successor) time
“Yt” such that from the current (i.e., time “Xt”) configuration:

cf
(

Xt︸︷︷︸
time

, q︸︷︷︸
state

,

“X ◦ a” is in tapes cells 0−Xtp and cursor scanning “a”︷ ︸︸ ︷
X ◦ a,0,Xtp ‖ c ◦ Y,Ytp,N︸ ︷︷ ︸

“c ◦Y ” is in tapes cells Ytp−N

)
, (94)

the next configuration is

cf
(
Yt, q

′, X ′ ◦ c,0,Ytp ‖ d ◦ Y ′,Ztp,N
)
,

such that X ′ ∼= X ◦ b and Y ∼= d ◦ Y ′ holds. In particular, in regards to (94), we note here
that the “‖” simply puts the intuition that the head/cursor is separating the machine M ’s

13. For better presentation, we expressed (93) in this way so that it is more intuitive with the traditional
configuration changes of a Turing machine, although we note that it is assumed to be expressed under
one predicate symbol of appropriate arguments.
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tape into two parts: “X ◦ a” for 0 to Xtp (and where the head is scanning “a”) and “c ◦Y ”
for Ytp to N, and such that Xtp ≺ Ytp (i.e., Ytp is the successor cell position of Xtp) and
N = |Γ|p(|s|) (i.e., up to the last tape cell position).

The expression “cf(X) 
i cf(Y)”
(
for i ∈ {0, . . . , p(|s|)}

)
in (92) encodes the transitive

extension of “`”, for which it is read: configuration “cf(Y)” is reached from configuration
“cf(X)”. In particular, we note that the tuple of terms X and Y does not contain any
complex terms and are all variables. Here, for each pair i, j ∈ {0, . . . , p(|s|)} such that
i 6= j, we have that two atoms cf(X) 
i cf(Y) and cf(X) 
j cf(Y) are of a different
predicate symbol, and such that `, 
0, . . . and 
p(|s|) makes up all the predicate symbols
mentioned in the head of rules in Πedges

M(s) ∪ Πtrans
M(s) . Here, we note that the size of Πedges

M(s)

∪ Πtrans
M(s) is O(p(|s|)3) and thus, is still polynomial with respect to p(|s|). Here, we use

different predicates of those “
i ” relations because we want to take the recursion “out
of the equation” (so to speak). For simplicity, in the following explanations, we omit the
superscripts “i” of these symbols “
i” and assume it is clear from the context.

What the rules in (90) and (91) in the program Πedges
M(s) does is to establish the initial

connections between any two configurations based on the input state transitions from M(s),
which we call edges. For instance, suppose M(s) accepts string s in 2p(|s|) steps through
the sequence of configuration changes: cf0, cf1, · · · , cf2p(|s|)−1. Then Πedges

M(s) will establish
edges cf0 ` cf1, cf1 ` cf2, · · · , cf2p(|s|)−2 ` cf2p(|s|)−1. Then the transitive closure of

, which is defined based on ` through transitive rules (92) in Πtrans

M(s) , is derived by the
following manner: firstly, the reachability between any two configurations within two steps
is derived: cf0 
 cf2, cf1 
 cf3, cf2 
 cf4, · · · , cf2p(|s|)−3 
 cf2p(|s|)−1, then in the second
run of the evaluation, the reachability between any two configurations within four steps are
derived: cf0 
 cf4, cf1 
 cf5, · · · , cf2p(|s|)−5 
 cf2p(|s|)−1. This process continues until the
reachability from cf0 to cf2p(|s|)−1, i.e., cf0 
 cf2p(|s|)−1, is derived . As we will prove in
Lemma 1, cf0 
 cf2p(|s|)−1 will be derived within polynomial steps iff M(s) accepts s in

2p(|s|) steps.
Before moving on to the definition of the other remaining programs, the following Lemma

6 shows that the program Πedges
M(s) ∪ Πtrans

M(s) indeed captures the tape stings configurations

of each computation steps of M(s).

