
Ordered Completion for Logic Programs with
Aggregates

Vernon Asunciona, Yin Chenb, Yan Zhanga, Yi Zhoua

aArtificial Intelligence Research Group (AIRG), School of Computing, Engineering and
Mathematics, University of Western Sydney, Australia

bDepartment of Computer Science, South China Normal University, Guangzhou, China

Abstract
We consider the problem of translating first-order answer set programs with ag-
gregates into first-order sentences with the same type of aggregates. In particular,
we show that, on finite structures, normal logic programs with convex aggregates,
which cover both monotone and antimonotone aggregates as well as the aggre-
gates appearing in most benchmark programs, can always be captured in first-
order logic with the same type of aggregates by introducing auxiliary predicates.
More precisely, we prove that every finite stable model of a normal program with
convex aggregates is corresponding to a classical model of its enhanced ordered
completion. This translation then suggests an alternative way for computing the
stable models of such kind of programs. We report some experimental results,
which demonstrate that our solver GROCv2 is comparable to the state-of-the-art
answer set solvers. We futher show that convex aggregates form a maximal class
for this purpose. That is, we can always construct a normal logic program under
any given non-convex aggregate context and prove that it can never be translated
into first-order sentences with the same type of aggregates unless NP = coNP .

1. Introduction

In this paper, we consider to translate first-order Answer Set Programming
(ASP), a predominant declarative programming paradigm in the area of knowl-
edge representation and logic programming [3, 20, 24, 25], into first-order logic.
Work in this direction is not only of theoretical interests but also of practical rele-
vances as it suggests an alternative way to implement ASP.

Recently, Asuncion et al. [2] proposed a notion of ordered completion (a first-
order sentence with some extra predicates) for first-order normal logic programs,

Preprint submitted to Artificial Intelligence March 16, 2015

and showed that the stable models of a normal program are exactly corresponding
to the classical models of its ordered completion on finite structures. Interestingly,
there is no such translation on arbitrary structures nor prohibiting extra predicates.
Based on this translation, they developed a new ASP solver, which first translates
a program to its ordered completion, then grounds this first-order sentence, and
finally calls an SMT solver. This is significantly different from previous ASP
solvers, which ground the first-order programs directly. A first implementation
shows that this new solver is promising as it performs relatively good for the
Hamiltonian Circuit program, particularly on big instances [2].

However, their work cannot handle aggregates, a very important building block
for modern Answer Set Programming. The reason why aggregates are crucial in
answer set solving is of twofold. Firstly, they enhance the expressive power of
ASP, and often they can simplify the representation task. For many applications,
one can write a simpler and more elegant logic program by using aggregates, for
instance, the job scheduling program [28]. Secondly and more importantly, ag-
gregates can improve the efficiency of ASP solving [19]. Normally, the program
using aggregates can be solved much faster [12].

In this paper, we consider the problem of extending ordered completion for
programs with aggregates. This is a challenging task as some programs with ag-
gregates are expressive enough to capture disjunctive logic programming (see in
[16]), thus can never be captured in first-order logic with the same type of aggre-
gates providing some general assumptions in the computational complexity theory
(see Proposition 6 in [2]).

Hence, an important task is to draw a boundary between the normal programs
with aggregates that can be captured in first-order logic with the same type of ag-
gregates and those programs that cannot. For this purpose, we extend the notion of
convex constraints proposed by Liu and Truszczyński [23] into first-order convex
aggregates. We show that the class of convex aggregates is exactly the boundary
we need in the sense that

• First-order normal logic programs with convex aggregates can always be
captured in first-order logic with the same type of aggregates on finite struc-
tures. More precisely, we extend the notion of ordered completion for first-
order normal logic programs with convex aggregates, and show that every
stable model of such a program is corresponding to a classical model of its
enhanced ordered completion.

• Given any non-convex aggregate context, there exists a normal program un-
der this context such that it can never be translated into first-order sentences

2

with the same type of aggregates unless NP = coNP .

In fact, the class of convex aggregates is expressive enough to capture both
monotone and antimonotone aggregates [23] as well as the aggregates appearing
in most benchmark programs [5]. Therefore, based on our theoretical results,
we are able to develop an alternative ASP solver for first-order normal programs
with convex aggregates. Following this idea, we implement a new ASP solver
GROCv2. Our experimental results demonstrate that GROCv2 is comparable to
the state-of-the-art ASP solvers.

