
A Game-theoretic Characterization on the
First-order Indefinability of Answer Set Programs

Yan Zhang and Yi Zhou
School of Computing, Engineering and Mathematics

University of Western Sydney, Australia
Email: {yan,yzhou}@scem.uws.edu.au

Yin Chen
Department of Computer Science

South China Normal University, China
Email: ychen@scnu.edu.cn

Abstract

Under the general theory of stable models [17, 24], a first-order answer set program
is semantically equivalent to a second-order sentence. Then a first-order answer set
program is called first-order definable on finite structures if the set of finite answer
sets of the program can be captured by a first-order sentence. First-order definability
is a desirable property which provides alternative methods to compute the answer sets
of the underlying programs [9]. However, not all first-order answer set programs may
be reduced to a first-order sentence. In this paper, we study the problem of first-
order indefinability of answer set programs. We provide an Ehrenfeucht-Fraı̈ssé game-
theoretic characterization for the first-order indefinability of answer set programs on
finite structures. Based on this characterization, we propose two concepts named the
0-1 property and unbounded cycles or paths, respectively, from which we develop two
sufficient conditions that may be effectively used in proving a program’s first-order
indefinability. We also show that such sufficient conditions may be further generalized
to capture the first-order indefinability for a larger class of programs.

Keywords: Answer set programming, first-order definability, Knowledge representa-
tion, Non-classical logic, Non-monotonic reasoning

1 Introduction
Answer Set Programming (ASP) is an important programming paradigm for declarative
problem solving. In recent years, it has demonstrated profound applications in many areas

1

such as semantic web, robotic planning and bioinformatics (see [6, 19, 20] for a general
background and current technologies of ASP and its applications). Recent work on ASP
has extended the traditional ASP framework by allowing variables in program rules, which
we call first-order ASP, while the semantics of first-order ASP is defined via second-order
logic [17, 26]. Under the new semantics, a first-order programmay be completely separated
from the input database, and hence provides a more succinct representation for a problem.
Then with different input databases, the program may present different instances of the
same problem. Consequently, unlike the traditional propositional ASP, grounding is no
longer a necessary step in the problem solving using first-order ASP.

Comparing to the propositional case, First-order ASP overcomes the restriction of
unique name assumption from Herbrand structures, and provides a unified form to rep-
resent aggregates [17]. Due to its flexibility in representation and direct connections to
classic logics and other nonmonotonic formalisms, in recent years, there is an increasing
interest in study first-order ASP from semantics, expressiveness and computations perspec-
tives, e.g., [2, 3, 7, 31, 32].

Nevertheless, computing first-order answer set programs is difficult because of their
inherited second-order logic semantics. One related issue is the first-order definability
(indefinability) problem. An answer set program with variables is first-order definable on
finite structures if the set of its finite answer sets can be captured by a first-order sentence,
otherwise it is first-order indefinable on finite structures. Since most of our applications on
ASP focus on finite structures, results about the first-order definability on finite structures,
both positive and negative, will have important impacts for ASP solver development.

It is observed that the first-order ASP generalizes traditional Datalog, whilee the ex-
pressive power and complexity of datalog programs have been well studied [13]. As such,
major first-order (in)definability results in Datalog, e.g., [1, 12], may be carried over to
first-order ASP. But such results are generally not applicable in proving a program’s first-
order (in)definability under our context, not only because of the additional consideration
of negation as failure under answer set semantics, but also due to the fact that these results
are mainly semantic characterizations on datalog programs and queries, which do not help
much in proving whether a given program is first-order (in)definable.

We have observed that knowing whether a logic program is first-order definable on fi-
nite structures or not can be beneficial for developing an effective first-order ASP solver,
e.g., [30]. For instance, for first-order definable logic programs, we may directly ground
their corresponding first-order sentences (e.g., [29]) and then use a SAT solver to compute
their models, while for those first-order indefinable programs, we may use other approaches
to compute their answer sets. Recently, Asuncion, Lin, Zhang Zhou have undertaken com-
prehensive investigations on this direction. They showed that under finite structures, by
introducing auxiliary predicate symbols, every first-order normal logic program Π can be
translated into a first-order sentences OC(Π) called ordered completion, such that the col-
lection of all answer sets of Π is exactly corresponding to the class of models of OC(Π)
[4]. Based on this result, they further implemented a new ASP solver named asp2sat in
which a normal logic programΠ is firstly translated to its ordered completionOC(Π), then

2

optimization and simplification processes are applied on this first-order theory OC(Π).
Finally, by grounding the simplified OC(Π), a SAT solver is called compute the models
of OC(Π). Their experimental results demonstrate clear advantages of this approach for
computing answer sets for large problem instances. More details are referred to [4].

On the other hand, Chen, Lin, Zhang and Zhou studied the first-order definability prob-
lem for normal logic programs under finite structures. They characterized a class of pro-
grams named loop-separable programs and proved that all loop-separable normal logic
programs are first-order definable under finite structures [9]. The class of loop-separable
problems is also known as the largest syntactic class of first-order definable programs that
we have discovered so far.

In this paper, we focus on the other direction of this problem: how to characterize
a class of logic programs not first-order definable on finite structures. That is, given an
answer set program, we consider whether there does not exist a first-order sentence whose
collection of finite models is exactly the set of all finite answer sets of the program. This
paper has made the following two major contributions1:

1. We provide an Ehrenfeucht-Fraı̈ssé game-theoretic characterization for the first-order
indefinability of answer set programs on finite structures. Ehrenfeucht-Fraı̈ssé game-
theoretic approach is a powerful tool for proving a property’s first-order indefinability
(inexpressiveness) in finite model theory. This technique has been also applied to
other areas such as Datalog to study the problem of first-order indefinability. We
demonstrate how the extended Ehrenfeucht-Fraı̈ssé game-theoretic approach may be
useful in proving an answer set program’s first-order indefinability.

2. We also propose two concepts named the 0-1 property and unbounded cycles or paths
under answer set semantics, respectively. Based on these concepts, we develop two
sufficient conditions that may be effectively used in proving a program’s first-order
indefinability on finite structures under certain circumstances, without being involved
in the detail of Ehrenfeucht-Fraı̈ssé game. By observing some embedded limitations
of the proposed concepts of the 0-1 property and unbounded cycles or paths, we
further provide a generalization of the earlier sufficient conditionswhich is applicable
to a larger class of answer set programs in proving first-order indefinability.

The rest of the paper is organized as follows. Section 2 provides the semantics of first-
order answer set programs with extensional databases, and defines the concept of first-order
definability on finite structures. Section 3 proves an extended Ehrenfeucht-Fraı̈ssé game
theorem for first-order answer set programs. Section 4 develops two sufficient conditions
that can be effectively used in proving a program’s first-order indefinability. A generaliza-
tion of these two sufficient conditions is also provided. Section 5 discusses related work
and concludes the paper with some remarks.

1An extended abstract version of this paper has been published in AAAI-2010 [10].

3

2 First-order answer set programs
Through out this paper, we will focus on normal logic programs with variables, which we
may simply call first-order asnwer set programs. In this section, we provide necessary log-
ical concepts and definitions, define the semantics of first-order answer set programs, and
introduce the concept of first-order definability for answer set programs on finite structures.

2.1 Logic preliminaries
We consider a second-order language with equality but without function symbols. A vo-
cabulary is a finite set that consists of constant symbols and relation symbols including
equality =. We denote the sets of constant symbols of a vocabulary τ by C(τ) and relation
symbols by R(τ) respectively. Given a vocabulary, terms, atoms, (first-order or second-
order) formulas and sentences are defined as usual. An atom is called an equality atom if it
is of the form t1 = t2, where t1 and t2 are terms, and a proper atom otherwise.

A finite structure A of vocabulary τ is a tuple (A, cA1 , · · · , cAm, RA
1 , · · · , RA

n), where A
is a finite set called the domain ofA, each cAi (i = 1, · · · , m) is an element in A which cor-
responds to a constant symbol ci in C(τ), and each RA

i (i = 1, · · · , n) is a k-ary relation on
A corresponding to a k-ary relation symbol Ri in R(τ). Sometimes, we also use Dom(A)
to denote the domain of structure A. In this paper, we will only consider finite structures
in our context.

Given two vocabularies τ1 and τ2 where τ2 ⊆ τ1, and a finite structure A of τ1, we say
that the restriction of A on τ2, denoted by A|τ2, is a structure of τ2 whose domain is the
same as A’s, and for each constant c and relation symbol R in τ2, cA and RA are in A|τ2.
On the other hand, if we are given a structure A′ of τ2, a structure A of τ1 is an expansion
of A′ to τ1, if A has the same domain of A′ and retains all cA′ and RA′ for all constants c
and relation symbols R in τ2.

LetA be a structure. We usually write a tuple (t1, · · · , tn) as the form t, where {t1, · · · , tn}
is either a set of terms or a set of elements fromDom(A). If a = (a1, · · · , as) is a tuple of el-
ements from Dom(A), i.e. ai ∈ Dom(A) (1 ≤ i ≤ s), then we simply write a ∈ Dom(A)s.
For two tuples t = (t1, · · · , tm) and t′ = (t′1, · · · , t′n) (m ≤ n), we may simply write t ⊆ t′

if for each t in t, there is a t′ in t′ such that t = t′, and for all ti and tj in t where i ≤ j and
their correspondences t′h and t′l in t′ respectively, we have h ≤ l.

