
Query Answering with Inconsistent Existential
Rules under Stable Model Semantics

Hai Wan1, Heng Zhang2,∗, Peng Xiao1, Haoran Huang3, and Yan Zhang4

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
wanhai@mail.sysu.edu.cn

2School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
hengzhang@hust.edu.cn

3School of Computer Science, Fudan University, Shanghai, China
4School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, Australia

Abstract

Classical inconsistency-tolerant query answering relies on se-
lecting maximal components of an ABox/database which are
consistent with the ontology. However, some rules in ontolo-
gies might be unreliable if they are extracted from ontology
learning or written by unskillful knowledge engineers. In this
paper we present a framework of handling inconsistent exist-
ential rules under stable model semantics, which is defined
by a notion called rule repairs to select maximal components
of the existential rules. Surprisingly, for R-acyclic existential
rules with R-stratified or guarded existential rules with strati-
fied negations, both the data complexity and combined com-
plexity of query answering under the rule repair semantics
remain the same as that under the conventional query answer-
ing semantics. This leads us to propose several approaches to
handle the rule repair semantics by calling answer set pro-
gramming solvers. An experimental evaluation shows that
these approaches have good scalability of query answering
under rule repairs on realistic cases.

Introduction

Querying inconsistent ontologies is an intriguing new prob-
lem that gives rise to a flourishing research activity in
the description logic (DL) and existential rules community.
Consistent query answering, first developed for relational
databases (Arenas, Bertossi, and Chomicki 1999; Chomicki
2007) and then generalized as the AR and IAR semantics for
several DLs (Lembo et al. 2010), is the most widely recog-
nized semantics for inconsistency-tolerant query answering.
These two traditional semantics are based upon the notion of
repair, defined as an inclusion-maximal subset of the ABox
consistent with the TBox. Du, Qi, and Shen (2013) studied
query answering under weight-based AR semantics for DL
SHIQ. Bienvenu, Bourgaux, and Goasdoué (2014) studied
variants of AR and IAR semantics for DL-LiteR obtained
by replacing classical repairs with various preferred repairs.
Existential rules (also known as Datalog±) are set to play a
central role in the context of query answering and inform-
ation extraction for the Semantic Web. Lukasiewicz et al.

∗Corresponding author.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2012; 2013; 2015) studied the data complexity and com-
bined complexity of AR semantics under the main decid-
able classes of existential rules enriched with negative con-
straints.

However, observe that some rules might be unreliable if
they are extracted from ontology learning or written by un-
skillful knowledge engineer (Lehmann et al. 2011). Meyer
et al. (2006) proposed a tableau-like algorithm which yields
EXPTIME as upper bound for finding maximally concept-
satisfiable terminologies represented in ALC. Kalyanpur et
al. (2006) provided solutions on repairing unsatisfiable con-
cepts in a consistent OWL ontology. Furthermore, usually
there exist preferences between rules, and rules with nega-
tion are often considered less preferred than rules without
negation. Scharrenbach et al. (2010) proposed that the ori-
ginal axioms must be preserved in the knowledge base un-
der certain conditions and requires changing the underlying
logics for repair. Wang et al. (2014) proposed that when new
facts are added that contradict to the ontology, it is often de-
sirable to revise the ontology according to the added data.
Therefore, this motivates us to consider another repair that
selects maximal components of the existential rules. We il-
lustrate the motivation via the following example.
Example 1. Let D = {Bat(a),Mammal(a)} be a data-
base and let Σ be the following rule set expressing that each
bat can fly and has at least one cave to live in; and if one
creature lives in cave then it is a trogloxene; and if we do not
know one mammal can fly then it can not fly; if one creature
can fly then it is a bird; additionally a bird can not be a
trogloxene at the same time; similarly a bird can not be a
mammal meanwhile.

Bat(x)→ CanF ly(x), (1)

Bat(x)→∃yLiveIn(x, y), Cave(y), (2)

LiveIn(x, y), Cave(y)→ Trogloxene(x), (3)

Mammal(x), not CanF ly(x)→ CanNotF ly(x), (4)

CanF ly(x)→Bird(x), (5)

Bird(x), T rogloxene(x)→⊥, (6)

Bird(x),Mammal(x)→⊥. (7)

Clearly 〈Σ, D〉 is inconsistent under stable model semantics.
We assume P1 = {(1), (2), (3)} is more reliable (or pre-
ferred) than P2 = {(4), (5), (6), (7)} . Then we can delete

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1095

(6) and (7), or (5) in P2 to restore the consistency, and get
inclusion-maximal preferred consistent rule sets w.r.t. D:
{(1), (2), (3), (4), (6), (7)}, {(1), (2), (3), (4), (5)}.

We will focus on the case where the database is reliable
but rules are not. Our main goal is to present a framework
of handling inconsistent existential rules under stable model
semantics. We define a notion called rule repairs to select
maximal components of the rules, the philosophy behind
that is to trust the rules as many as possible. Our second
goal is to perform an in-depth analysis of the data and com-
bined complexity of inconsistency-tolerant query answer-
ing under rule repair semantics. Let us recall some previ-
ous work on existential rules under stable model semantics.
Magka, Krötzsch, and Horrocks (2013) presented R-acyclic
and R-stratified normal rule sets each of which always ad-
mits at most one finite stable models. Zhang, Zhang, and
You (2015) implicitly showed that the R-acyclicity is enough
to capture all negation-free rule sets with finite stable mod-
els. Gottlob et al. (2014) proved the decidability of query
answering under stable model semantics for guarded exist-
ential rules. Alviano and Pieris (2015) extended the sticki-
ness notion to normal rule sets and showed that it assures the
decidability for well-founded semantics rather than stable
model semantics. We will focus on R-acyclic rule sets with
R-stratified or full negations and guarded existential rules
with stratified or full negations.