Lemma 6. Let sk(x,n1,n2) ∈ LP(ΠM(s))(ΠM(s))
+ such that |str(x)| ≥ 2. Then there exists

some sl(y ◦ a,n1,n2) ∈ LP(ΠM(s))(ΠM(s))
+ such that x ∼= y ◦ a ∈ LP(ΠM(s))(ΠM(s))

+ and l
≤ k.

Proof. We prove this by induction from i = 0 to i = p(|s|) such that 2i < |str(x)| ≤ 2i+1.
Indeed, for the base case, i.e., when i = 0 s.t. 1 < |str(x)| ≤ 2, it is obvious the claim
already holds since x will be of the form “a ◦ b ” for some a, b ∈ Γ.

Now for our inductive step, assume that for all j ∈ {1, . . ., i}, we have that sk(x,n1,n2)
∈ LP(ΠM(s))(ΠM(s))

+, where 2j < |str(x)| ≤ 2j+1, implies that there exists sl(y ◦ a,n1,n2)

∈ LP(ΠM(s))(ΠM(s))
+ such that x ∼= y ◦ a ∈ LP(ΠM(s))(ΠM(s))

+ and l ≤ k. Then assume

sk(x,n1,n2) ∈ LP(ΠM(s))(ΠM(s))
+ such that 2i+1 < |str(x)| ≤ 2i+2. Then there exists some

sk1(x1,n1,m), sk1(x2,m + 1,n2) ∈ LP(ΠM(s))(ΠM(s))
+, for some number m ∈ {n1 + 1, . . .,

n2 − 1}, and k1 < k and k2 < k, and where x = x1 ◦ x2. In particular, since x = x1 ◦ x2

implies that 2 < |x1|, |x2| ≤ 2i, then we have from the ind. hyp. that there exists some
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sl(y ◦ a,m + 1,n2) ∈ LP(ΠM(s))(ΠM(s))
+ such that x2

∼= y ◦ a ∈ LP(ΠM(s))(ΠM(s))
+ and l ≤

k2. Then we have from the “concatenation rules” (87) that there exists sl
′(

x1◦(y◦a),n1,n2

)
∈ LP(ΠM(s))(ΠM(s))

+ and l′ ≤ k as well. Moreover, by the “associativity rules” (86), we also

get that there exists sl
′(

(x1 ◦ y) ◦ a,n1,n2

)
∈ LP(ΠM(s))(ΠM(s))

+. Therefore, since by the

rules (88) we also get that x1 ◦ x2
∼= x1 ◦ (y ◦ a) ∈ LP(ΠM(s))(ΠM(s))

+
(
since x1

∼= x1, x2
∼=

y ◦ a ∈ LP(ΠM(s))(ΠM(s))
+
)

and x1 ◦ (y ◦ a) ∼= (x1 ◦ y) ◦ a, then it follows that x ∼= z ◦ a ∈
LP(ΠM(s))(ΠM(s))

+, where z = x1 ◦ y.

We further note that using similar arguments in the proof in Lemma 6 shows the case x ∼=
a ◦ y (i.e., as opposed to case “x ∼= y ◦ a” that we have considered).

Πaccept
M(s) ={

accept ← cf
(
0, q0,� ◦ a0,0,1 ‖ a1 ◦X,2,N

)

i cf

(
Xt, q, Y,0,Xtp ‖Z,Ytp,N

)
,

0 < Xt, Xtp ≺ Ytp,

s0

(
� ◦a0,0,1

)
, s0

(
a1 ◦X,2,N

)
, s(Y,0,Xtp), s(Z,Ytp,N)

| i ∈ {0, . . . , p(|s|)}, q ∈ Faccept, N = |Γ|p(|s|), and “ � ” the left-end marker
}
. (95)

Then finally, we further define the program Πunbound
M(s) as follows:

Πunbound
M(s) =

{
p
(
f(V )

)
← p(V ), accept

}
. (96)

The program Πunbound
M(s) simply allows recursion about the propagation of infinite terms

of the function “f” through the predicate “p” in (96) if a configuration at an accepting
state in Faccept ⊆ Q can be reached from the initial configuration under the input string
represented via predicate s0; otherwise, program Πunbound

M(s) will make the entire program
ΠM(s) unbounded.