Consider a structureA = (A, cA1 , · · · , cAm, RA
1 , · · · , RA

n) and S ⊆ A where {cA1 , · · ·, cAm}
⊆ S. Structure A ↑ S is called a substructure of A generated from S, if A ↑ S = (S, cA1 ,
· · ·, cAm, R

A↑S
1 , · · ·,RA↑S

n), where for any tuple a from S, a ∈ RA↑S
i iff a ∈ RA

i (1 ≤ i ≤ n).
The quantifier rank qr(ϕ) of a first-order formula ϕ is the maximum number of nested

quantifiers occurring in ϕ: qr(ϕ) = 0 if ϕ is atomic, qr(ϕ1 ∨ ϕ2) = qr(ϕ1 ∧ ϕ2) =
max(qr(ϕ1), qr(ϕ2)), qr(¬ϕ) = qr(ϕ), and qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

Under a fixed vocabulary τ , we consider two finite structures A and B, and m ∈ N.
A and B are m-equivalent, denoted by A ≡m B, if for any first-order sentence ϕ with
qr(ϕ) ≤ m, A |= ϕ iff B |= ϕ. A and B are called isomorphic, denoted as A ∼= B, if there

4

is a one-to-one and onto mapping h: Dom(A) → Dom(B) such that for every constant
c ∈ τ , h(cA) = cB, and for every relation symbol R ∈ τ and every tuple a from Dom(A),
a ∈ RA iff h(a) ∈ RB.

If ϕ is a first-order or second-first sentence, we use Mod(ϕ) to denote the collection of
all finite structures that satisfy ϕ. Let D be a finite set. We use Mod(ϕ)|D to denote the
collection of all finite structures that satisfy ϕ and whose domains are D.

2.2 First-order answer set programs with extensional databases
Now we introduce the syntax and semantics of first-order answer set programs, and present
necessary definitions and notions relevant to our study in this paper.

A rule is of the form:

a ← b1, · · · , bk, not c1, · · · , not cl, (1)

where a is a proper atom or the falsity⊥ (i.e. empty head), and b1, · · · , bk, c1, · · · , cl (k, l ≥
0) are atoms. Here a is called the head, {b1, · · · , bk} the positive body and {not c1, · · ·,
not cl} the negative body of the rule respectively.

A (first-order) answer set program (or simply called program) Π is a finite set of rules.
Every relation symbol occurring in the head of some rule ofΠ is called an intentional pred-
icate, and all other relation symbols in Π are extensional predicates. We use notions τ(Π)
to denote the vocabulary containing all relation symbols and constants in Π, τ int(Π) the
vocabulary containing all intentional predicates in Π, and τext(Π) the vocabulary contain-
ing all extensional predicates and constants in Π. We also use notions P(Π), Pint(Π) and
Pext(Π) to denote the sets of all predicates, intentional and extensional predicates in Π re-
spectively. A proper atom P (t) is extensional (intentional) if P is extensional (intentional).

Sometimes, we simply call a relation RA in a structure A an intentional (extensional)
relation if RA is the interpretation of an intentional (extensional, resp.) predicate of the
underlying program Π.

Now we present the semantics of first-order answer set programs, which is a simplified
version of the general stable model semantics [17]. For each rule r of form (1), we use r̂ to
denote the sentence

∀x(B̂odyr ⊃ a),

where x is the tuple of all variables occurring in r, and B̂odyr the formula b1 ∧ · · · ∧ bk ∧
¬c1 ∧ · · · ∧ ¬cl. Given a rule r, by Π̂, we denote the sentence ∧r∈Πr̂.

Let P = {P1, · · · , Pk} and P ′ = {P ′
1, · · · , P ′

k} be two sets of relation symbols where
Pi and P ′

i are of the same arity. By r̂[+P/P ′], we mean the formula that is obtained from r̂
by replacing each relation symbol in P occurring in the head and positive body of r by the
corresponding relation symbol in P ′. For instance, if r is a rule R(x) ← P (x), not Q(x),
then r̂[+{Q, R}/{Q′, R′}] ≡ ∀x((P (x) ∧ ¬Q(x) ⊃ R′(x)). We define Π̂[+P/P ′] =
∧r∈Πr̂[+P/P ′]. Let P and Q be two predicate symbols or variables of the same arity.
P ≤ Q stands for the formula ∀x(P (x) ⊃ Q(x)). For a given P = {P1, · · · , Pk} and

5

P ′ = {P ′
1, · · · , P ′

k} where all Pi and P ′
i have the same arity, P ≤ P ′ stands for formula∧k

i=1 Pi ≤ P ′
i , and P < P ′ stands for formula P ≤ P ′ ∧ ¬(P ′ ≤ P).

Consider two vocabularies τ1 and τ2 where τ2 ⊆ τ1. Let ψ be a first-order or second-
order sentence on τ1 and A a finite structure of τ2. We specifyMod(ψ)Aτ1 as follows:

Mod(ψ)Aτ1 = {A′ | A′ ∈ Mod(ψ) and A′ is an expansion of A to τ1}.

Definition 1 (Answer set program semantics) Given a first-order answer set program Π
and a structure A of τext(Π). A structure A′ of τ(Π) is an answer set of Π based on A
iff A′ ∈ Mod(ψ)Aτ(Π), where ψ is Π̂ ∧ ¬∃P∗(P∗ < Pint(Π) ∧ Π̂[+Pint(Π)/P∗]). We also
use 0(Π,A) to denote the collection of all answer sets of Π based on A. A structure A ′ of
τ(Π) is an answer set of Π if there is some structureA of τext(Π) such thatA′ ∈ 0(Π,A).

From Definition 1, we can see that the semantics of first-order answer set programs
is defined by second-order logic. The semantics shares some similarity of the semantics
of circumscription but has a different minimization strategy. In Definition 1, minimization
applies on intentional predicates while extensional predicates are viewed as the initial input
of the program. In generally, a structure of τ(Π) is an answer set of Π if it is a model
of sentence Π̂ which minizes the interpretations on all intentional predicates in formula
Π̂[+Pint(Π)/P∗]).

Also note that Definition 1 is a simplified version of the general stable model semantics,
where arbitrary first-order sentences are allowed in a program and any set of predicates in
the program may also be specified as intentional [17]. In [9], we have proved that Defi-
nition 1 is equivalent to Ferraris et al.’s original first-order answer set program semantics
definition [17], when we restrict to normal logic programs and finite structures.

Example 1 We consider a program ΠT consisting of the following rules:

T (x, y) ← E(x, y), not E(x, x), not E(y, y),
T (x, y) ← T (x, z), T (z, y),

where τext(ΠT) = {E} and τint(ΠT) = {T}. Now given a structure of A = (A, EA) of
τext(ΠT), where A = {a, b, c, d} and EA = {(a, a), (a, b), (b, c), (c, d)}, according to Defi-
nition 1, it can be shown that the unique answer set ofΠT based onA isA′ = (A, EA, TA′

),
where TA′

= {(b, c), (c, d), (b, d)}. If we view E as a graph, then T computed by program
ΠT is the transitive closure of the induced subgraph of E on the set of vertices that do not
have self-loops. !

2.3 First-order definability for answer set programs
Now we are ready to present a formal definition of first-order definability for an answer set
program.

6

Definition 2 (First-order definability) A programΠ is called first-order definable iff there
exists a first-order sentence ψ on vocabulary τ(Π) such that for every structure A of
τext(Π), Mod(ψ)Aτ(Π) = 0(Π,A). In this case, we say that ψ defines Π.

Note that in Definition 2, the sentence ψ is independent from any particular extensional
input A. Consider program Π = {P (x) ← Q(x), not R(x)}. According to Definition 2, Π
can be defined by the sentence ∀x(P (x) ≡ (Q(x) ∧ ¬R(x))).

Given a class of finite structures S, we say that S is first-order definable if there exists a
first-order sentence ψ such thatMod(ψ) = S [14]. The following proposition shows an im-
mediate connection between our program first-order definability and a class of structures’
first-order definability.

Proposition 1 A program Π is first-order definable iff there exists a first-order sentence ψ
such that Mod(ψ) =

⋃
A∈S(τext(Π))0(Π,A), where S(τext(Π)) is the class of all structures

of τext(Π).

Furthermore, the following proposition presents an interesting relationship between the
program first-order definability and the first-order definability of the class of all answer sets
based on specific extensional databases.

Proposition 2 If a programΠ is first-order definable, then for all finite structureA of τ(Π),
there exists a first-order sentence ψA such that Mod(ψA)|Dom(A) = 0(Π,A|τext(Π))2.

Proof: Consider an arbitrary finite structure A of τ(Π). Suppose Dom(A) = A =
{a1, · · · , an}. We specify

Θ = {φ | φ is of the form R(x), x = y or x = c where variables are among
v1, · · · , vn, and R ∈ τext(Π)},

and a first-order sentence

ϕA|τext(Π) = ∃v1 · · · vn(
∧
{φ | φ ∈ Θ,A|τext(Π) |= φ[a]} ∧

∧
{¬φ | φ ∈ Θ,

A|τext(Π) |= ¬φ[a]}) ∧ ∀vn+1(vn+1 = v1 ∨ · · · ∨ vn+1 = vn)}.

Then we have:

Mod(ϕA|τext(Π))|Dom(A) = {B | B is an expansion of A|τext(Π) to τ(Π)},

that is, the sentence ϕA|τext(Π) uniquely characterizes the substructure A|τext(Π) in terms
of structure expansions. According to the semantics of ϕA|τext(Π), we define ψA ≡ Ψ ∧
ϕA|τext(Π), where the first-order sentence Ψ defines Π under Definition 2. Then it is easy to
see that such ψA satisfies the required condition as stated in Proposition 2. !

2Note the difference fromMod(φ)Aτ - which is the class of structures that satisfy φ and are expansions of
A to τ .