Our main contributions are briefly summarized as follows.
We define rule repair semantics to handle inconsistent ex-
istential rules under stable model semantics. We consider
rule repairs w.r.t. inclusion-maximal subset or cardinality,
and that with preference. We obtain a (nearly) complete pic-
ture of the data and combined complexity of inconsistency-
tolerant query answering under rule repair semantics (Table
1). Surprisingly, for R-acyclic existential rules with R-
stratified or guarded existential rules with stratified nega-
tions, both the data complexity and combined complexity
of query answering under the rule repair semantics remain
the same as that under the conventional query answering
semantics. Interestingly, the data complexity based upon
weak-acyclic or guarded existential rules with stratified neg-
ation is PTIME-complete. This leads us to propose several
approaches to handle the rule repair semantics by calling an-
swer set programming (ASP) solvers. An experimental eval-
uation shows that these approaches have good scalability of
query answering rule repairs on realistic cases.

Preliminaries

We consider a standard first-order language. We use Var(ε)
to denote the variables appearing in an expression ε.
Databases. We assume an infinite set Δ of (data) constants,
an infinite set Δn of (labeled) nulls (used as fresh Skolem
terms), and an infinite set Δv of variables. A term t is a
constant, a null, or a variable. We denote by x a sequence
of variables x1, . . . , xk with k ≥ 0. An atom α has the
form R(t1, . . . , tn), where R is an n-ary relation symbol,
and t1, . . . , tn are terms. A conjunction of atoms is often
identified with the set of all its atoms. We assume a rela-
tional schema R, which is a finite set of relation symbols.

An instance I is a (possibly infinite) set of facts p(t), i.e.,
atoms without involving variables, where t is a tuple of con-
stants and nulls. A database D over a relational schema R
is a finite instance with relation symbols from R and with
arguments only from Δ (i.e., without involving nulls).
Normal Logic Programs and Stable Models. Each normal
(logic) program is a finite set of NLP rules of the form

α ← β1, . . . , βn, notβn+1, . . . , notβm (1)

where α, β1, . . . , βm are atoms and m ≥ n ≥ 0. Given a
rule r of the above form, let head(r) = α, let body+(r) =
{β1, . . . , βn}, and let body−(r) = {βn+1, . . . , βm}.

Let Π be a normal program. The Herbrand universe and
Herbrand base of Π are denoted by HU(Π) and HB(Π),
respectively. A variable-free rule r′ is called an instance of
some rule r ∈ Π if there is a substitution θ : Δv → HU(Π)
such that rθ = r′. Let ground(Π), the grounding of Π, be
the set of all instances of r for all r ∈ Π.

The Gelfond-Lifschitz reduct of a normal program Π w.r.t.
a set M ⊆ HB(Π), denoted ΠM , is the (possibly infinite)
ground positive program obtained from ground(Π) by
• deleting every rule r such that body−(r) ∩M
= ∅, and
• deleting all negative literals from each remaining rule.
A subset M of HB(Π) is called a stable model of Π if it
is the least model of ground(ΠM). For more about stable
model semantics, refer to (Gelfond and Lifschitz 1988;
Ferraris, Lee, and Lifschitz 2011).
Normal Existential Rules. Every normal (existential) rule
is a first-order sentence of the form ∀x∀yϕ(x,y) →
∃zψ(x, z), where ϕ is a conjunction of literals, i.e., atoms
or negated atoms (of the form ¬α where α is atomic), ψ is a
conjunction of atoms, and each universally quantified vari-
able appears in at least one positive conjunct of ϕ. In the
above normal rule, ϕ is called its body, and ψ its head. A
normal rule is called a constraint if its head is the “false” ⊥.
For simplicity, when writing a rule, we often omit the uni-
versal quantifiers; by a normal rule set, we always mean a
finite number of normal existential rules.

Let r be a normal rule ϕ(x,y) → ∃zψ(x, z). For each
variable z ∈ z, we introduce an n-ary fresh function symbol
fr
z where n = |x|. The skolemization of r, denoted sk(r),

is the rule obtained from r by substituting fr
z (x) for z ∈ z,

followed by substituting “not” for ¬. Let Σ be a normal rule
set. We define sk(Σ) to be the set of rules sk(r) for all r ∈ Σ.
Clearly, sk(Σ) can be regarded as a normal program in an
obvious way. Given any database D, an instance is called a
stable model of D ∪ Σ if it is a stable model of D ∪ sk(Σ).

A normal rule r is called guarded if there is a positive con-
junct in the body of r that contains all the universally quan-
tified variable of r, and a normal rule set is called guarded if
every rule in it is guarded.

A normal rule set Σ is stratified if there is a function � that
maps relation symbols to integers such that for all r ∈ Σ:
• for all relation symbols R occurring in the head and S

positively occurring in the body, �(R) ≥ �(S), and
• for all relation symbols R occurring in the head and S

negatively occurring in the body, �(R) > �(S).