The paper is organized as follows. Section 2 reviews basic concepts and no-
tations that we will need through out the paper. Section 3 presents the ordered
completion for logic programs with aggregates, and proves the main theorems.
Section 4 introduces the implementation of the ASP solver GROCv2, and reports
some experimental results. Finally, Sections 5 and 6 discuss some related work
and draw our conclusions respectively. We leave the very long proofs of some
theorems to Appendix A for a more fluent reading.

2. Preliminaries

We consider a second-order language without functions but with equality =.
A signature contains a finite set of constants and a finite set of predicates. A term
is either a variable or a constant. A standard atom is an expression P (t), where P
is a predicate and t is a tuple of terms which matches the arity of P . An equality
atom is an expression t1 = t2, where t1 and t2 are terms.

A multiset (also called a bag) is a pairM = (Ms, Mf), whereMs is a set and
Mf is a function, called the multiplicity function, from Ms to N, i.e., the set of
positive integers {1, 2, 3, . . .}. A multiset (Ms, Mf) is finite ifMs is finite. LetM
andM ′ be two multisets. We denote byM ⊆ M ′ ifMs ⊆ M ′

s and for all elements
a ∈ Ms, Mf (a) ≤ M ′

f(a). We write M = M ′ if M ⊆ M ′ and M ′ ⊆ M . For
convenience, a multisetM , where Ms = {a1, . . . , an} and Mf (ai) = ci(1 ≤ i ≤
n), is also denoted as {{a1, . . . , a1︸ ︷︷ ︸

c1

, . . . , ai, . . . , ai︸ ︷︷ ︸
ci

, . . . , an, . . . , an︸ ︷︷ ︸
cn

}}. The order of

the elements is irrelevant. For example, {{a, a, b, c}} is the multiset M , where
Ms = {a, b, c} andMf(a) = 2,Mf (b) = Mf (c) = 1.

2.1. The Syntax of Aggregates
Aggregate is a crucial auxiliary building block for answer set programming

[12, 13, 16, 19, 22, 23, 28]. We first define the syntax of aggregates in the first-

3

order case. We assume a set of aggregate symbols AG and a (fixed) set of com-
parison operators on numbers CO = {<,≤, =, $=,≥, >}.

Definition 1. An aggregate atom δ is an expression of the form

OP〈v : ∃wQ1(y1) ∧ · · · ∧Qs(ys) ∧ ¬R1(z1) ∧ · · · ∧ ¬Rt(zt)〉 * t, 1 (1)

where

• OP ∈ AG is an aggregate symbol,

• Qi(yi) (1 ≤ i ≤ s) and Rj(zj) (1 ≤ j ≤ t) are standard atoms or equality
atoms. In addition,

Q1(y1) ∧ · · · ∧Qs(ys) ∧ ¬R1(z1) ∧ · · · ∧ ¬Rt(zt) (2)

is called the body of δ, denoted by Bd(δ),

• v and w are tuples of variables mentioned in (2), and v ∩w = ∅,

• *∈ CO is a comparison operator on numbers,

• t is a term, and we assume that variables occurring in t are not in v ∪w.

For convenience, we usePs(δ) andNg(δ) to denote the sets {Q1(y1), . . . , Qs(ys)}
and {R1(z1), . . . , Rt(zt)} respectively. Given an aggregate atom δ of the form (1),
a variable in δ is a free variable if it is not a variable in v ∪w.

Example 1. Let SUM and CARD be aggregate symbols in AG. The following are
two aggregate atoms:

CARD〈x : P (x)〉 = 2, SUM〈x : P (x)〉 ≤ 5.

Intuitively, they are equivalent to the weight constraints

2{p(X)}2, {p(X) = X}5

in smodels [29], and the aggregate atoms

#count{X : p(X)} = 2, #sum{X : p(X)} ≤ 5

in DLV [14] and ASP-Core-2. 2 !