7

Proposition 2 simply says that if a program Π is first-order definable, then for each
given extensional database as the input data for Π, the calss of all answer sets of Π under
this input is also first-order definable. But the converse of this result does not hold. This
also means that the program first-order definability is a stronger notion than traditional
first-order definability with respect to a class of finite structures.

3 Ehrenfeucht-Fraı̈ssé games for first-order answer set pro-
grams

In this section we extend the traditional Ehrenfeucht-Fraı̈ssé game-theoretic approach in
finite model theory [14] to the context of answer set programs so that this approach may be
used as a tool to prove the first-order indefinability for a given program.

Given two τ -structuresA = (A, cA1 , · · · , cAm,RA
1 , · · · , RA

n) and B = (B, cB1 , · · ·, cBm,RB
1 ,

· · ·, RB
n), and a ∈ As and b ∈ Bs, an Ehrenfeucht-Fraı̈ssé game, which is played on (A, a)

and (B, b), is played by two players named spoiler and duplicator. Each round of the game
spoiler starts by picking an element from eitherA orB, and duplicator responds by picking
an element from the opposite domain. For k ≥ 0, let ek (or fk) be the element of A (or B
resp.) at round k. By default, we denote ek+i (or fk+i) to be constant ci’s interpretation in
A (or B resp.) where i = 1, · · · , m. We say that duplicator wins round k (k ≥ 0) iff the
following conditions hold:

1. there is a bijective map h: ae 1→ bf , where h(a) = b, h(e) = f , e = (e1, · · ·, ek,
ek+1, · · ·, ek+m) and f = (f1, · · · , fk, fk+1, · · · , fk+m);

2. for any tuple t ⊆ ae, t ∈ RA
i iff h(t) ∈ RB

i .

For a fixed k ≥ 0, the Ehrenfeucht-Fraı̈ssé game of length k is played for k rounds. We say
that the duplicator wins the game if he has a strategy to win every round. As a special case,
when |a| = |b| = 0, we also say that the duplicator wins the Ehrenfeucht-Fraı̈ssé game of
length k on A and B.

Theorem 1 [14] The duplicator wins the Ehrenfeucht-Fraı̈ssé game of length k played on
A and B, iff A ≡k B.

Then we can prove the following theorem to characterize the first-order definability for
a given program.

Theorem 2 Let Π be a program. Π is not first-order definable if and only if for every
k ≥ 0, there are two structures Ak and Bk of vocabulary τ(Π) such that3:

3It is important to note that this theorem is different from the general form of Ehrenfeucht-Fraı̈ssé game
theorem [14], where it is required that 0(Π,Ak|τext(Π)) and 0(Π,Bk|τext(Π)) must be the same class of
structures. This is not the case here.

8

1. Ak ∈ 0(Π,Ak|τext(Π)), Bk 2∈ 0(Π,Bk|τext(Π)); and

2. the duplicator wins the Ehrenfeucht-Fra ı̈ssé game of length k on Ak and Bk.

Proof: (⇐) According to condition 2, since for any k ≥ 0, the duplicator wins the
Ehrenfeucht-Fraı̈ssé game of length k on Ak and Bk, from Theorem 1, we have A ≡k B.
Now we assume that Π is first-order definable. Then there exists a first-order sentence ψΠ

such that for each structureA∗ of τext(Π),Mod(ψΠ)A
∗

= 0(Π,A∗). Without loss of gener-
ality, we assume qr(ψΠ) ≤ m. By condition 1, this implies thatAm |= ψΠ and Bm |= ¬ψΠ.
This contradicts the fact Am ≡m Bm. So Π must not be first-order definable.

(⇒) We suppose that condition 1 or 2 does not hold. Then by Theorem 1, we have the
following statement:

Statement 1. For some k ≥ 0 and all structuresAk and Bk of vocabulary τ(Π),
Ak ∈ 0(Π,Ak|τext(Π)) and Ak ≡k Bk implies Bk ∈ 0(Π,Bk|τext(Π)).

Since 0(Π,Ak|τext(Π)) ∪ 0(Π,Bk|τext(Π)) ⊆
⋃

A′∈S(τext(Π))0(Π,A′), where S(τext(Π))
is the class of all finite structures of τext(Π), Statement 1 then implies

Statement 2. For some k and all structures Ak and Bk of vocabulary τ(Π),
Ak ∈

⋃
A′∈S(τext(Π))0(Π,A′) andAk ≡k Bk impliesBk ∈

⋃
A′∈S(τext(Π))0(Π,A′).

Then according to Theorem 2.2.12 in [14], we know that there exists a first-order sentence
ψ such thatMod(ψ) =

⋃
A′∈S(τext(Π))0(Π,A′). Finally, from Proposition 1, it is concluded

that Π is first-order definable. This completes our proof. !

The program of finding Hamiltonian cycles has been used as a benchmark to test various
ASP solvers. As an application of Theorem 2, we will show that this program is not first-
order definable.

Proposition 3 The following finding Hamiltonian cycles program ΠHC is not first-order
definable:

HC(x, y) ← E(x, y), not OtherRoute(x, y),
OtherRoute(x, y) ← E(x, y), E(x, z), HC(x, z), y 2= z,
OtherRoute(x, y) ← E(x, y), E(z, y), HC(z, y), x 2= z,
Reached(y) ← E(x, y), HC(x, y), Reached(x), not InitialV ertex(x),
Reached(y) ← E(x, y), HC(x, y), InitialV ertex(x),
← not Reached(x).

Proof: For each k ≥ 0, we consider two structures Ak and Bk of τ(Π), where

9

Dom(Ak) = Ak = {0, 1 · · · , 2m− 1},m ≥ 2k+1,
EAk

= {(i, i + 1) | 0 ≤ i < (2m− 1)} ∪ {(2m− 1, 0)},
InitialV ertexAk

= {0},
HCAk

= EAk ,
OtherRouteA

k
= ∅,

ReachedAk
= {0, 1, · · · , 2m− 1},

Dom(Bk) = {0, 1, · · · , 2m− 1},
EBk

= {(i, i + 1) | 0 ≤ i < (m− 1)} ∪ {(m− 1, 0)}∪
{(j, j + 1) | m ≤ j < (2m− 1)} ∪ {(2m− 1, m)},

InitialV ertexBk
= {0},

HCBk
= EBk ,

OtherRouteB
k

= ∅,
ReachedBk

= {0, 1, · · · , 2m− 1}.

Note that if we only consider the extensional relations, Ak and Bk may be viewed as
two different graphs with Dom(Ak) and Dom(Bk) being their vertices and EAk and EBk

being their edges respectively. Furthermore, (Dom(Ak), EAk
) is a single cycle of length

2m, and (Dom(Bk), EBk
) contains two separate cycles and each has lengthm, as shown by

the following figure.

1m 1

0

1
2m 1

0 m m+1
2m 1

From the interpretations of all intentional predicates in Ak, it is easy to see that Ak

is an answer set of ΠHC . On the other hand, Bk is not an answer set of ΠHC because
ReachedBk

= {0, 1, · · · , 2m − 1}, while it is observed that for each j (j ≥ m), j is not
reachable under the givenEBk and InitialV ertexBk . So we haveAk ∈ 0(Π,Ak|τext(ΠHC))
and Bk 2∈ 0(Π,Bk|τext(ΠHC)).

10

Then ΠHC’s first-order indefinability follows by showing that for all k ≥ 0, the dupli-
cator wins the Ehrenfeucht-Fraı̈ssé game on Ak and Bk.

Now we consider the Ehrenfeucht-Fraı̈ssé game of length k played on Ak and Bk.
Without loss of generality, we assume that the game starts with two special points played
in each of the graph: a−1 = 0, a0 = (2m− 1) from Ak, and their responses b−1 = 0, b0 =
(m − 1) from Bk respectively. Intuitively, this means that the two endpoints of the cycle
in Ak have responses of the two endpoints of one cycle in Bk. Then during the game is
played, we denote that a point ai from Ak has its response bi from Bk, and vice versa. We
also define the distance between two points in Ak or Bk to be the shortest path between
them. Note that in Bk, if one point is in one cycle component and the other is in another
cycle component, the distance between these two points is infinity.

In order to prove thatΠHC is not first-order definable, according to Theorem 2, we only
need to show that the duplicator has a winning strategy.

Next we prove that the duplicator can play the game in such a way that ensures the
following conditions after each round i:

Condition 1. If d(aj , al) ≤ 2k−i, then d(bj , bl) = d(aj, al),
Condition 2. If d(aj , al) > 2k−i, then d(bj , bl) > 2k−i.

Now we prove these conditions by induction. The case of i = 0 immediately follows
from our assumption d(a−1, a0) = 2m ≥ (2× 2k+1) > 2k, and d(b−1, b0) = m ≥ 2k+1 >
2k. Suppose i rounds have been played and the spoiler moves in round i + 1. We consider
different cases.

Case 1. The spoiler makes his move inAk.
Case 1.1. The spoiler plays close to two previous points with a distance at most 2k−(i+1)

such that no other points are placed between these two points. That is, ai+1 falls into an
interval aj < ai+1 < al such that no previously played point is in this interval, where
d(aj, ai+1) ≤ 2k−(i+1) and d(ai+1, al) ≤ 2k−(i+1). That follows d(aj , al) ≤ 2k−i. Then ac-
cording to the inductive assumption, d(bj , bl) = d(aj , al) ≤ 2k−i. So we can choose a bi+1

such that d(bj, bi+1) = d(aj , ai+1), d(bi+1, bl) = d(ai+1, al). The condition is preserved.
Case 1.2. The spoiler plays at a distance greater than 2k−(i+1) to all previous points.