1096

Sometimes, the negations that occur in a stratified normal
rule set are called stratified negations, and those in a non-
stratified normal rule set are called full negations.

Let r1 and r2 be two normal rules, and let B+
i (resp., B−

i
and Hi) be the set of atoms positively (resp., negatively and
positively) occurring in the body (resp., body and head) of
ri. W.l.o.g., assume that no variable occurs in both r1 and r2.
Rule r2 positively relies on r1, written r1 →+ r2, if there
exist a database D and a substitution θ such that B+

1 θ ⊆ D,
B−

1 θ ∩D = ∅, B+
2 θ ⊆ D ∪H1θ, B−

2 θ ∩ (D ∪H1θ) = ∅,
B+

2 θ � D and H2θ � D ∪ H1θ. Rule r2 negatively relies
on r1, written r1 →− r2, if there exist a database D and a
substitution θ such that B+

1 θ ⊆ D, B−
1 θ ∩D = ∅, B+

2 θ ⊆
D, B−

2 θ ∩ H1θ
= ∅ and B−
2 θ ∩ D = ∅. A normal rule set

P is called R-acyclic if there is no cycle of positive reliances
r1 →+ . . . →+ rn →+ r1 that involves a rule with an
existential quantifier, and P is called R-stratified if there is a
partition {P1, . . . , Pn} of P such that, for every two normal
rule sets Pi, Pj and rules r1 ∈ Pi and r2 ∈ Pj , if r1 →+ r2
then i ≤ j and if r1 →− r2 then i < j.

Classical Boolean Query Answering. A normal Boolean
conjunctive query (NBCQ) Q is an existentially closed con-
junction of atoms and negated atoms involving no null. Let
Q+ (respectively., Q−) be the set of atoms positively (re-
spectively., negatively) occurring in Q. An NBCQ is called
safe if every variable in an atom from Q− has at least one
occurrence in Q+; it is covered if for every atom α in Q−,
there is an atom in Q+ that contains all arguments of α.

Given a database D and an NBCQ Q, we write D |= Q
if there exists an assignment h (that is, a function that maps
each variable to a variable-free term) such that h(Q+) ⊆ D
and h(Q−) ∩ D = ∅. Furthermore, given a database D, a
normal rule set Σ and an NBCQ Q, we write D ∪ Σ |=s Q
if, for each stable model M of D∪Σ, we have that M |= Q.

Complexity Classes. We assume that the reader is famil-
iar with the complexity theory. Given a unary function T
on natural numbers, by DTIME(T (n)) (NTIME(T (n)), re-
spectively) we mean the class of languages decidable in
time T (n) by a deterministic (nondeterministic, respect-
ively) Turing machine. Besides the well-known complexity
classes such as (co)(N)PTIME and (co)(N)2EXPTIME, we
will also use several unusual classes as follows. By nota-
tion Δ2-2EXPTIME we mean the class of all languages de-
cidable in exponential time by a deterministic Turing ma-
chine with an oracle for some N2EXPTIME-complete prob-
lem. The Boolean hierarchy (BH) is defined as follows:
BH(1) is NPTIME; for k ≥ 1, BH(2k) (BH(2k+1)) is the
class of languages each of which is the intersection (union,
respectively) of a language in BH(2k − 1) (BH(2k), re-
spectively) and a language in coNPTIME (NPTIME, respect-
ively); BH is then the union of BH(n) for all n ≥ 1. Note
that DP, the class for difference polynomial time, is exactly
the class BH(2); BH(2k) is actually the class of languages
each of which is the union of k languages in DP; and BH
is closed under complement. It was shown by (Chang and
Kadin 1996) that a collapse of the Boolean hierarchy im-
plies a collapse of the polynomial hierarchy; thus it seems
impossible to find a BH-complete problem.

Existential Rule Repair Semantics

In this section, we propose several semantics to handle in-
consistency in ontological knowledge base. Different from
many existing works, we will focus on the case where the
database is reliable but rules are not. Similar to the data re-
pair semantics, see (Lembo et al. 2010), our inconsistency-
tolerant semantics will rely on a notion called rule repairs.

To define rule repairs, we arm every rule set with a prefer-
ence. Such rule sets are called preference-based ontologies.
Definition 1. Each preference-based ontology is an ordered
pair (Σ,�), where Σ is a finite set of normal rules, and �
is a preorder (i.e., a reflexive and transitive binary relation)
on P(Σ) (i.e., the power set of Σ). We call � a preference.

Now, we are in the position to define rule repairs.
Definition 2. Let O be a preference-based ontology (Σ,�)
and D a database. A subset S of Σ is called a (preferred
rule) repair of Σ w.r.t. � and D (or simply a repair w.r.t.�
if Σ and D are clear from the context) if D ∪ S has at least
one stable model, and for all subsets S′ of Σ with S ≺ S′
(i.e., S � S′ but S′
� S), D ∪ S′ has no stable model.

Intuitively, a preferred rule repair is a maximal component
of the rule set which is consistent with the current database.
The philosophy behind it is to trust the rules as many as pos-
sible. Note that the number of repairs are normally more than
one. To avoid a choice among them, we follow the spirit of
“certain” query answering. The semantics is then as follows.
Definition 3. Let O be a preference-based ontology (Σ,�
) where Σ is a finite set of normal rules, and let D be a
database and Q an NBCQ. Then we write 〈D,O〉 |= Q if,
for all preferred rule repairs S of Σ w.r.t. � and D, we have
D ∪ S |=s Q.