1Here,w could be empty. In this case, (1) is simply written as OP〈v : Bd(δ)〉 * t.
2ASP-Core-2 is currently the standard ASP input language, available at

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

4

An atom is either an equality atom, or a standard atom, or an aggregate atom.
A first-order formula with aggregates (or formula for short) is built from atoms
and logical connectives as usual. A formula without aggregate atom is called a
classical formula in this paper. The free variable of a formula is defined as usual.
We use free(φ) to denote the set of free variables of a formula φ.

2.2. The Semantics for First-Order Logic with Aggregates
As aggregate is an extra building block, we need to extend the standard seman-

tics for classical first-order logic for incorporating aggregates, in which aggregates
are considered as predefined function symbols.

Definition 2. An aggregate contextAC is a tuple of the form:

(ACag,ACco,ACnum, OPAC
1 , . . . , OPAC

n)

where

• ACag = {OP1, . . . , OPn} is a subset of AG;

• ACco ⊆ CO is a set of comparison operators;

• ACnum ⊆ Z is a set of numbers;

• for every aggregate symbol OPi ∈ AG (1 ≤ i ≤ n), there is a partial
function OPAC

i from the set of multisets over tuples on ACnum to ACnum.

Example 2. Consider an aggregate contextAC1, where

• AC1ag = {CARD, SUM,MIN,MAX}, for cardinality, sum, minimum, and
maximum respectively;

• AC1co = {<,≤, =,≥, >};

• AC1num = N;

• given a multisetM = {{a1, . . . , ak}}, where each ai, (1 ≤ i ≤ k) is a tuple
of numbers,

– CARD(M) is defined as the cardinality ofM ;
– SUM(M) is defined as

∑k
i=1 ai[1]; 3

3Given a tuple a, a[i] denotes the i-th component of a, where 1 ≤ i ≤ |a|.

5

– MIN(M) is undefined if M = ∅, and the minimum of ai[1], (1 ≤ i ≤
k) ifM $= ∅;

– MAX(M) is undefined ifM = ∅, and the maximum of ai[1], (1 ≤ i ≤
k) ifM $= ∅.

Furthermore, we may also define the following two aggregate contexts:
• Let AC2 be the aggregate context which is identical to AC1 except that
AC2co = CO = AC1co ∪ { $=}.

• Let AC3 be the aggregate context which is identical to AC2 except that
AC3num = Z.

!

The aggregate contextAC1 in Example 2 presents the most common aggregate
functions in the current ASP solvers. However, the following example shows that
it is possible to define more general aggregates in our setting theoretically.

Example 3. Consider an aggregate contextAC4, where
• AC4ag = {SUMALL, SAT}, where SUMALL and SAT are two aggregate sym-
bols in AG;

• AC4co = {<,≤, =,≥, >};

• AC4num = N;

• given a multisetM = {{a1, . . . , ak}}, where each ai, (1 ≤ i ≤ k) is a tuple
of numbers,

– SUMALL(M) is defined as
k∑

i=1

|ai|∑

j=1

ai[j];

– SAT(M) is 1 if ϕM is satisfiable in propositional logic and 0 otherwise,
where ϕM is the formula

k∧

i=1

(
∨

a∈ai

xa

)
,

and {x1, x2, . . .} is a set of propositional atoms.

6

!

Definition 3. Given a signature σ, an extended structure A of σ is a tuple

(A, fA, cA1 , . . . , cAl , PA
1 , . . . , PA

m), (3)

where

• A is the domain of A, denoted by Dom(A),

• fA is a total function from A to Z,

• cAi , (1 ≤ i ≤ l) is the interpretation for constant ci;

• PA
j , (1 ≤ j ≤ m) is the interpretation for predicate Pj .

An extended structure is finite if its domain is finite. Note that the only difference
between the extended structure defined above and the structure in first-order logic
is the partial function fA which maps domain elements to numbers. This enables
us to freely use variables and constants in aggregate functions. Since aggregate
functions such as SUM are defined over numbers but not over arbitrary domain
elements, we use a two step approach to interpret an aggregate atom. First, using
the standard first-order semantics, we map the terms (i.e., constants and variables)
into domain elements. Then, we use the function fA to further map these domain
elements into numbers so that the aggregate atoms are well defined. We extend
the function fA for a tuple of domain elements and for a multiset. By fA(c),
we denote the tuple (fA(c1), . . . , fA(cn)), where c = (c1, . . . , cn) is a tuple. By
fA(A), we denote the multiset {{fA(a1), . . . , fA(ak)}}, where A = {{a1, . . . , ak}}
is a multiset. In the following, an extended structure is simply called a structure
when it is clear from the context.