Since m ≥ 2k+1, with fewer than k rounds been played, we can find a point in Bk whose
distance to all previous points is greater than 2k−(i+1) in the following way. Suppose ai+1

falls into an interval, say aj < ai+1 < al, where no previous point is in this interval,
d(aj, ai+1) > 2k−(i+1) and d(ai+1, al) > 2k−(i+1). This follows d(aj , al) > 2k−i. Then from
the induction assumption, we have d(bj, bl) > 2k−i as well. We show that the duplicator
can always choose a point bi+1 such that d(bj, bi+1) > 2k−(i+1) and d(bi+1, bl) > 2k−(i+1).

Then there are two cases: (1) both bj and bj fall into the same cycle of Bk. In this case,
the duplicator places bi+1 in the middle of interval [bj , bl]. Hence it follows d(bj, bi+1) >
2k−(i+1) and d(bi+1, bl) > 2k−(i+1).

(2) bj and bl are in different cycles of Bk. Then the duplicator places bi+1 in one of the
cycles Bk. Clearly, for all points bj in the other cycle of Bk, d(bj, bi+1) = ∞ > 2k−(i+1).
Now we show that the duplicator can choose a position in the cycle for bi+1 such that for

11

all points bl in the cycle, d(bi+1, bl) > 2k−(i+1) holds. Since there are less than i points in
the cycle, there must exist two points b′, b′′ in the cycle such that no other point falls in the
interval [b′, b′′] and d(b′, b′′) > 2k−i. Then the duplicator simply places bi+1 in the middle
of this interval. This follows that for all points bl in the cycle, d(bl, bi+1) > 2k−(i+1) as well.

Case 1.3. The spoiler plays at a distance greater than 2k−(i+1) to some point and at a
distance at most 2k−(i+1) to some other point. In this case, we can assume that ai+1 falls
into an interval between aj < ai+1 < al, such that d(aj , ai+1) ≤ 2k−(i+1) and d(ai+1, al) >
2k−(i+1), and no other point falls into this interval.

Again, there are two cases. (1) Suppose d(aj, al) > 2k−i. From induction assumption,
d(bj , bl) > 2k−i. (a) if bj and bl are in the same cycle of Bk, in this case, the duplicator
places bi+1 in such a way that d(bj , bi+1) = d(aj , ai+1). Clearly, d(bi+1, bl) = d(bj , bl) −
d(bj , bi+1) > 2k−(i+1). (b) if bj and bl are in different cycles of Bk, then the duplicator
places bi+1 in such a way that d(bj , bi+1) = d(aj, ai+1) where bj and bi+1 are in the same
cycle of Bk. So it also follows d(bi+1, bl) > 2k−(i+1).

(2) Suppose d(aj , al) ≤ 2k−i. From the inductive assumption, we have that d(bj, bl) =
d(aj, al) ≤ 2k−i < 2k. So both bj and bl are in the same cycle of Bk. Then the duplicator
places bi+1 such that d(bj , bi+1) = d(aj , ai+1). This also follows d(bi+1, bl) = d(bj , bl) −
d(bj , bi+1) = d(aj , al)− d(aj , ai+1) = d(ai+1, al) > 2k−(i+1).

Case 2. The spoiler makes his move in Bk. Arguments are similar to Case 1.
Based on the above argument, we further show that for each k, the duplicator wins the

game of length k. From Theorem 1, that is, we need to proveAk ≡k Bk. More specifically,
we show that after k rounds, for any ai, aj from Ak and the corresponding bi, bj from Bk,
the following statements hold:

(1) (ai, aj) ∈ EAk iff (bi, bj) ∈ EBk ,
(2) ai ∈ InitialV ertexAk iff bi ∈ InitialV ertexBk ,
(3) (ai, aj) ∈ HCAk iff (bi, bj) ∈ HCBk ,
(4) (ai, aj) ∈ OtherRouteA

k iff (bi, bj) ∈ OtherRouteB
k , and

(5) ai ∈ ReachedAk iff bi ∈ ReachedBk .

For (1), suppose that after all k rounds have been played, there is an edge between ai and
aj , that is, d(ai, aj) = 1. This implies (ai, aj) ∈ EAk . Then from the above Condition 1,
we have d(bi, bj) = 1. So (bi, bj) ∈ EBk . Conversely, suppose that there is an edge between
bi, bj, i.e. (bi, bj) ∈ EBk . If there is no edge between ai, aj , we have d(ai, aj) > 1. Then
from the above condition, it follows d(bi, bj) > 1. This contradicts with our assumption
that there is an edge between bi and bj .

For (2), it is clear that InitialV ertexAk
= InitialV ertexBk

= {0}, and in the game,
we have assigned a−1 = 0 and b−1 = 0. So (2) holds. Since HCAk

= EAk and HCBk
=

EBk , and we already know (1) holds, so (3) holds as well. For (4), since OtherRouteA
k

=
OtherRouteB

k
= ∅, (4) holds. Finally, we have ReachedAk

= ReachedBk
= Dom(Ak) =

Dom(Bk) = {0, 1, · · · , 2m− 1}. So (5) holds. This completes our proof. !

12

4 Sufficient conditions for first-order indefinability
From the proof of Proposition 3, it is observed that showing a program to be first-order
indefinable is rather technical. In particular, during an Ehrenfeucht-Fraı̈ssé game playing,
the winning strategy for the duplicator highly relies on the structures we pick up for the
proof. In this sense, the approach demonstrated in the proof of Proposition 3 would be
hardly applied as a general approach to show indefinability for other programs.

On the other hand, existing results in finite model theory regarding the sufficient condi-
tions to ensure winning strategies in Ehrenfeucht-Fraı̈ssé games, for instance, those results
developed in [5], are just too general to apply under our ASP setting. Preferably, we would
like to develop some stronger sufficient conditions that will ensure the duplicator to win
and is easier to apply to a broad range of program cases.

For this purpose, let us take a closer look at the proof of Proposition 3. We observe that
for every integer k, the programΠHC always has an answer setAk in which the extensional
relations actually form a very large cycle. Then we are able to find another structure Bk

where its corresponding extensional relations form a graph with the same size of Ak’s but
Bk itself is not an answer set of Π, and we can also showAk ≡k Bk.

We observe that there seem to have two important factors to effectively apply the
Ehrenfeucht-Fraı̈ssé game technique: (1) both the given program’s intentional and exten-
sional relations have to be considered during the game; and (2) the embedded structural
form (e.g. a cycle) of extensional relations also significantly affects the duplicator’s win-
ning strategy in the game. Based on these observations, in the following, we will develop
useful sufficient conditions for proving a program’s first-order indefinability which are eas-
ier to be used in various situations.

4.1 Programs with the 0-1 property
Let A = (A, cA1 , · · · , cAm, RA

1 , · · · , RA
n) be a structure. A relation RA

i in A is called 0-
relation if RA

i = ∅, it is called 1-relation if RA
i = Ah, were h is the arity of Ri. In general,

a relation RA
i in A is called 0-1 relation if it is either a 0-relation or a 1-relation.

Definition 3 (The 0-1 property) We say that program Π has the 0-1 property, if for each
k ≥ 1, Π has an answer set A, where |Dom(A)| ≥ k, such that all intentional relations in
A are 0-1 relations. In this case, we also callA a 0-1 answer set ofΠ andΠ a 0-1 program.

Intuitively, if a program has the 0-1 property, then this program must have a 0-1 an-
swer set with arbitrary size, in which the interpretation for each intentional predicate of
this program is a either 0-relation or 1-relation. Consequently, for programs with the 0-
1 property, their corresponding 0-1 answer sets greatly simplify the underlying programs’
output values (intentional predicates). Such property will be useful for proving a program’s
first-order indefinability, as will be showed next.

Example 2 Let us consider the following 2-coloring program for a graph containing at
least one edge Π2Color:

13

E(a, b) ←,
Color1(x) ← V ertex(x), not Color2(x),
Color2(x) ← V ertex(x), not Color1(x),
← E(x, y), Color1(x), Color1(y),
← E(x, y), Color2(x), Color2(y).

Now we show that Π2Color does not hold the 0-1 property. Suppose that for each k ≥ 1,
Π has an answer set A with |Dom(A)| ≥ k, and both intentional relations Color1A

and Color2A are 0-1 relations in A. From Π, we can see that the interpretations for
the two intentional predicates Color1 and Color2 are always mutually excluded. This
means that Color1A and Color2A cannot be both 0-relations or 1-relations. So we as-
sume Color1A is a 0-relation and Color2A is a 1-relation. This actually implies that
Color1(a) = Color1(b) = 0 and Color1(a) = Color1(b) = 1. But this is not possi-
ble because we assume that A is an answer set of Π where Color1 (Color2) cannot be
interpreted with the same truth value on a and b.

Now we consider program ΠRChecking which checks whether each vertex in a graph is
reachable from the given initial vertex (vertices):

Reachable(x) ← InitialV ertex(x),
Reachable(y) ← Reachable(x), E(x, y),
← not Reachable(x).

We can see that for each k ≥ 0, there exists an answer set of ΠRChecking, such that the
intentional predicate Reachable’s interpretation in the answer set represents a 1-relation.
Hence, ΠRChecking has the 0-1 property. !

0-1 programs represent an important feature which will ensure the duplicator’s winning
strategy in an overall Ehrenfeucht-Fraı̈ssé game based on certain local information. In par-
ticular, if a program has the 0-1 property, all we need to consider during an Ehrenfeucht-
Fraı̈ssé game playing is the underlying program’s extensional relations in relevant struc-
tures/answer sets.

Theorem 3 (The 0-1 theorem) Let Π be a 0-1 program andA a 0-1 answer set of Π. Π is
not first-order definable if for each k ≥ 0, there exists a structure B of τ(Π), such that B is
not an answer set of Π, and A|τext(Π) ≡k B|τext(Π), where for each P ∈ τint(Π), P B = PA.