The following proposition shows us that our semantics for
inconsistency-tolerant query answering will coincide with
the classical semantics for query answering if the ontolo-
gical knowledge base is consistent, which is clearly import-
ant.
Proposition 1. Let O be a preference-based ontology (Σ,�)
and let D be a database. If Σ ∪D has a stable model, then
〈D,O〉 |= Q iff Σ ∪D |=s Q for any NBCQ Q.

With the above definitions, we then have a framework to
define semantics for rule-based inconsistency-tolerant query
answering. To define concrete semantics, we need to find
preferences which will be useful in real-world applications.
Besides the preference based on the set inclusion ⊆, sim-
ilar to (Bienvenu, Bourgaux, and Goasdoué 2014), we will
consider other four kinds of preferences over subsets, which
were first proposed by (Eiter and Gottlob 1995) to study
logic-based abduction.
Cardinality (≤). Given any S, S′ ⊆ Σ, we write S ≤ S′
if |S| ≤ |S′|. The intuition of using this preference is that
we always prefer the rule set with the maximum number of
rules which are most likely to be correct.
Priority Levels (⊆P , ≤P). Every prioritization P of Σ is a
tuple 〈P1, . . . , Pn〉 where {P1, . . . , Pn} is a partition of Σ.
Given a prioritization P = 〈P1, . . . , Pn〉 of Σ, the prefer-
ences ⊆P and ≤P can be defined as follows:

1097

• Prioritized set inclusion (⊆P): Given S, S′ ⊆ Σ, we write
S ⊆P S′ if S ∩ Pi = S′ ∩ Pi for every 1 ≤ i ≤ n, or
there is some 1 ≤ i ≤ n such that S ∩ Pi � S′ ∩ Pi and
for all 1 ≤ j < i, S ∩ Pj = S′ ∩ Pj .

• Prioritized cardinality (≤P): Given S, S′ ⊆ Σ, we write
S ≤P S′ if |S ∩ Pi| = |S′ ∩ Pi| for every 1 ≤ i ≤ n, or
there is some 1 ≤ i ≤ n such that |S ∩ Pi| < |S′ ∩ Pi|
and for all 1 ≤ j < i, |S ∩ Pj | = |S′ ∩ Pj |.

Weights (≤w). A weight assignment is a function w : Σ →
N. Given two sets S, S′ ⊆ Σ and a weight assignment w, we
write S ≤w S′ if

∑
r∈S w(r) ≤ ∑

r∈S′ w(r).
In the rest of this paper, we will fix P as a prioritization

and w as a weight assignment unless otherwise noted.

Example 2 (Example 1 continued). Let Σ and D be the
same as in Example 1. Then the repairs w.r.t.⊆ and D are:
{(1), (3), (4), (5), (6)}, {(1), (2), (3), (4), (5)},
{(1), (2), (4), (5), (6)}, {(1), (2), (3), (4), (6), (7)},
{(2), (3), (4), (5), (6), (7)}.

The repairs w.r.t.≤ and D include:
{(1), (2), (3), (4), (6), (7)}, {(2), (3), (4), (5), (6), (7)}.

Let P = 〈P1, P2〉 where P1, P2 are the same as in Example
1. Then the repairs w.r.t.⊆P and D are shown in Example 1,
and the repairs w.r.t. ≤P and D are:
{(1), (2), (3), (4), (6), (7)}.

Let w be the weight assignment that maps each rule to its
index. Then the only repair w.r.t. ≤w and D is:
{(2), (3), (4), (5), (6), (7)}.

Let Qa be query “Mammal(a)” and Qb be query “Bird(a)”,
then we have 〈D, (Σ,⊆)〉 |= Qa and 〈D, (Σ,⊆P)〉 |= Qa,
but 〈D, (Σ,⊆)〉
|= Qb and 〈D, (Σ,⊆P)〉
|= Qb.

We find that repairs under ⊆P , ≤, ≤P , and ≤w are the
subset of the inclusion-maximal repairs.

Theorem 1. The repairs under ⊆P , ≤, ≤P , ≤w are the sub-
set of the repairs under ⊆.
Proof. Let S be the set of repairs under ⊆, SP be the set of
repairs under ⊆P , we prove that SP ⊆ S. Suppose for con-
tradiction that SP
⊆ S, then there exists a repair R, R ∈ SP

and R
∈ S. Because the repairs in S are inclusion-maximal,
we have R ⊂ R′ for some R′ ∈ S. It is clear that R ⊂P R′,
then R is not a ⊆P repair which contradict our assumption.

The rest semantics can be proved similarly.

Complexity Results

In this section, we study the data and combined complex-
ity for query entailment under our rule repair semantics. In
particular, we focus on the following decision problems:

• Data complexity: Fixing a preference-based ontology O
and an NBCQ Q, given any database D as input, deciding
whether 〈D,O〉 |= Q.

• Combined complexity: Given any preference-based on-
tology O, any NBCQ Q and any database D as input, de-
ciding whether 〈D,O〉 |= Q.

To measure the size of input, we fix a natural way to rep-
resent a database D, a normal rule set Σ, an NBCQ Q, a
prioritization P and a weight assigning function w, and let
||D||, ||Σ||, ||Q||, ||P ||, ||w|| denote the sizes of D,Σ, Q, P, w,
respectively, w.r.t. the fixed representing approach. Given a
preference-based ontology O = (Σ,�), we define

||O|| :=
⎧⎨
⎩

||Σ|| if �∈ {⊆,≤},
||Σ||+ ||P || if �∈ {⊆P ,≤P },
||Σ||+ ||w|| if �=≤w .