LetA be a structure. An assignment is an expression of the form x/a, where x
is a tuple of distinct variables and a ∈ Dom(A)|x| is a tuple of domain elements.
Assignments can be extended for terms. Let t be a tuple of terms, in which the
variables are from x. We use t[x/a] to denote the tuple of domain elements by
simultaneously replacing the variables in x via the assignment x/a and constant
c by cA.

Under an aggregate context AC, the satisfaction relation between a structure
A and a formula ϕ(x) (with aggregate atoms) together with an assignment x/a is
defined recursively as follows:

7

• If ϕ is P (t), then A |= ϕ[x/a] iff t[x/a] ∈ PA;

• If ϕ is t1 = t2, then A |= ϕ[x/a] iff t1[x/a] = t2[x/a];

• If ϕ is ¬ψ, then A |= ϕ[x/a] iff A $|= ψ[x/a];

• If ϕ is ψ ∧ ξ, then A |= ϕ[x/a] iff A |= ψ[x/a] and A |= ξ[x/a];

• If ϕ is ∀yψ, then A |= ϕ[x/a] iff for all b ∈ Dom(A), A |= ψ[xy/ab];

• Finally, if ϕ is an aggregate atom δ of the form (1) in the aggregate context
AC, then A |= ϕ[x/a] iff

1. OP ∈ ACag and *∈ ACco;
2. t[x/a] is in the domain of fA;
3. the multiset

M = {{fA(c) | c ∈ M ′, fA(c) is defined}}

is in the domain of OPAC , whereM ′ is the set

{c | A |= Bd(δ)[xwv/abc],b ∈ Dom(A)|w|, c ∈ Dom(A)|v|};

4. OPAC(A) * fA(t[y/a]);

Example 4. Consider the aggregate contextAC2 and a signature σ with only one
predicate P . For any structure A with the domain {a, b} and fA(a) = 2 and
fA(b) = 3, we have

A |= SUM〈x : P (x)〉 ≤ 5,

and
A |= SUM〈x : P (x)〉 $= 2 ≡ (P (a) → P (b)).

!

Let AC be an aggregate context. An aggregate OP ∈ ACag is polynomial if
the problem of checking OPAC(M) * n can be done in polynomial time with
respect to |M | for every multisetM and number n, where |M |, the length of M ,
is defined as the sum of the length of all tuples inM [16]. AC is polynomial if all
aggregates in it are polynomial. It can be verified that all three aggregate contexts
in Example 2 are polynomial, while AC4 in Example 3 is not polynomial unless
P = NP .

8

2.3. The Stable Model Semantics for Normal Logic Programs with Aggregates
We now propose the stable model semantics for first-order normal logic pro-

grams with aggregates. A normal program with aggregates (or program for short)
is a finite set of rules of the form

α← β1, . . . , βl, not γ1, . . . , not γm, (4)

where α is either a standard atom or ⊥, βi, (1 ≤ i ≤ l) and γj, (1 ≤ j ≤ m) are
atoms.

A rule of the form (4) is called a constraint if α is ⊥. By Π⊥, we denote
the set of constraints in program Π. Let r be a rule of the form (4). We call
α the head of r and {β1, . . . , βl, not γ1, . . . , not γm} the body of r. A variable is
called a local variable of r if it occurs in a standard atom, equality atom, or occurs
freely in an aggregate atom in the body of r but it does not occur in the head of r.
For convenience, we use Head(r) and Body(r) to denote α and β1 ∧ · · · ∧ βl ∧
¬γ1 ∧ · · · ∧ ¬γm, respectively. We also use Pos(r) and PosAgg(r) to denote the
set of positive atoms and the set of positive aggregate atoms from the body of r,
respectively. By r̂, we denote the universal closure of the formula

β1 ∧ · · · ∧ βl ∧ ¬γ1 ∧ · · · ∧ ¬γm → α.

By Π̂, we denote the formula
∧

r∈Π r̂.
The signature of a program Π, denoted by τ(Π), consists of all constants and

predicate symbols occurring in Π. A predicate in a program is said to be in-
tensional if it occurs in the head of some rule in the program, and extensional
otherwise. We use Pint(Π) to denote the set of all intensional predicates of Π.