Then finally, we now prove the following lemma:

Lemma 7. M accepts s iff depp[1]

(
U 2 ·P(ΠM(s))

(
ΠM(s), ∅

))
< depp[1]

(
U 3 ·P(ΠM(s))

(
ΠM(s), ∅

))
.

Moreover, we also have that P(ΠM(s)) = O
(
p(|s|20)

)
.

Proof. (“=⇒”) Then we have from the definition of M that it accepts s within 2p(|s|) for
some polynomial p(n). Then by the construction of ΠM(s) = Πord

M(s) ∪ Πstr
M(s) ∪ Πedges

M(s) ∪
Πtrans

M(s) ∪ Πaccept
M(s) ∪ Πunbound

M(s) and the rules in Πedges
M(s) ∪ Πtrans

M(s) (see (90), (91) and (92)),

and since by the definition of the number P(ΠM(s)) (see (35)) we have that P(ΠM(s)) =
O(p(|s|10)), then it follows that the body atom

“ cf
(
0, q0,� ◦ a0,0,1 ‖ a1 ◦X,2,N

)

i cf

(
Xt, q, Y,0,Xtp ‖Z,Ytp,N

)
”

(for some i ∈
{

1, . . . , p(|s|)
}

) will be derived so that the rule (95) will derive the (proposi-
tional) atom accept and will enforce the infinite propagation of terms in the recursive atom
“p
(
f(V )

)
” in (96) since this will “fire” the rule in (96) in the program Πunbound

M(s) . Thus, be-

cause the only unlimited argument within the whole program ΠM(s) is p[1] ∈ arg(Π) (where
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the predicate “p” is only mentioned in the head of rule (96)), then such an acceptance of
the string s by machine M will make the program unbounded.

(“⇐=”) If Conditions 1 and 2 holds in the Lemma 7’s statement, then since the only
unlimited argument of ΠM(s) is p[1] (again, please see rule (96)), then it follows from the
rules in Πedges

M(s) ∪ Πtrans
M(s)

(
see (90), (91) and (92)

)
and because of the atom

“cf
(
0, q0,� ◦ a0(�),0,1 ‖ a1(�) ◦X,2,N

)

i cf

(
Xt, q, Y,0,Xtp ‖Z,Ytp,N

)
”

(for some i ∈
{

1, . . . , p(|s|)
}

) in the body of the rule (95) (which derives the atom “accept”),
and by the construction of the rules in Πedges

M(s) (see (90) and (91)), that there is a sequence

of configurations: cf0 ` cf1, cf1 ` cf2, . . . cfk−1 ` cfk (1 ≤ k ≤ 2p(|s|)) such that the k-th
configuration terminates in some accepting state of the machine M via the construction of
(95).

This completes the proof of Theorem 6.

B.8 Proof of Theorem 7

Theorem 7. For k ≥ 0, deciding whether a program Π is k-exp-bounded is (k + 1)-
EXPTIME-complete.

Proof. (Membership) With the number expΠ(k) as defined near the beginning of Section 5,
we have that the expΠ(k)-steps iterations as described in Definitions 2 and 3 can be done
in time:

O(

expΠ(k)-times︷ ︸︸ ︷
expΠ(k) expΠ(k) · . . . · expΠ(k) expΠ(k)) = O(expΠ(k) expΠ(k)·expΠ(k))

= O(expΠ(k) expΠ(k)2
).

Therefore, since:

O(expΠ(k) expΠ(k)2
) = O(2k)

=⇒ O
(

log
(
expΠ(k) expΠ(k)2))

= O
(

log(2k)
)

=⇒ O
(
expΠ(k)2 · log

(
expΠ(k)

))
= O(k)

=⇒ O
(
expΠ(k)2 · expΠ(k − 1)

)
= O(k)

=⇒ O(k) ≤ O
(
expΠ(k)3

)
,

then it follows that deciding if Π is k-exp-bounded can be done in time O
(
2 expΠ(k)3)

=
O
(
expΠ(k + 1)

)
.