By properly representing, we can have that ||O|| = ||Σ||O(1).
The following result is obvious.

Proposition 2. Let O be a preference-based ontology (Σ,�),
where �∈ {⊆,≤,≤P ,⊆P ,≤w}. Then, given any subsets
S, S′ ⊆ Σ, deciding whether S ≺ S′ is in DTIME(||O||O(1)).

Now, let us consider the complexity of query answering
for R-acyclic and R-stratified rule sets under our semantics.

Algorithm 1: PRQA(D,O,Q)

Input : a database D, a preference-based ontology
O = (Σ,�), and a Boolean query Q

Output: true if 〈D,O〉 |= Q, and false otherwise
1 foreach S ⊆ Σ do
2 if D ∪ S has at least one stable model then
3 isRepair := true;
4 foreach S′ ⊆ Σ with S ≺ S′ do

5 if D ∪ S′ has at least one stable model then
6 isRepair := false;
7 break;

8 if isRepair and D ∪ S �|=s Q then
9 return false;

10 return true;

Theorem 2. Let O be a preference-based ontology (Σ,�),
where Σ is R-acyclic and R-stratified, and �∈ {⊆,≤,⊆P ,
≤P ,≤w}. Given a database D and a safe NBCQ Q, decid-
ing whether 〈D,O〉 |= Q is PTIME-complete for data com-
plexity, and 2EXPTIME-complete for combined complexity.
Proof. Let D be a database and Q be a safe NBCQ. By the
definition of semantics, it is easy to verify that the problem
of deciding whether 〈D,O〉 |= Q can be solved by Alg. 1.

First, we consider the data complexity. In Alg. 1, let us
fix a preference-based ontology O = (Σ,�) as defined in
this theorem, fix a safe NBCQ Q, and let D be the only
input. As Σ is R-acyclic and R-stratified, by Theorem 5
in (Magka, Krötzsch, and Horrocks 2013), it is clear that
the body of the second loop (the inside one) in Alg. 1 is
computable in PTIME w.r.t. D. (Note that the existence of
stable models can be reduced to the query answering prob-
lem in a routine way.) Since the second loop will be repeated
a constant times, and by Proposition 2 the loop condition
can be checked in a constant time. (Note that the rule set
Σ is fixed now.) Thus, the second loop can be computed in
PTIME w.r.t. the size of D. By a similar argument, we can
show that Alg. 1 can be implemented in PTIME w.r.t. D.

1098

This then completes the proof of membership. The hardness
follows from the PTIME-hardness of Datalog for data com-
plexity, see, e.g., (Dantsin et al. 2001).

Next, we prove the combined complexity. Again, first ad-
dress the membership. Let n be the number of rules in Σ.
Clearly, the body of the second loop will be repeated at
most 2n times. By Theorem 9 in (Magka, Krötzsch, and

Horrocks 2013), it is computable in DTIME(22
||Σ||O(1)

). By
Proposition 2, it is also clear that the loop condition can be
checked in DTIME(||O||O(1)). So, the second loop is com-

putable in DTIME(22
||O||O(1)

) since n ≤ ||Σ|| ≤ ||O||. By
a similar evaluation, we know that the algorithm is imple-

mentable in DTIME(22
||O||O(1)

). Thus, the combined com-
plexity is in 2EXPTIME. And the hardness follows from the
2EXPTIME-hardness of query answering of the R-acyclic
language (Magka, Krötzsch, and Horrocks 2013) and the
fact that D ∪ Σ |=s Q iff 〈D, (Σ∗,�)〉 |= q, where Σ∗ is
Σ ∪ {Q → q} and q a fresh 0-ary relational symbol.

Theorem 3. Let O be a preference-based ontology (Σ,�),
where Σ is R-acyclic with full negations and �∈{⊆,≤,⊆P ,
≤P ,≤w}. Then, given a database D and a safe NBCQ Q,
deciding whether 〈D,O〉 |= Q is in BH for data complexity
and in Δ2-2EXPTIME for combined complexity.

Proof. We first prove the data complexity. To do this, we
need to define some notations. Let R be the schema of
Σ. Given any subset X of Σ, let LX be the set of all R-
databases D such that

1. D ∪X has at least one stable model, and
2. D ∪X |=s Q does not hold, and
3. for all Y ⊆ Σ with X ≺ Y , D ∪ Y has no stable model.

Let L denote the union of LX for all subsets X of Σ. By the
definition of the rule repair semantics, it is easy to see that
〈D,O〉 |= Q iff there is no X ⊆ Σ such that D ∈ LX , iff D
does not belong to L. Thus, if the following claim is true, by
the definition of BH we then have the desired result. Notice
that the complexity class BH is closed under complement.
Claim. Given any subset X of Σ, it is in DP (w.r.t. the size
of input database D) to determine whether D ∈ LX .

Now, it remains to show the claim. Fix a subset X ⊆ Σ.
Let L1 denote the set of all R-databases such that conditions
1 and 2 hold, and let L2 denote the set of all R-databases
such that the condition 3 holds. According to Theorem 2
in (Magka, Krötzsch, and Horrocks 2013), L1 is in NPTIME
and L2 in coNPTIME. (Note that, as Σ and X are fixed,
the number of subsets Y is independent on the size of input
database; thus L2 should be in coNPTIME.) By definition,
LX = L1 ∩ L2 is in DP. This proves the data complexity.