Example 5. Consider the following program Π1 with an aggregate atom

r1 :P (x) ← R1(x), (5)
r2 :P (x) ← P (y), R2(y, x), (6)
r3 :P (x) ← SUM〈y : P (y) ∧R3(x, y)〉 > 3. (7)

Here, SUM is an aggregate symbol, P is intensional and R1, R2, R3 are exten-
sional. !

The stable model semantics of a program is defined by a second-order sen-
tence. We first introduce some notations. Let P and Q be two predicates or
predicate variables of the same arity. We use P < Q to denote the formula

∀x(P (x) → Q(x)) ∧ ¬∀x(Q(x) → P (x)).

9

Let P = P1 · · ·Pk and P′ = P ′
1 · · ·P ′

k be two tuples of predicates or predicate
variables such that for every 1 ≤ i ≤ k, Pi and P ′

i have the same arity. We use
P < P′ to denote the formula

k∧

i=1

∀x(Pi(x) → P ′
i (x)) ∧ ¬

k∧

i=1

∀x(P ′
i (x) → Pi(x)).

Let Π be a program such that Pint(Π) = {P1, . . . , Pn}. LetU = U1 . . . Un be
a tuple of new predicates such that each Ui, (1 ≤ i ≤ n) matches the arity of Pi.
Given an atom ρ, ρ∗ is defined as

• ρ itself, if ρ is an equality atom or an atom of the form P (x), where P is an
extensional predicate;

• Ui(x), if ρ is an atom of the form Pi(x), where Pi is an intensional predicate;

• (OP〈v : ∃wBd(δ)∗〉 * t) ∧ (OP〈v : ∃wBd(δ)〉 * t), if ρ is an aggregate
atom δ of the form (1), where

Bd(δ)∗ = Q∗
1(y1) ∧ · · · ∧Q∗

s(ys) ∧ ¬R1(z1) ∧ · · · ∧ ¬Rt(zt).

Let r be a rule of the form (4) which is not a constraint. We use Body(r)∗ to
denote the formula

β∗
1 ∧ · · · ∧ β∗

l ∧ ¬γ1 ∧ · · · ∧ ¬γm,

and r∗ the universal closure of the formula

Body(r)∗ → Head(r)∗.

Finally, by SM(Π), we denote the following second-order sentence
∧

r∈Π

r̂ ∧ ¬∃U(U < P ∧
∧

r∈Π\Π⊥

r∗). (8)

Definition 4 (stable model). Let Π be a program and AC an aggregate context.
A structureA on τ(Π) is said to be a stable model ofΠ ifA is a model of SM(Π).

10

For normal programs without aggregates, the definition of SM(Π) is exactly
the same as those presented in [2] and [17]. For the stable model semantics of
propositional programs with aggregates, there are several alternative definitions
[4, 8, 10, 13, 16, 18, 27, 30]. The Ferraris’ semantics and the FLP semantics
have recently been extended into the first-order case [4, 18, 22]. Our definition
of SM(Π) can be considered as another first-order extension of the Ferraris’ se-
mantics [16, 18]. Nevertheless, if the aggregate atoms only occur in the positive
bodies of rules and the bodies of these aggregates contain no negative atoms (this
is actually the case in many benchmark programs), these two semantics coincide.

Example 6. (Example 5 continued) Consider the aggregate context AC1 in Ex-
ample 2 and three structuresM1,M2,M3 on τ(Π1) such that for i = 1, 2, 3,

Dom(Mi) = {a, b, c, d},
fMi(a) = 1, fMi(b) = 2, fMi(c) = 3, fMi(d) = 4,

RMi
1 = {b}, RMi

2 = {aa, bc}, RMi
3 = {aa, ac, db, dc},

and

PM1 = {b, c}, PM2 = {b, c, d}, PM3 = {a, b, c, d}.

• M1 is not a stable model of Π1 since it is not a model of r̂3. To see this,
note thatM1 |= SUM〈y : P (y) ∧ R3(x, y)[x/d] andM1 $|= P (x)[x/d].