Proof: According to Theorem 1, we know that the duplicator wins the Ehrenfeucht-Fraı̈ssé
game of length k played on A|τext(Π)

and B|τext(Π)
. Now we show that the duplicator also

wins the Ehrenfeucht-Fraı̈ssé game of length k over structures A and B. Suppose after k
rounds, elements a = (a1, · · · , ak) and b = (b1, · · · , bk) have been picked up from Dom(A)
and Dom(B) respectively. Also let cA = (cA1 , · · · , cAm) and cB = (cB1 , · · · , cBm) be the inter-
pretations of all constants of τ in A and B respectively. Then from the fact that A is a 0-1
answer set of Π, and each P ∈ τint(Π) is interpreted either as a 0-relation or a 1-relation in
B as it is in A respectively, we have that for each t ⊆ acA, t ∈ RA iff t′ ∈ RB, where RA

14

and RB are the relations interpreting P in A and B respectively, and t′ is the tuple of the
corresponding elements from acB. This follows that A ≡k B. Finally, from Theorem 2, it
concludes that Π is not first-order definable, !

By Theorem 3, if a program has the 0-1 property, then when we prove the program’s
first-order indefinability, we may only apply the Ehrenfeucht-Fraı̈ssé game over the re-
stricted structures generated by extensional relations, e.g. A|τext(Π) and B|τext(Π), instead
of the whole structures, which are usually simpler. This is because in general, extensional
relations for a program can be arbitrary. Consequently, their corresponding structures are
also allowed to be flexible so that an Ehrenfeucht-Fraı̈ssé game is easier to be proposed on
such flexible structures, as illustrated by the following table.

0-1 answer set Ak of Π, a structure Bk of τ(Π) (k ≥ 0)
intentional predicates of Π extensional predicates of Π
0-1 relations in Ak and Bk show Ak|τext(Π) ≡k Bk|τext(Π) using
Ak|τint(Π) ≡k Bk|τint(Π) Ehrenfeucht-Frassı̈é game (Theorem 2)

From the above table, we can see that by using Theorem 3, for each k, we can reduce
the proof of Ak ≡k Bk to the proof of Ak|τext(Π) ≡k Bk|τext(Π), by setting Ak to be the 0-1
answer set of Π. This will give us a great deal of freedom to consider the input structure
Ak when we construct the underlying Ehrenfeucht-Fraı̈ssé game. Example 3 shows an
application of Theorem 3.

Example 3 (Example 2 continued). We show that ΠRChecking is not first-order definable.
In Example 2, we have showed that ΠRChecking satisfies the 0-1 property. Now for each
k ≥ 0, we specify two structures Ak and Bk of τ(ΠRChecking), where

Dom(Ak) = {0, 1, · · · , 2m− 1}, wherem ≥ 2k+1,
InitialV ertexAk

= {0},
EAk

= {(i, i + 1) | 0 ≤ i < 2m− 1},
ReachableA

k
= {i | 0 ≤ i ≤ 2m− 1},

Dom(Bk) = Dom(Ak),
InitialV ertexBk

= {0},
EBk

= {(i, i + 1) | 0 ≤ i < m − 1} ∪ {(j, j + 1) | m ≤ j < 2m − 1} ∪
{(2m− 1, m)},
ReachableB

k
= ReachableA

k .
Note that Ak|τext(ΠRChecking) can be viewed as an acyclic path with length of 2m, and
Bk|τext(ΠRChecking) can be viewed as two detached components: one is an acyclic path with
lengthm and the other is a cycle of lengthm.

It is obvious thatAk is a 0-1 answer set of ΠRChecking, where Bk is not an answer set of
ΠRChecking becauseReachable is interpreted as a 1-relation in Bk but each j (m ≤ j < 2m)
is not reachable from the initial vertex 0 in Bk. Then using a similar method of the proof
for Proposition 3, we can show that Ak|τext(ΠRChecking) ≡k Bk|τext(ΠRChecking). According to
Theorem 3, it concludes that ΠRChecking is not first-order definable. !

15

4.2 Programs with 0-1 unbounded cycles or paths
Theorem 3 can be effective in proving a 0-1 program Π’s first-order indefinability if the
proof of Ak|τext(Π) ≡k Bk|τext(Π) is already clear through the Ehrenfeucht-Fraı̈ssé game
approach. Nevertheless, as has been revealed in finite model theory, directly using the
Ehrenfeucht-Fraı̈ssé game approach is technically challenging for general cases [5]. Fur-
thermore, in our first-order indefinability proofs for programs ΠHC and ΠRChecking, both
programs happen to only have one binary extensional predicates, so that we can use graph
representations to specify the game, which makes our proofs easier.

Although Theorems 2 and 3 do not rely on graph representations of structures, when
a program involves more than one binary extensional predicates or extensional predicates
with arity greater than 2, it does not seem to be obvious to use our method demonstrated in
the proof of Proposition 2 to show a program’s first-order indefinability.

In this subsection, we will develop another sufficient condition by which we can effec-
tively prove a program’s first-order indefinability under certain conditions.

To begin with, we first introduce a useful notion. Let A be a structure, the Gaifman
graph of A [14] is an undirected graph G(A) = (A, EdgeA), where Dom(A) = A, and
EdgeA is defined as follows:

EdgeA = {(a, b) | a 2= b and there are a relation RA in A and c in A such that
c ∈ RA and a and b are among c}.

We say that A has a cycle (or an acyclic path4) if G(A) contains a connected component
that is a cycle (or a path, resp.).

Definition 4 (Programs with 0-1 unbounded cycles or paths) A program Π has un-
bounded cycles (or paths) if for all k and m where m > k, there is a Π’s answer set
A such that G(A|τext(Π)) contains a cycle (path, resp.) with the length of m. A program Π
has 0-1 unbounded cycles (or paths) if Π is a 0-1 program, and for every k > 0, there is a
Π’s 0-1 answer set A such that G(A|τext(Π)) contains a cycle (path, resp.) with the length
of m. In this case, A is called a 0-1 cyclic (linear, resp.) answer set of Π.

Informally, we say that program Π has unbounded cycles (or paths), it simply means
that Π has an answer set A while the Gaifman graph generated from the extensional
database of this answer set contains a cycle (path), and the length of this cycle (path)
cannot be bounded by any integer. We say that Π has 0-1 unbounded cycles (or paths), if
the answer set A mentioned earlier is a 0-1 answer set of Π.

Example 4 Consider the following simple program ΠPQ:

P (z) ← E(x, y),
Q(x) ← not P (x),

4We will simply call it a path.

16

It is easy to observe that ΠPQ satisfies the 0-1 property and hence it is a 0-1 program. In
fact, whenever EA is not empty in the answer set A, the two intentional predicates P and
Q are interpreted as a 1-relation and a 0-relation inA respectively, otherwise, P and Q are
interpreted as a 0-relation and a 1-relation respectively.

We can also see that for each k > 0, there exist at least two different types of 0-1 answer
sets A and B of ΠPQ, where (1) |Dom(A)| > k and G(A|{E}) is a cycle with the length of
|Dom(A)|, and (2) |Dom(B)| > (k + 1) and G(B|{E}) is a path of length |Dom(B)|− 1. !
!

Programs with 0-1 unbounded cycles or paths are of special interests in relation to first-
order indefinability. The following theorem provides a new sufficient condition, which, as
will be showed next, completely avoids the Ehrenfeucht-Fraı̈ssé game.

Theorem 4 (The 0-1 unbounded cycles or paths theorem) A programΠ is not first-order
definable if (1) Π has 0-1 unbounded cycles or paths, and (2) for each Π’s 0-1 cyclic or
linear answer setA,G(A|τext(Π)) contains only one cycle or path, while all other connected
components of G(A|τext(Π)) are neither cycles nor paths.

The following Example 5 and Proposition 4 show an application of using Theorem 4 to
prove a program’s first-order indefinability.

Example 5 Consider program ΠTCovered as follows:

r1: T (x, y) ← E(x, y), not E(x, x), not E(y, y),
r2: T (x, y) ← T (x, z), T (z, y),
r3: Covered(x) ← D(x, y),
r4: Covered(y) ← D(x, y),
r5: ← D(x, y), not E(x, y),
r6: ← not Covered(x).

The first two rules are the same as the program in Example 1, which compute the
transitive closure of the induced subgraph of E on the set of vertices that do not have
self-loops. Extensional predicate D specifies a subset of edges of E (i.e. rule r5), while
the intentional predicate Covered represents the set of vertices covered by edges of D
(i.e. rules r3 and r4). Finally, having the last two constraints r5 and r6, it is implied that
eventually all vertices should be covered.

Intuitively, programΠTCovered computes the transitive closure based on the subgraph of
E without self-loops and verifies whether all vertices of the graph are covered by a given
subsetD of edges of the graph. !

Proposition 4 Program ΠTCovered in Example 5 is not first-order definable.

Proof: We prove this result by using Theorem 4. For any given k > 0, we consider
structure Ak as follows:

17

Dom(Ak) = {0, 1, · · · , m}, wherem ≥ k,
EAk

= {(i, i + 1) | 0 ≤ i < m} ∪ {(m, 0)},
DAk

= {(j, j + 1) | 0 ≤ j < m},
TAk

= {(i, j) | 0 ≤ i, j ≤ m},
CoveredAk

= {0, · · · , m}.

It is easy to verify that Ak is a 0-1 answer set of ΠTCovered. In fact, for both intentional
predicates T and Covered, they are interpreted as 1-relations in Ak. So ΠTCovered has the
0-1 property. Furthermore, G(Ak|{E,D}) is a cycle with lengthm. Since there is no bound
onm, ΠTCovered has 0-1 unbounded cycles.