Next, we show the combined complexity. It is clear that
〈D,O〉 |= Q holds iff there does not exist S ⊆ Σ such that

1. D ∪ S has at least one stable model, and
2. D ∪ S |=s Q does not hold, and
3. for all S′ ⊆ Σ with S ≺ S′, D ∪S′ has no stable models.

By Theorem 2 in (Magka, Krötzsch, and Horrocks 2013)
and an analysis similar to that in Theorem 2 (for combined
complexity), it is not difficult to see that, fixing S ⊆ Σ, both
conditions 1 and 2 are in coN2EXPTIME, and condition 3 is
in N2EXPTIME. For “there does not exist S ⊆ Σ”, we can
simply enumerate all subsets S, which can be done in 2|Σ|
times. Therefore, query answering under the mentioned se-
mantics must be in Δ2-2EXPTIME for combined complex-
ity, which is as desired.

Now let us focus on guarded rules. The proof of the fol-
lowing is similar to that of Theorem 2, but employs the com-
plexity results in (Calı̀, Gottlob, and Lukasiewicz 2012). The
only thing we should be careful about is the constraints.
Theorem 4. Let O be a preference-based ontology (Σ,�),
where Σ is guarded and stratified, and �∈ {⊆,≤,⊆P ,≤P ,
≤w}. Given a database D and a covered NBCQ Q, deciding
whether 〈D,O〉 |= Q is PTIME-complete for data complex-
ity, and 2EXPTIME-complete for combined complexity.

For guarded rules with full negations, we have some res-
ults as below, where the proof for data complexity is similar
to that in Theorem 3, and the proof for combined complex-
ity is similar to that in Theorem 2. Both results rely on the
corresponding complexity results in (Gottlob et al. 2014).
Theorem 5. Let O be a preference-based ontology (Σ,�),
where Σ is guarded, and �∈ {⊆,≤,⊆P ,≤P ,≤w}. Then,
given a database D and a covered NBCQ Q, deciding
whether 〈D,O〉 |= Q is in BH for data complexity and
2EXPTIME-complete for combined complexity.

Finally, we conclude the results of this section as follows:

Data complexity Combined complexity

RA + RS PTIME-complete 2EXPTIME-complete
RA + Full in BH in Δ2-2EXPTIME

G + Stra PTIME-complete 2EXPTIME-complete
G + Full in BH 2EXPTIME-complete

Table 1: The data and combined complexity of Boolean
query answering over normal rule sets under preference-
based semantics for 5 types of preferred rule repairs, includ-
ing ⊆, ≤, ⊆P , ≤P , and ≤w. Here, “RA” means “R-acyclic
rule sets”, “G” means “guarded rule sets”, “RS” means “with
R-stratified negations”, “Stra” means “with stratified nega-
tions”, and “Full” means “with full negations”.

Experimental Evaluation

To demonstrate the effectiveness, we have implemented a
prototype system for query answering of R-acyclic rule lan-
guages under the rule-repair semantics w.r.t. ≤, ⊆P , ≤P and
≤w, by calling a state-of-the-art ASP solver.

From Query Answering to ASP

To improve the efficiency, we adopt particular algorithm for
each rule-repair semantics. The algorithms are all based on
breadth-first search. Finding rule repairs w.r.t. ⊆ uses the ba-
sic process illustrated in Alg. 1, and exponential checking
will be conducted during the process. For rule repairs w.r.t.
≤, though it works better than ⊆ for the reason that there

1099

is no need to search the rest levels once it finds consistent
sets. As for rule repairs w.r.t. ⊆P , we design an algorithm
which iterates over the rules from low to high prioritization.
Once finding consistent results in the rules with lower pri-
oritization, the searching stops. It’s known that ≤P can be
translated into ≤w, but not vice versa. As for ≤w, we search
by deleting rules from the lowest weight to the greatest.

Experiments

We developed a prototype system QAIER1 (Query Answer-
ing with Inconsistent Existential Rules) in C++. QAIER can
answer queries with inconsistent R-acyclic rule sets. When
it needs to check the existence of stable models, QAIER in-
vokes an ASP solver clingo-4.4.02.
Benchmarks. To estimate the performance of QAIER in a
view of data complexity, we use the modified LUBM3 as
a benchmark. Because LUBM is not R-acyclic, we modi-
fied LUBM by changing atoms and deleting rules to make
sure that modified LUBM is R-acyclic. We use HermiT 4

to transform the modified LUBM ontology into DL-clauses,
and replace at-least number restrictions in head atoms with
existential quantification, then get 127 rules. Next we add
default negations or constraints, and introduce the prioritiz-
ation and weight under rule repair semantics. Considering
that the number of default negations or constraints would
not be very large, we introduce 9-11 for each instance. The
introduced prioritization or weight depends on the reliabil-
ity of the rules. We use the EUDG5 to generate a database.
By dXtY (Table 2) we mean that the instance involves X
thousands facts and Y unreliable rules. For the performance
in the view of combined complexity, we use the modified
ChEBI (Magka, Krötzsch, and Horrocks 2013) as a bench-
mark. By cXtY (Table 3) we mean that the instance involves
X molecules and chemical classes and Y unreliable rules.
Experimental results. Table 2 (Table 3,respectively)6 shows
the data (combined, respectively) complexity performance
among rule repairs scale up, when #facts and #negs
(#rules and #negs, respectively) grow. t⊆, t≤, t⊆P

, t≤P
,

or t≤w
records the queries answering time. Each instance

is computed three times and taken the average. Because
QAIER computes all the stable models, the sizes or the types
of queries are not the important issues. Clearly, rule repairs
w.r.t. ⊆P , ≤P , and ≤w have better performances than those
of ⊆ and ≤, which is due to the few number of unreli-
able rules. This condition can be easily found in realistic
cases because most of the rules are reliable, while the latest
learned rules considered unreliable are few.