(Hardness) To prove the hardness direction, we first introduce the following notions.
Given some number k ≥ 0 and polynomial p(n), we define the number expp(n)(i) inductively
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as follows: (1) expp(n)(0) = p(n); and (2) expp(n)(i + 1) = 2expp(n)(i), for i ≥ 1. Intuitively,
expp(n)(k) is similar to the number expΠ(k) in that p(n) = P(Π) for the case of expΠ(k), i.e.,
p(n) is the constant P(Π).

Similarly to the hardness proof of Theorem 6, we reduce some arbitrary decision problem
in (k + 1)-EXPTIME to the problem of determining if a logic program is k-exp-bounded.
Before we proceed to the actual definition of these programs, we note that the key techniques
we used for the hardness proof of Theorem 6 will not work for the (k + 1)-EXPTIME case
because we cannot enumerate the computation steps/tape positions using relations of tuples
with polynomial arity

(
e.g., as in the predicates “≺, ” “≤” and “<” we had used in rules

(70)-(79)
)
. As such, our key technique uses the “◦” string composition to encode the linear

ordering via binary strings of arbitrary length. Another problem with using techniques
similar to the hardness proof of Theorem 6 is that, since we now allow the bound of steps to
be some arbitrary number (i.e., expp(n)(k)-steps rather than just the fixed polynomial p(n)),
then it seems impossible to reduce some arbitrary (k + 1)-EXPTIME decision problem in
terms of the “boundedness” of logic programs since such a reduction can only be done in
polynomial time (and thus, of polynomial size). So for this reason, rather than deriving the
“positive facts” from the lower bound Li(Π) through rules, we instead derive positive facts
via encoding the rules as constraints. For instance, rather than (say) expressing some rule
as

num(X ◦ Y )← num(X), num(Y ),

we instead express it as a constraint

⊥ ← not num(X ◦ Y ), num(X), num(Y ),

Thus, via this technique, we can control the upper bound U i(Π, S) to be bounded since
recursion only occurs via the positive propagation of terms in the lower bound Li(Π) through
constraints. With these things in mind, we now proceed to the reduction as follows.

Assuming L to be an arbitrary decision problem in (k + 1)-EXPTIME, then from the
definition of complexity class (k + 1)-EXPTIME, there exists some deterministic Turing
machine M such that for any string s, s ∈ L iff M accepts s in at most 2expp(|s|)(k)-steps for
some polynomial p(n). Assume the Turing machine M to be the tuple 〈Q, Γ, 2, Σ, δ, q0,
F 〉 such that: (1) Q 6= ∅ is a finite set of states; (2) Γ 6= ∅ is a finite set of alphabet symbols;
(3) 2 ∈ Γ is the “blank” symbol; (4) � ∈ Γ is the “left-end-marker” symbol; (5) Σ ⊆ Γ \
{2, �} is the set of input symbols; (6) δ : (Q \ F ) ×

(
Γ \ {�}

)
−→ Q × Γ × {L,R} is the

transition function; (7) q0 ∈ Q is the initial state; and lastly, (8) F = (Faccept ∪ Freject) ⊆
Q is the set of final/accepting states such that Faccept ∩ Freject = ∅ and Faccept (Freject) is
the accepting (rejecting) states.

Then as promised, given a string s = a0 . . . a|s|−1 such that ai ∈ Σ for 0 ≤ i < |s|, we
now construct the program ΣM(s) = Σord

M(s) ∪ Σstr
M(s) ∪ Σedges

M(s) ∪ Σtrans
M(s) ∪ Σaccept

M(s) ∪ Σbound
M(s)

∪ Σpad
M(s). In particular, we note here that to differentiate these programs from the ones in

the hardness proof of Theorem 6, we use “Σ” rather than “Π.”