It is also observed that for an arbitrary 0-1 cyclic answer setB ofΠTCovered,G(Bk|{E,D})
must be of the same form ofG(Ak|{E,D}) as specified above. So both conditions (1) and (2)
in Theorem 4 hold for ΠTCovered. This concludes thatΠTCovered is not first-order definable.
!

Using a similar way demonstrated in the proof of Proposition 4, we have the follow-
ing result, which may be viewed as another way to show the first-order indefinability of
transitivity.

Proposition 5 The following ΠTC is not first-order definable:

T (x, y) ← E(x, y),
T (x, y) ← T (x, z), T (z, y).

Proof: For any k > 0, we consider structure Ak as follows:

Dom(Ak) = {0, 1, · · · , m}, wherem > k,
EAk

= {(i, i + 1) | 0 ≤ i < m} ∪ {(m, 0)},
TAk

= {(i, j) | 0 ≤ i, j ≤ m}.

ClearlyAk is a 0-1 answer set ofΠTC . So the 0-1 property holds forΠTC . Also,G(Ak|{E})
is a cycle of lengthm. As for any k > 0, suchAk exists, this means thatΠTC has unbounded
cycles. Furthermore, for each 0-1 cyclic answer set B of ΠTC , B must be of the same form
of Ak, so G(B|{E}) only contains exactly one cycle. By Theorem 4, we conclude that ΠTC

is not first-order definable. !

Using the same way as described in the proof of Proposition 5, we can easily show that
program ΠT from Example 1 is also not first-order definable:

T (x, y) ← E(x, y), not E(x, x), not E(y, y),
T (x, y) ← T (x, z), T (z, y).

Proposition 6 The following program ΠTC′ is not first-order definable:

18

T ′(x, y, z) ← E(x, y),
T ′(x, z, y) ← T ′(x, y, z), E(z, y),
T ′(x, y, z′) ← T ′(x, y, z),
T (x, y) ← T ′(x, y, z).

Proof: Program ΠTC′ is a variation of program ΠTC , where both T (x, y) and T ′(x, y, z)
are intentional predicates. For any k > 0, we consider structure Ak as follows:

Dom(Ak) = {0, 1, · · · , m}, wherem > k,
EAk

= {(i, i + 1) | 0 ≤ i < m} ∪ {(m, 0)},
TAk

= {(i, j) | 0 ≤ i, j ≤ m},
T ′Ak

= {(i, j, l) | 0 ≤ i, j, l ≤ m}.

It can be verified that Ak is an answer set of ΠTC′ . Furthermore, the two intentional rela-
tions TAk and T ′Ak in Ak are 1-relations. Hence Ak is also a 0-1 answer set of ΠTC′ . That
is, ΠTC′ satisfies the 0-1 property.

It is also clear that G(Ak|{E}) is a single cycle of length m. As for all k > 0, such
Ak exists, this means that ΠTC′ has unbounded cycles. Furthermore, for each 0-1 cyclic
answer set B ofΠTC′ , B must be of the same form ofAk, soG(B|{E}) only contains exactly
one cycle. By Theorem 4, we conclude that ΠTC′ is not first-order definable. !

Example 6 Consider program ΠPQ in Example 4 once again. As showed earlier, ΠPQ

satisfies the 0-1 property and has unbounded cycles (and paths too). So ΠPQ satisfies
Condition 1 of Theorem 4. However, ΠPQ does not satisfy Condition 2 of Theorem 4. For
each k ≥ 1, we can find a 0-1 answer set A of ΠPQ, where

Dom(A) = {0, 1, · · · , 4k − 1},
EA = {(i, i + 1) | 0 ≤ i < (2k − 1)} ∪ {(2k − 1, 0)} ∪

{(j, j + 1) | 2k ≤ j < (4k − 1)} ∪ {4k − 1, 2k)},
PA = Dom(A) = {0, 1, · · · , 4k − 1}, and
QA = ∅.

Note thatG(A|{E}) consists of two detached cycles with each of length 2k. Hence Theorem
4 is not applicable to program ΠPQ. In fact, ΠPQ is first-order definable via formula

∀xyz(P (z) ≡ E(x, y)) ∧ ∀x(Q(x) ≡ ¬P (x)).

!

Example 7 We consider program ΠQ from [1] as follows:

Q(x, y) ← E(x, y),
Q(x, y) ← Q(x, z), Q(z, y),
Q(x, y) ← Q(x, x), Q(y, y).

19

Note that this program is almost the same as the traditional datalog program of computing
transitive closure of a graph except the extra last rule, and we already know that the property
of transitive closure is not first-order definable [14]. Taking a glance at this program, we
may think that ΠQ is not first-order definable as well. Let us examine whether this is the
case.

It is easy to observe that ΠQ has the 0-1 property, because any structure A of the fol-
lowing form is a 0-1 answer set of ΠQ:

Dom(A) = {0, 1, · · · , m}, wherem > 0,
EA = {(i, i + 1) | 0 ≤ i < m} ∪ {(m, 0)},
QA = {(i, j) | 0 ≤ i, j ≤ m}.

Furthermore, it is clear thatG(A|{E}) contains one cycle. Since there is no bound form, it
means that ΠQ has 0-1 unbounded cycles.

Nevertheless, it is crucial to note that there exists some ΠQ’s 0-1 answer set whose
Gaifman graph does not just contain one cycle. For eachm, we can construct a structure B
as follows:

Dom(B) = {0, 1, · · · , 2m− 1}, wherem > 0,
EB = {(i, i + 1) | 0 ≤ i < m− 1} ∪ {(m− 1, 0)}∪

{(j, j + 1) | m ≤ i < 2m− 1} ∪ {(2m− 1, m)},
QB = {(i, j) | 0 ≤ i, j ≤ 2m− 1}.

Clearly, B is also a 0-1 answer set of ΠQ, butG(B|{E}) contains two disjoint cycles. Hence
we cannot apply Theorem 4 to program ΠQ to show its first-order indefinability. In fact,
Ajtai and Gurevich showed that program ΠQ can be defined via the following sentence [1]:

∀xx′yy′z(
(E(x, y) ⊃ Q(x, y)) ∧ ((Q(x, z) ∧Q(z, y)) ⊃ Q(x, y))∧
((Q(x, x′) ∧Q(x′, x′) ∧Q(y′, y′) ∧Q(y′, y)) ⊃ Q(x, y))∧
((Q(x, y) ∧ ¬E(x, y)) ⊃ ∃u(E(x, u) ∧Q(u, y))∧
((Q(x, y) ∧ ¬E(x, y)) ⊃ ∃v(E(v, y) ∧Q(x, v)))).

!

From Examples 6 and 7, we can see that Theorem 4 may also be used as a method to
reveal clues why a program could be first-order definable, in the sense that the program has
a 0-1 answer set that contains more than one detached cycles or paths though these cycles
or paths may be unbounded.

4.3 Proof of Theorem 4
The basic idea of proving Theorem 4 may be outlined as follows. Under the conditions of
Theorem 4, for each k > 0 and each Π’s 0-1 cyclic or linear answer set Ak whose domain

20

size is greater than k, the corresponding Gaifman graph on Ak’s extensional relations will
contain a cycle (path, resp.). Under such condition, we can always construct a structure Bk

of τ(Π) in such a way that Bk is not an answer set of Π, where each intentional predicate in
τint(Π) is interpreted as a 0-1 relation inBk as inAk, andG(Bk|τext(Π)) contains two smaller
cycles (or one smaller cycle one path, resp.). Then we will prove Ak|τext(Π) ≡k Bk|τext(Π).
Finally, by Theorem 3, it concludes thatAk ≡k Bk, and henceΠ is not first-order definable.
This is summarized as in the following table.

0-1 cyclic or linear answer set Ak of Π, a structure Bk of τ(Π) (k ≥ 0)
intentional predicates of Π extensional predicates of Π
0-1 relations in Ak and Bk Prove Ak|τext(Π) ≡k Bk|τext(Π) if: (1) G(Ak|τext(Π))
Ak|τint(Π) ≡k Bk|τint(Π) contains one big cycle, and G(Bk|τext(Π)) contains

two small cycles, or (2) G(Ak|τext(Π)) contains
a long path, and G(Bk|τext(Π)) contains one
small cycle and one short path.

Ak ≡k Bk (By Theorem 3)

So the key issue here is to prove that under the condition and the construction of Bk

described above, Ak|τext(Π) ≡k Bk|τext(Π). For this purpose, we will need a result in finite
model theory [15].

We first present necessary notions and concepts. Consider a structure A = (A, cA1 , · · ·,
cAm, RA

1 , · · ·, RA
n). Let G(A) = (A, EdgeA) be the Gaifman graph of A and a an element

of A. The neighborhoodN(a, d) of a of radius d is recursively defined as follows:

N(a, 1) = {a, cA1 , · · · , cAm},
N(a, d + 1) = N(a, d) ∪ {c | c ∈ A, and there is b ∈ N(a, d)

such that (b, c) ∈ EdgeA}.

Intuitively, N(a, d) may be viewed as a sphere forming from elements of A where each
element in N(a, d) has a distance from a not more than d. Then we define that the d-type
of point a is the isomorphism type of A ↑ N(a, d). That is, if B is a structure of the
same vocabulary of A and b is an element of Dom(B), then a and b have the same d-type
iff A ↑ N(a, d) ∼= B ↑ N(b, d) under an isomorphism mapping a to b. A and B are
d-equivalent if for every d-type ι, they have the same number of points with d-type ι.

Now the following result will be used in our proof of Theorem 4.

Theorem 5 [15] For every k > 0 and for every d ≥ 3k−1, if A and B are d-equivalent,
then A ≡k B.