1http://ss.sysu.edu.cn/%7ewh/qaier.html
2clingo-4.4.0. sourceforge.net/projects/potassco/files/clingo/
3LUBM. http://swat.cse.lehigh.edu/projects/lubm/
4HermiT. http://www.hermit-reasoner.com/
5EUDG.http://www.informatik.uni-bremen.de/∼clu/combined/
6All experiments run in Linux Ubuntu 14.04.1 LTS on a HP

compaq 8200 elite with a 3.4GHz Intel Core i7 and 4G 1333 MHz
memory. Real numbers in the tables figure the run time (in seconds)
of query answering. If the time exceeds 1800 seconds, we write it
as “–”. #facts, #negs, and #rules means the number of facts,
default negations and constraints, and rules respectively.

id #facts #negs t⊆ t≤ t⊆P t≤P t≤w

d6t3 6000 9 1757.4 956.7 11.4 12.6 17.5
d6t5 6000 11 — 968.9 19.1 32.5 47.5
d12t5 12000 11 — 1743.3 35.7 76.9 50.2
d30t5 30000 11 — — 81.8 187.9 124.6
d110t5 110449 11 — — 365.4 267.5 149.6
d252t3 252498 9 — — 278.4 466.6 147.2
d252t5 252498 11 — — 843.7 579.1 186.4
d500t3 500000 9 — — 308.6 605.5 168.9
d500t5 500000 11 — — 1464.9 619.3 200.2
d686t3 686028 9 — — 410.8 615.2 230.5
d686t5 686028 11 — — — — 247.2
d1236t51236999 11 — — — — 432.4

Table 2: Experiments for the Modified LUBM

id #rules #negs t⊆ t≤ t⊆P t≤P t≤w

c1t1 170 9 470.1 9.3 0.9 0.9 0.3
c1t3 170 10 909.1 723.2 7.1 6.6 4.3
c1t5 170 12 911.2 735.2 28.9 28.3 12.3
c2t1 253 9 1155.2 19.4 8.2 7.6 0.8
c2t3 253 10 1171.9 1282.6 32.8 32.8 49.8
c2t5 253 12 1136.9 1253.3 127.8 131.4 169.4
c3t1 361 9 — — 1423.2 1291.4 35.4
c3t3 361 10 — — — — —

Table 3: Experiments for the Modified ChEBI

Related Work and Conclusions

In terms of changing the rule set/Tbox for repair, Meyer et
al. (2006) proposed an algorithm running in EXPTIME that
finds maximally concept-satisfiable terminologies in ALC.
Scharrenbach et al. (2010) showed that probabilistic descrip-
tion logics can be used to resolve conflicts and receive a con-
sistent knowledge base from which inferences can be drawn
again. Also Qi and Du (2009) proposed model-based re-
vision operators for terminologies in DL, and Wang et al.
(2014) introduced a model-theoretic approach to ontology
revision. In order to address uncertainty arising from incon-
sistency, Gottlob et al. (2013) extended the Datalog± with
probabilistic uncertainty based on Markov logic networks.
Several works have focused on reasoning with inconsist-
ent ontologies, see (Huang, van Harmelen, and ten Teije
2005; Haase et al. 2005) and references therein. This paper
shows that for R-acyclic existential rules with R-stratified or
guarded existential rules with stratified negations both the
data complexity and combined complexity of query answer-
ing under the rule repair semantics do not increase.

We have developed a general framework to handle incon-
sistent existential rules with default negations. Within this
framework, we analyzed the data and combined complexity
of inconsistency-tolerant query answering under rule repair
semantics. We proposed approaches simulating queries an-
swering under rule repairs with calling ASP solvers and de-
veloped a prototype system called QAIER. Our experiments
show that QAIER can scale up to large databases under rule
repairs in practice. Future work will focus on identifying
first order rewritable classes under rule repair semantics.

1100

Acknowledgments

We thank the reviewers for their comments and suggestions
for improving the paper. The authors would like to thank
Yongmei Liu and her research group for their helpful and
informative discussions. Hai Wan’s research was in part
supported by the National Natural Science Foundation of
China under grant 61573386 and 61463044, Natural Science
Foundation of Guangdong Province of China under grant
S2012010009836, and Guangzhou Science and Technology
Project under grant 2013J4100058.