Σord
M(s) =

(97)
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{
⊥ ← not num0(0),

⊥ ← not num1(1),

⊥ ← not num(0),

⊥ ← not num(1),

⊥ ← not num0(X ◦ Y ), num0(X), num0(Y ),

⊥ ← not num1(X ◦ Y ), num1(X), num1(Y ),

⊥ ← not num(X ◦ Y ), num(X), num(Y )
}
∪ (98)

{
⊥ ← not |0| = |0|,
⊥ ← not |0| = |1|,
⊥ ← not |1| = |0|,
⊥ ← not |1| = |1|,
⊥ ← not |X ◦ Y | = |X ′ ◦ Y ′|, num(X ◦ Y ), num(X ′ ◦ Y ′),

|X| = |X ′|, |Y | = |Y ′|
}
∪ (99)

{
⊥ ← not X ≡ X, num(X),

⊥ ← not X ◦ Y ≡ X ′ ◦ Y ′, num(X ◦ Y ), num(X ′ ◦ Y ′), X ≡ Y, X ′ ≡ Y ′,
⊥ ← not X ◦ (Y ◦ Z) ≡ (X ′ ◦ Y ′) ◦ Z ′,

num
(
X ◦ (Y ◦ Z)

)
, num

(
(X ′ ◦ Y ′) ◦ Z ′

)
, X ≡ X ′, Y ≡ Y ′, Z ≡ Z ′

}
∪ (100){

⊥ ← not X ◦ 0 ≺ X ′ ◦ 1, num(X ◦ 0), num(X ′ ◦ 1), X ≡ X ′,
⊥ ← not V ≺W, num(V ), num(W ), V ≡ (X ◦ 0) ◦ Y, W ≡ (X ′ ◦ 1) ◦ Y ′,

X ≡ X ′, |Y | = |Y ′|, num1(Y ), num0(Y ′),

⊥ ← not X ′ ◦X ≺ Y, num0(X ′), num(X ′ ◦X), num(Y ), X ≺ Y,
⊥ ← not X ≺ X ′ ◦ Y, num0(X ′), num(X ′ ◦X), num(Y ), X ≺ Y

}
∪ (101)

{
⊥ ← not X < Y, X ≺ Y,
⊥ ← not X < Z, X < Y, Y < Z,

⊥ ← not X ≤ X, X ≡ X,
⊥ ← not X ≤ Y, X < Y

}
, (102)

where:

• Each of the symbols “numi”
(
for j ∈ {0, 1}

)
and “num, ” as mentioned in the set

(98) are different predicates. In particular, the predicate “num0”
(
num1

)
is to encode

the binary strings made up of all “0”
(
“1”
)
. As will be seen in the rules in (101),

the predicate num0

(
num1

)
will allow us to encode the successor relation “≺” of the

numbers corresponding to the binary strings of the relations in predicate “num”
(
see

(101)
)
;

• The constants “0” and “1” stands for the binary digits 0 and 1, respectively;
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• The expression “|X| = |Y |, ” as defined inductively in the set (99), encodes that the
strings “X” and “Y ” are of the same lengths;

• The expression “X ≡ Y , ” as defined inductively in the set (100), encodes that
the binary number represented by the (binary) strings “X” and “Y ” are equivalent.
Intuitively, as can be seen in (100), this is equivalent to encoding that the binary
strings as composed under the “◦” function satisfies the associative property;

• Then lastly, the expression “X ≺ Y , ” “X < Y ” and “X ≤ Y , ” as defined inductively
in the sets (101) and (102), encodes that Y is the successor of X, X is less than Y
and X is less then or equal to Y , respectively. We further mention that the last two
rules in (101) is to simply extend the successor relation “≺”

(
and thus, to ‘X < Y ”

and “X ≤ Y ” as well via (102)
)

to allow comparison between the binary strings of
different lengths. For instance, given that “101011101 ≺ 101011110” holds, then we
also get that “00000000101011101 ≺ 000101011110” also holds as well.

Here, the program Σord
M(s) made up of the rules in the sets (98)-(102) encodes a linear ordering

via the binary strings as generated through the concatenation function “◦” in the rules of
(98). As already mentioned above, differently from our encoding of the program Πord

M(s)

in the proof of Theorem 6, instead of deriving “positive facts” for the lower bound Li(Π)
through rule heads, we instead derive these facts through constraints. The purpose of this
is to isolate the recursion of functions and predicates only in terms of these positive facts
so that the upper bound U i(Π, S) will be controlled to be bounded.