The following two lemmas will be important in our proof of Theorem 4.

Lemma 1 If Π has unbounded cycles, then for each k > 0, there exist two structures A
and B of τ(Π) such that (1) A is an answer set of Π and G(A|τext(Π)) contains a cycle, (2)
G(B|τext(Π)) contains two disjoint cycles, and (3) for each d > 0,A|τext(Π) and B|τext(Π) are
d-equivalent.

21

Proof: Note that since Π has unbounded cycles, according to Definition 4, for any positive
integer k, Π has an answer setAwhereG(A|τext(Π)) contains a cycle with the length greater
than k.

Case 1. We first consider the case thatG(Aτext(Π)) exactly contains one such cycle without
any other component. For each d > 0, we consider such an answer set A as follows:

G(A|τext(Π)) = (A, EdgeA), where A = Dom(A) = {a1, · · · , a4d},
EdgeA = {(ai, ai+1) | ai, ai+1 ∈ A, 1 ≤ i < 4d} ∪ {(a4d, a1)}.

Clearly, G(A|τext(Π)) is a cycle with 4d vertices 5. Now we can construct another structure
B of τ(Π) in such a way:

G(B|τext(Π)) = (B, EdgeB), where B = Dom(B) = {b1, · · · , b4d},
EdgeA = {(bi, bi+1) | 1 ≤ i < 2d)} ∪ {(b2d, b1)}∪

{(bj , bj+1) | (2d + 1) ≤ j < 4d)} ∪ {(b4d, b(2d+1)}.

Note that G(B|τext(Π)) contains two disjoint cycles and each with a length 2d. Relations
in B for intentional predicates of Π can be arbitrary, and for extensional predicates will
become clear shortly.

By viewing G(A|τext(Π)) and G(B|τext(Π)) as two structures, we observe that each d-
type in G(A|τext(Π)) or in G(B|τext(Π)) is a path with 2d − 1 vertices. Furthermore, each
of G(A|τext(Π)) and G(B|τext(Π)) has exactly 4d points of this d-type. So from the previous
definition, we know that G(A|τext(Π)) and G(B|τext(Π)) are d-equivalent.

Now we show that by carefully specifying relations in B|τext(Π), we also have that
A|τext(Π) and B|τext(Π) are d-equivalent. For any given d-type: G(A|τext(Π)) ↑ N(a, d) ∼=
G(B|τext(Π)) ↑ N(b, d), we consider any tuple t from N(a, d) and any intentional rela-
tion RA from A|τext(Π), we specify t′ ∈ RB in B|τext(Π) iff t ∈ RA, where t′ is the tu-
ple from N(b, d) corresponding to t under the isomorphism of G(A|τext(Π)) ↑ N(a, d) ∼=
G(B|τext(Π)) ↑ N(b, d). This follows A|τext(Π) ↑ N(a, d) ∼= B|τext(Π) ↑ N(b, d).

Since A|τext(Π) and G(A|τext(Π)) share the same domain, so as for B|τext(Π) and
G(B|τext(Π)), it concludes that each of A|τext(Π) and B|τext(Π) also has exactly 4d points of
this d-type. That is, A|τext(Π) and B|τext(Π) are d-equivalent as well.

Case 2. Now we consider the case that G(A|τext(Π)) not only contains one cycle, but also
contains other connected components. In this case, structure B is constructed in the fol-
lowing way: (1) G(B|τext(Π)) will contain two cycles which correspond to the cycle in
G(A|tauext(Π)), as showed in Case 1, and (2) for each connected component inG(A|τext(Π)),
G(B|τext(Π)) will contain exactly the same component as well. Hence, it is easy to see that
the only difference between A|τext(Π) and B|τext(Π) is the cycle parts. Based on Case 1, it
follows that A|τext(Π) and B|τext(Π) are d-equivalent for any d > 0. !

5Since there is no bound on Π’s cycles, such answer set A always exists for any d according to Definition
4.

22

Lemma 2 If Π has unbounded paths, then for each k > 0, there exist two structures A
and B of τ(Π) such that (1) A is an answer set of Π and G(A|τext(Π)) contains a path, (2)
G(B|τext(Π)) contains disjoint one cycle and one path, and (3) for each d > 0,A|τext(Π) and
B|τext(Π) are d-equivalent.

Proof: The proof will be almost the same as the proof of Lemma 1, except: for each d > 0,
(1) we consider an answer set A of Π such that G(A|tauext(Π)) is a path of length 4d, and
(2) we construct another structure B such thatG(B|tauext(Π)) contains one path of length 2d
and one cycle of length 2d. Then in a similar way, we can show thatA|τext(Π) and B|τext(Π)

are d-equivalent. !

Proof of Theorem 4:
Since Π is a 0-1 program and has 0-1 unbounded cycles or paths, from Lemmas 1 and 2,
we know that for any k > 0, Π has a 0-1 cyclic or linear answer set A, and we can always
find a structure B of τ(Π) such that A|τext(Π) and B|τext(Π) are d-equivalent for each d > 0,
where whenever G(A|τext(Π)) contains one cycle (path), G(B|τext(Π)) contains two cycles
(one cycle and one path, resp.). Since this result holds for any k > 0 and d > 0, from
Theorem 5, by setting d ≥ 3k−1, we then have A|τext(Π) ≡k B|τext(Π).

Now by setting every intentional relation of B to be either 0-relation or 1-relation ac-
cordingly as in A, it is concluded that B cannot be an answer set of Π due to condition (2)
of Theorem 4. So by Theorem 3, Π is not first-order definable. !

4.4 A generalization result
In subsection 4.2, we have showed that Theorem 4 can be used in proving first-order inde-
finability for some programs, where the 0-1 property and unbounded cycles (paths) are two
essential features for these programs. It is observed that in order to prove a given program
Π’s first-order indefinability, the 0-1 property is applied on Π’s intentional predicates, and
the requirement of having unbounded cycles (paths) is placed on Π’s extensional predi-
cates. Nevertheless, Theorem 4 will become inapplicable if a program’s answer set does
not comply with the 0-1 property on its intentional relations, or the Gaifman graph formed
from the extensional relations of the answer set does not contain a single cycle or path. For
instance, the program of finding Hamiltonian cycles ΠHC illustrated in Proposition 3 does
not satisfy the conditions of Theorem 4.

Such observation on Theorem 4 motivates us to generalize the 0-1 property and the
definition of unbounded cycles (paths) for a given program, so that we may develop a new
sufficient condition to prove the first-order indefinability for a larger class of programs. In
particular, we will propose a generalized 0-1 property that applies to an arbitrary set of
predicates in a program, instead of only applying to intentional predicates. Accordingly,
the generalized unbounded cycles (paths) conditions for a given program will not restrict
to extensional predicates.

23

Definition 5 (Separable 0-1 programs) Program Π is 0-1 separable if there exists some
τ1 ⊆ τ(Π), such that (1) for each k ≥ 1, Π has an answer set A with |Dom(A)| ≥ k,
and (2) for all predicates in τ1, their corresponding relations inA are 0-1 relations. In this
case, Π is called a (0-1)τ1 program, and A a (0-1)τ1 answer set.

It is easy to see that Definition 5 generalizes the previous 0-1 property defined in Defi-
nition 3, where we only considered intentional relations in Π’s answer sets.

Given program Π and τ ′ ⊆ τ(Π), we say that Π has τ ′-unbounded cycles (paths) if for
every k > 0, there is an answer set A of Π such that G(A|τ ′) contains a cycle (path, resp.)
with length greater than k.

Definition 6 (Separable 0-1 unbounded cycles or paths) A programΠ has separable 0-1
unbounded cycles (paths) if (1) Π is a (0-1)τ1(Π) program for some τ1 ⊆ τ(Π), and (2) for
each k > 0, there is a Π’s (0-1)τ1 answer set A such that G(A|(τ(Π) \ τ1)) contains a
cycle (path, resp.) with length greater than k. In this case, A is called Π’s (0-1)τ1 cyclic
(linear, resp.) answer set.

Nowwe are ready to present the following separation theorem, which is a generalization
of Theorem 4.

Theorem 6 (Generalization result) A program Π is not first-order definable if (1) Π has
separable 0-1 unbounded cycles or paths based on some τ1 ⊆ τ(Π), and (2) for each Π’s
(0-1)τ1 cyclic (or linear, resp.) answer set, G(A|(τ(Π) \ τ1)) contains one cycle (or path,
resp.), while all other connected components of G(A|(τ(Π) \ τ1)) are neither cycles nor
paths.

Proof: We extend Lemmas 1 and 2 to the following result, then Theorem 6 will directly
follow from this result in the same way as in Proof of Theorem 4.

Result. For some τ1 ⊆ τ(Π), if Π has (τ(Π)\τ1)-unbounded cycles (or paths),
then there exists a structure B of τ(Π), such that (1)G(B|(τ(Π)\τ1)) contains
two disjoint cycles (or disjoint one cycle and one path, resp.), and (2) for each
d > 0, A|(τ(Π) \ τ1) and B|(τ(Π) \ τ1) are d-equivalent.

This result can be proved in a similar way as the proofs of Lemmas 1 and 2, so we omit
here. !

Example 8 Finding Hamiltonian cycles program ΠHC revisited. Proposition 3 shows that
ΠHC is not first-order definable:

HC(x, y) ← E(x, y), not OtherRoute(x, y),
OtherRoute(x, y) ← E(x, y), E(x, z), HC(x, z), y 2= z,
OtherRoute(x, y) ← E(x, y), E(z, y), HC(z, y), x 2= z,
Reached(y) ← E(x, y), HC(x, y)Reached(x), not InitialV ertex(x),
Reached(y) ← E(x, y), HC(x, y), InitialV ertex(x),
← not Reached(x).