References
Alviano, M., and Pieris, A. 2015. Default negation for non-guarded
existential rules. In Proceedings of the 34th ACM Symposium
on Principles of Database Systems, PODS 2015, Melbourne, Aus-
tralia, May 31 - June 4, 2015, 79–90.
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Consistent
query answers in inconsistent databases. In Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, May 31 - June 2, 1999, Philadelphia,
Pennsylvania, USA, 68–79.
Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2014. Querying in-
consistent description logic knowledge bases under preferred repair
semantics. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 996–1002.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general datalog-
based framework for tractable query answering over ontologies.
Journal Web Semantics 14:57–83.
Chang, R., and Kadin, J. 1996. The boolean hierarchy and the
polynomial hierarchy: A closer connection. SIAM Journal on Com-
puting 25(2):340–354.
Chomicki, J. 2007. Consistent query answering: Five easy pieces.
In Proceedings of 11th International Conference, Database Theory
- ICDT 2007, Barcelona, Spain, January 10-12, 2007, 1–17.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and expressive power of logic programming. ACM Com-
puting Surveys 33(3):374–425.
Du, J.; Qi, G.; and Shen, Y. 2013. Weight-based consistent query
answering over inconsistent SHIQ knowledge bases. Knowledge
Information System 34(2):335–371.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-based
abduction. Journal of the ACM 42(1):3–42.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models and
circumscription. Artifical Intelligence 175(1):236–263.
Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In Proceedings of the Fifth International
Conference and Symposium Logic Programming, Seattle, Washing-
ton, August 15-19, 1988 (2 Volumes), 1070–1080.
Gottlob, G.; Lukasiewicz, T.; Martinez, M. V.; and Simari,
G. I. 2013. Query answering under probabilistic uncertainty in
datalog+/- ontologies. Annals of Mathematics and Artificial Intel-
ligence 69(1):37–72.
Gottlob, G.; Hernich, A.; Kupke, C.; and Lukasiewicz, T. 2014.
Stable model semantics for guarded existential rules and descrip-
tion logics. In Proceedings of the Fourteenth International Confer-
ence Principles of Knowledge Representation and Reasoning, KR
2014, Vienna, Austria, July 20-24, 2014, 258–267.
Haase, P.; van Harmelen, F.; Huang, Z.; Stuckenschmidt, H.; and
Sure, Y. 2005. A framework for handling inconsistency in changing

ontologies. In Proceedings of The Semantic Web - ISWC 2005,
4th International Semantic Web Conference, ISWC 2005, Ireland,
November 6-10, 2005, 353–367.
Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Reasoning
with inconsistent ontologies. In Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2005,
Edinburgh, Scotland, UK, July 30-August 5, 2005, 454–459.
Kalyanpur, A.; Parsia, B.; Sirin, E.; and Grau, B. C. 2006. Re-
pairing unsatisfiable concepts in OWL ontologies. In Proceedings
of the Semantic Web: Research and Applications, 3rd European
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June
11-14, 2006, 170–184.
Lehmann, J.; Auer, S.; Bühmann, L.; and Tramp, S. 2011. Class ex-
pression learning for ontology engineering. Journal Web Semantics
9(1):71–81.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo, D. F.
2010. Inconsistency-tolerant semantics for description logics. In
Proceedings of Web Reasoning and Rule Systems - Fourth Interna-
tional Conference, RR 2010, Bressanone/Brixen, Italy, September
22-24, 2010, 103–117.
Lukasiewicz, T.; Martinez, M. V.; Pieris, A.; and Simari, G. I.
2015. From classical to consistent query answering under exist-
ential rules. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, USA.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2012. Incon-
sistency handling in datalog+/- ontologies. In Proceedings of 20th
European Conference on Artificial Intelligence. ECAI 2012 Includ-
ing Prestigious Applications of Artificial Intelligence (PAIS-2012)
System Demonstrations Track, Montpellier, France, August 27-31,
2012, 558–563.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2013. Com-
plexity of inconsistency-tolerant query answering in datalog+/-. In
Informal Proceedings of the 26th International Workshop on De-
scription Logics, Ulm, Germany, July 23 - 26, 2013, 488–500.
Magka, D.; Krötzsch, M.; and Horrocks, I. 2013. Computing stable
models for nonmonotonic existential rules. In Proceedings of the
23rd International Joint Conference on Artificial Intelligence, IJ-
CAI 2013, Beijing, China, August 3-9, 2013, 1031–1038.
Meyer, T. A.; Lee, K.; Booth, R.; and Pan, J. Z. 2006. Finding
maximally satisfiable terminologies for the description logic ALC.
In Proceedings of the Twenty-First National Conference on Arti-
ficial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, July 16-20, 2006, Boston, Mas-
sachusetts, USA, 269–274.
Qi, G., and Du, J. 2009. Model-based revision operators for ter-
minologies in description logics. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence IJCAI 2009,
Pasadena, California, USA, July 11-17, 2009, 891–897.
Scharrenbach, T.; Grütter, R.; Waldvogel, B.; and Bernstein, A.
2010. Structure preserving tbox repair using defaults. In Proceed-
ings of the 23rd International Workshop on Description Logics (DL
2010), Waterloo, Ontario, Canada, May 4-7, 2010, 384–395.
Wang, Z.; Wang, K.; Qi, G.; Zhuang, Z.; and Li, Y. 2014. Instance-
driven tbox revision in dl-lite. In Informal Proceedings of the 27th
International Workshop on Description Logics, Vienna, Austria,
July 17-20, 2014, 734–745.
Zhang, H.; Zhang, Y.; and You, J.-H. 2015. Existential rule lan-
guages with finite chase: Complexity and expressiveness. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, January 25-30, 2015, Austin, Texas, USA.

1101