Since the expp(|s|)(k)-times application of the constraints of the form “⊥ ← not num(X◦
Y ), num(X), num(Y )” produces binary strings of lengths 1 to 2expp(|s|)(k), then it follows

that the binary strings in the relation “num” can encode numbers from 1 to 22
expp(|s|)(k)

=
2expp(|s|)(k+1).
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Σstr
M(s) ={
⊥ ← not s0(�, 0, 0) }∪ (103){
⊥ ← not s0(ai−1, i, i) | 1 ≤ i ≤ |s|

}
∪ (104){

⊥ ← not s0(2, T, T ), |s| < T
}
∪ (105){

⊥ ← not s0(Z, T1, T4), s0(X,T1, T2), s0(Y, T3, T4), T1 ≤ T2, T2 ≺ T3, T3 ≤ T4, (106)

|Z ∈ { (X ◦ Y ), (Y ◦X) }
}
∪{

⊥ ← not s(a, T, T ), num(T ) | a ∈ Γ
}
∪ (107){

⊥ ← not s(Z, T1, T4), s(X,T1, T2), s(Y, T3, T4), T1 ≤ T2, T2 ≺ T3, T3 ≤ T4, (108)

|Z ∈ { (X ◦ Y ), (Y ◦X) }
}
∪{

⊥ ← not s0

(
X ◦ (Y ◦ Z), T1, T4

)
, s0

(
(X ◦ Y ) ◦ Z, T1, T4

)
,

⊥ ← not s0

(
(X ◦ Y ) ◦ Z, T1, T4

)
, s0

(
X ◦ (Y ◦ Z), T1, T4

)
,

⊥ ← not s
(
X ◦ (Y ◦ Z), T1, T4

)
, s
(
(X ◦ Y ) ◦ Z, T1, T4

)
,

⊥ ← not s
(
(X ◦ Y ) ◦ Z, T1, T4

)
, s
(
X ◦ (Y ◦ Z), T1, T4

) }
∪ (109){

⊥ ← not X ∼= X, s
(
X,T1, T2

)
,

⊥ ← not X ◦ Y ∼= X ′ ◦ Y ′, s
(
X ◦ Y, T1, T2

)
, s
(
X ′ ◦ Y ′, T1, T2

)
, X ∼= X ′, Y ∼= Y ′,

⊥ ← not (X ◦ Y ) ◦ Z ∼= X ′ ◦ (Y ′ ◦ Z ′), s
(
(X ◦ Y ) ◦ Z, T1, T2

)
, s
(
X ′ ◦ (Y ′ ◦ Z ′), T1, T2

)
,

X ∼= X ′, Y ∼= Y ′, Z ∼= Z ′
}
. (110)

Similarly as in the description of “Πstr
M(s)” in (80)-(88), the predicates “s0” and “s”

mentioned in the sets (103)-(110) of Σstr
M(s) also encodes strings of lengths 1 to 2expp(|s|)(k)

for expp(|s|)(k)-steps application of the rules in (109). One crucial difference about these
predicates, apart from the rules (103)-(110) now being in the form of constraints, is that
the tape position arguments are now of single arity since both the tape positions and time
numbers are now encoded as binary strings as composed from the “◦” function in (98) rather
than the fixed p(|s|)-length tuples we used in (80)-(88). In addition, we further note that
predicates “s0” and “s” now does away with the “counter” argument as we have done in
(80)-(88) because it is now not necessary to restrict the application of those recursive rules
in (103)-(110).
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Σedges
M(s) ={
⊥ ← not cf