24

By taking a closer look at program ΠHC , it is observed that ΠHC has two extensional
predicates E(x, y) and InitialV ertex(x), and three intentional predicates HC(x, y),
OtherRoute(x, y) and Reached(x). Then it is easy to check that for each answer set
A of ΠHC , if all three intentional relations HCA, OtherRouteA and ReachedA are 0-1
relations, then G(A|{E,InitialV ertex}) cannot be a single cycle or path. This implies that
previous Theorem 4 is not applicable to program ΠHC .

Now for each k > 0, we consider a structure Ak as follows:

Dom(Ak) = {0, 1 · · · , 2m− 1} wherem > k,
EAk

= {(i, i + 1) | 0 ≤ i < (2m− 1)} ∪ {(2m− 1, 0)},
InitialV ertexAk

= {0},
HCAk

= EAk ,
OtherRouteA

k
= ∅,

ReachedAk
= {0, 1, · · · , 2m− 1}.

Clearly Ak is an answer set of ΠHC .
Now we set τ1 = {Reached, OtherRoute} and τ2(ΠHC) = τ(ΠHC) \ τ1 = {E,

HC, InitialV ertex}. Then it is observed that ReachedAk is a 1-relation in Ak and
OtherRouteA

k is a 0-relation in Ak. So ΠHC is 0-1 separable. Furthermore, we can
see that
G(Ak|{E,HC,InitialV ertex}) only contains a single cycle of length 2m. Since for each k > 0,
we can always construct such Ak with Dom(Ak) > 2k, this means that ΠHC has separable
0-1 unbounded cycles.

On the other hand, it is not difficult to observe that for any answer set B of ΠHC which
is (0-1){Reached,OtherRoute} cyclic, G(B|{E, HC, InitialV ertex}) has the same form of
G(Ak|{E, HC, InitialV ertex}), i.e. contains exact one single cycle. So from Theorem
6, we know that ΠHC is first-order indefinable. !

5 Related work and conclusions
The expressive power of Datalog has been extensively studied in the literature, where the
first-order definability of datalog query is one of the central topics. In Datalog, it has been
shown that on arbitrary structures, a datalog program is bounded iff the corresponding data-
log queries are first-order definable iff the datalog program is equivalent to a recursion-free
datalog program. On finite structures, this is no longer true [1, 12]. These results, however,
do not provide many hints about how to prove a datalog query’s first-order (in)definability.

In finite model theory, Ehrenfeucht-Fraı̈ssé game approach is the primary tool for prov-
ing first-order indefinability result [14]. But as it has been well recognized [16], using this
approach for specific cases is technically challenging. One way to deal with such difficulty
is to develop stronger sufficient conditions to ensure the winning strategy for the duplicator
during an Ehrenfeucht-Fraı̈ssé game. Although the existing results in finite model theory,

25

for instance, those summarized in [16], are just too general to apply to our problems under
ASP setting, this idea indeed motivated our work presented in this paper.

The first result of extending Ehrenfeucht-Fraı̈ssé game approach to Datalog was due to
Cosmadakis’ work [12]. Our Theorem 2 may be viewed as an analogy of Theorem 2.6 in
[12] for ASP. Note that both results have looser conditions for the classes of structures than
the original Ehrenfeucht-Fraı̈ssé game theorem [14]. Since these two results only provide
the corresponding Ehrenfeucht-Fraı̈ssé game-theoretic characterizations on the first-order
indefinability for ASP and Datalog respectively, as in finite model theory, they are quite
hard to be used in practice. What makes our work significantly distinct from Cosmadakis’
is that we have further developed stronger sufficient conditions that completely avoid the
construction of Ehrenfeucht-Fraı̈ssé game in the first-order indefinability proof, and can be
quite effective for certain circumstances.

We believe that the work presented in this paper establishes an important basis towards
a formal study of the expressiveness of first-order answer set programs. Several related
issues are left for our future work. One continuing work is to develop more useful sufficient
conditions to cover larger classes of first-order indefinable programs. In our current work,
we mainly focused on the featured programs complying to the 0-1 property with unbounded
cycles or paths. Some ideas of developing these conditions were motivated from relevant
results and techniques in finite model theory, e.g. Gaifman graph theorem (Theorem 5
described in section 4.2) [21].

Another important topic is to study answer set programs’ first-order (in)definability
under specific structures. In this paper, we do not restrict our finite structures to any spe-
cific forms. In many applications, nevertheless, we may only deal with specific types of
finite structures, such as finite graphs, strings, or ordered structures [22, 28]. Under such
situations, new proof techniques should be developed to prove an answer set program’s
first-order indefinability.

References
[1] M. Ajtai and Y. Gurevich, Datalog vs. first order logic. In Proceedings of the 30th

Annual Symposium of Foundations of Computer Science, pp 142-147, 1989.

[2] V. Asuncion, Y. Zhang and H. Zhang, Logic programs with ordered disjunction: First-
order semantics and expressiveness. In Proceedings of KR-2014, 2014.

[3] V. Asuncion, Y. Chen, Y. Zhang and Y. Zhou, Ordered completion for logic programs
with aggregates. Artificial Intelligence, 2015 (to appear).

[4] V. Asuncion, F. Lin, Y. Zhang and Y. Zhou, Ordered completion for first-order logic
programs on finite structures. Artificial Intelligence 177-179 (2012) 1-24.

[5] S. Arora and R. Fagin, On winning strategies in Ehrenfeucht-Fraı̈ssé games. Theoret-
ical Computer Science 174 (1997) 97-121.

26

[6] C. Baral, Knowledge Representation, Reasoning, and Declarative Problem Solving,
MIT Press, 2003.

[7] M. Bartholomew and J. Lee, System ASPMT2SMT: Computing ASPMT theories by
SMT solvers. In Proceedings of JELIA 2014, 529-542, 2014.

[8] S. Chaudhuri and M.Y. Vardi, On the equivalence of recursive and nonrecursive Dat-
alog programs. PODS, pp 55-66, 1992.

[9] Y. Chen, F. Lin, Y. Zhang and Y. Zhou, Loop-separable programs and their first-order
definability. Artificial Intelligence 175 (3-4) (2011) 890-913.

[10] Y. Chen, Y. Zhang and Y. Zhou, First-order indefinability of answer set programs on
finite structures. In proceedings of AAAI-2010, pp 285-290, 2010.

[11] K.L. Clark, Negation as failure. In Logics and Databases, pp 293-322. Plenum Press,
1978.

[12] S.S Cosmadakis, On the first-order expressibility of recursive queries. In Proceedings
of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on PODS, pp311-323, 1989.

[13] E. Dantsin and et al, Complexity and expressive power of logic programming. ACM
Computing Surveys 33 (2001) 374-425.

[14] H.D. Ebbinghaus and J. Flum, Finite Model Theory, 2nd edition. Springer 1999.

[15] R. Fagin, L. Stockmeyer and M.Y. Vardi, On monadic NP vs. monadic co-NP. Infor-
mation and Computation 120 (1995) 78-92.

[16] R. Fagin, Easier ways to win logical games. DIMACS Series in Discrete Mathematics
and Computer Science, American Mathematical Society 13 (1997) 1-32.

[17] P. Ferraris, J. Lee and V. Lifschitz, Stable models and circumscription. Artificial In-
telligence 175(1) (2011) 236-263.

[18] H. Gaifman, H. Mairson, Y. Sagiv and M.Y. Vardi, Undecidable optimization prob-
lems for database logic programs. Journal of ACM 40 (1993) 683-713.

[19] M. Gebser and R. Kaminski and B. Kaufmann and T. Schaub, Answer Set Solving in
Practice, Morgan and Claypool Publishers, 2012.

[20] M. Gelfond and Y. Kahl, Knowledge Representation, Reasoning, and the Design of
Intelligent Agents, Cambridge University Press, 2014.

[21] E. Grädel, P.G. Kolaitis, L. Libkin, M. Max, J. Spencer, M.Y. Vardi, Y. Venema and
S. Weinstein, Finite Model Theory and Its Applications. Springer 2007.

27

[22] L. Hella and P.G. Kolaitis, How to define a linear order on finite models. Annals of
Pure and Applied Logic 87 (1997) 241-267.

[23] P.G. Kolaitis, Implicit definability on finite structures and unambiguous computations
(preliminary report). LICS 1990: 168-180, 1990.

[24] F. Lin and Y. Zhou, From answer set logic programming to circumscription via logic
of GK. Artificial Intelligence 175(1) (2011) 264-277.

[25] F. Lin and Y. Zhao, ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157 (2004) 115-137.

[26] F. Lin and Y. Zhou, From answer set logic programming to circumscription via logic
of GK. Artificial Intelligence 2010 (to appear).

[27] Smodels: http://www.tcs.hut.fi/Software/smodels/

[28] A. Stolboushkin, Axiomatizable classes of finite models and definability of linear or-
der. In Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science
(LICS’92), pp 64-70. IEEE Press, 1992.

[29] J. Wittocx, M. Marien and M. Denecker, Grounding with bounds. In Proceedings of
AAAI-2008, pp 527-577. 2008.

[30] H. Zhang, Y. Zhang, M. Ying and Y. Zhou, Translating theories into logic programs.
In Proceedings of IJCAI-2011, pp 1126-1131, 2011.

[31] H. Zhang and Y. Zhang, First-order expressibility and boundedness for disjunctive
logic programs. In Proceedings of IJCAI-2013, pp 1198-1204, 2013.

[32] Y. Zhang and Y. Zhou, On the progression semantics and boundedness of answer set
programs. In Proceedings of KR-2010, pp 518-527, 2010.

28