(
Xt, q,X ◦ a, 0, Xtp ‖ c ◦ Y, Ytp, Ntp

)
` cf

(
Yt, q

′, X ′ ◦ c, 0, Ytp ‖ d ◦ Y ′, Ztp, Ntp

)
,

Xt ≺ Yt, Xtp ≺ Ytp, Ytp ≺ Ztp, Ztp ≺ Ntp, s(X ◦ a, 0, Xtp), s(c ◦ Y, Ytp, Ntp),

s
(
(X ◦ b) ◦ c, 0, Ytp

)
, s(Y, Ztp, Ntp), X

′ ∼= X ◦ b, Y ∼= d ◦ Y ′

| δ(q, a) = (q′, b, R) and c, d ∈ Γ, and N = |Γ|p(|s|) }∪ (111){
⊥ ← not cf

(
Xt, q,X ◦ c, 0, Xtp ‖ a ◦ Y, Ytp, Ntp

)
` cf

(
Yt, q

′, X ′ ◦ d, 0, Ztp ‖ c ◦ Y ′, Xtp, Ntp

)
,

Xt ≺ Yt, Ztp ≺ Xtp, Xtp ≺ Ytp, Ytp ≺ Ntp, s
(
(X ◦ c) ◦ a, 0, Xtp

)
, s(Y, Ytp, Ntp),

s(X ◦ c, 0, Ztp), s(b ◦ Y,Xtp, Ntp), X ∼= X ′ ◦ d, Y ′ ∼= b ◦ Y

| δ(q, a) = (q′, b, L) and c, d ∈ Γ, and N = |Γ|p(|s|) }. (112)

Also similarly to its “Πedges
M(s) ” counterpart we have defined in (90) and (91), the program

Σedges
M(s) also establishes the initial connection between the computation steps of the Turing

machine M . As already mentioned in the explanation about program “Σstr
M(s), ” here, the

tape position numbers and time arguments are now of single arity to house the complex
term corresponding to the binary string as produced from (98). Another difference is that
the right end of tape number is not set to a specific value

(
e.g., as in “N” we had done for

(90) and (91)
)

but rather, some arbitrary number, i.e., as encoded by the variable “Ntp”
in the rules (111) and (112) above. Note though that because we can encode all numbers
from 1 to 2expp(|s|)(k+1) using only O

(
expp(|s|)(k)

)
-steps via the transitive propagations of

the negative facts in (98), then it follows that such an encoding would not compromise the
correctness of our reduction.

Now we further define the three programs Σtrans
M(s) , Σaccept

M(s) and Σbound
M(s) as follows:

Σtrans
M(s) =

{
⊥ ← not cf(X) 
 cf(Y), cf(X) ` cf(Y),

⊥ ← not cf(X) 
 cf(Z), cf(X) 
 cf(Y), cf(Y) 
 cf(Z)
}

; (113)

Σaccept
M(s) ={
⊥ ← not accept, (114)

cf
(
0, q0,� ◦ a0, 0, 1 ‖ a1 ◦X, 2, Ntp

)

 cf

(
Xt, q, Y, 0, Xtp ‖Z, Ytp, Ntp

)
,

0 < Xt, Xtp ≺ Ytp, s0(� ◦ a0, 0, 1), s0(a1 ◦X, 2, Ntp), s(Y, 0, Xtp), s(Z, Ytp, Ntp)

| q ∈ Faccept and “ � ” the left-end marker
}

; (115)

Σbound
M(s) =

{
r
(
f(X)

)
∨ accept← r(X)

}
. (116)

In (114), we note that we derive the “positive” fact “accept” and not its “negative” coun-
terpart so that the rule in (116) will become bounded if “accept” can be derived from the
lower bound Lexpp(|s|)(ΣM(s))

+.
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Then finally, we have the last program Σpad
M(s) defined as follows:

Σpad
M(s) =

{
⊥ ← pi | i ∈ {1, . . . , p(|s|)}

}
. (117)

Intuitively, the program Σpad
M(s) as defined in (117) simply serves as a “padding” by intro-

ducing dummy constraints “⊥ ← pi”
(
for i ∈ {1, . . . , p(|s|)}

)
. The purpose of such padding

rules is to insure that the condition p(|s|) ≤ P(ΣM(s)) holds. Most importantly, we note
here that since p(n) is a polynomial, then so will |ΣM(s)| relative to the input string s.

Then finally, to finish the proof, using similar arguments to that as in Lemma 7 of the
hardness proof of Theorem 6, it follows that the following lemma also holds.

Lemma 8. M accepts s iff ΣM(s) = Σord
M(s) ∪ Σstr

M(s) ∪ Σedges
M(s) ∪ Σtrans

M(s) ∪ Σaccept
M(s) ∪ Σbound

M(s)

∪ Σpad
M(s) is k-exp-bounded.

This completes the proof of Theorem 7.
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