• Both M2 and M3 are models of
∧

r∈Π1
r̂, but M3 is not a stable model

of Π1, as M3 is not a model of the second-order sentence (8). Indeed,
let U ′ = {b, c, d} ⊂ PM3 . Then, we have M3 |= U < P [U/U ′] and
M3 |=

∧
r∈Π1

r∗[U/U ′], so thatM3 $|= ¬∃U(U < P ∧
∧

r∈Π1
r∗).

• It can be verified thatM2 is the only stable model ofΠ1. Roughly speaking,
M2 is obtained as follows:

– P (b) is derived by the fact R1(b) and the rule r1;
– P (c) is derived by the facts P (b), R2(b, c) and the rule r3;
– P (d) is derived by the rule r3 by noticing thatM3 |= SUM〈y : P (y)∧

R3(x, y)〉 > 3[x/d];
– P (a) cannot be derived by either r2 or r3 without assumingP (a) itself.

!

11

3. Ordered Completion for Normal Logic Programs with Aggregates

Ordered completion, introduced by Asuncion et al. [2] for normal logic pro-
gram without aggregates, is a modification of Clark’s completion [7] by adding
some auxiliary predicates to capture the derivation order during the program’s
evaluation. It is showed that, on finite structures, the stable models of a normal
logic program are exactly corresponding to the classical models of its ordered
completion.

From a theoretical point of view, ordered completion makes an important con-
tribution on understanding first-order answer set programming. Firstly, it shows
that the stable model semantics can be captured by Clark’s completion plus deriva-
tion order. Secondly, it clarifies the relationship between first-order normal ASP
and first-order logic. More precisely, every normal answer set program can be
captured by a first-order sentence with some new predicates on finite structures.
Interestingly, this result does not hold on arbitrary structures nor if no new predi-
cate symbol is used [2].

In addition, ordered completion is relevant from a practical point of view. It
initiates a new direction of developing an alternative ASP solver by first translating
a normal logic program to its ordered completion, then working on finding a model
of this first-order sentence. A first implementation shows that this new approach is
promising as it performs good on the Hamiltonian Circuit program [25], especially
on very large instances. However, ordered completion can hardly be used beyond
the Hamiltonian Circuit program because it cannot handle aggregates - a crucial
building block widely used in many applications in ASP.

Extending ordered completion for dealing with aggregates is not an easy task.
First of all, the aggregate atoms in a logic program are highly interacted with the
rest parts. Hence, a naive extension of ordered completion by simply treating
aggregate atoms as extensional atoms would not work.

Another observation is from a computational complexity point of view. In
the propositional case, it is shown that checking the existence of stable models of
normal program with aggregates is ΣP

2 complete for both the Ferraris’ semantics
and the FLP semantics [11, 16], which lies on a higher complexity level than
the same task for normal programs without aggregates. Together with some well
known results in finite model theory, this probably suggests that, in general, first-
order normal programs with arbitrary aggregates cannot be captured in first-order
logic with the same type of aggregates at all. In this paper, we shall show that this
is indeed the case.

Nevertheless, it is also observed that normal programs with some type of ag-

12

gregate atoms still have the same complexity as normal programs without aggre-
gates [16]. This means that, simply from a complexity point of view, it is possible
to capture this class of programs in first-order logic with the same type of aggre-
gate atoms. In fact, two important classes of such aggregate atoms are well dis-
cussed in the literature [4, 13, 16, 27, 31], namely monotone and anti-monotone
aggregate atoms.

Definition 5. Let AC be an aggregate context, OP ∈ ACag be an aggregate sym-
bol, and *∈ ACco a comparison operator. We say that OP is monotone with
respect to * if for any two multisetsM1, M2 such that M1 ⊆ M2,

• if M1 is in the domain of OPAC , then M2 is also in the domain of OPAC , and

• for any n ∈ ACnum, if OPAC(M1) * n then OPAC(M2) * n.

The definition of anti-monotone is similar, with M1 ⊆ M2 replaced by M2 ⊆ M1.

Consider aggregate symbols CARD and SUM in the aggregate context AC1

in Example 2. They are either monotone or anti-monotone with respect to the
comparison symbols in {<,≤,≥, >}, but neither monotone nor anti-monotone
with respect to =.

As we shall show in the paper, normal logic programs with these two types of
aggregates can indeed be captured in first-order logic with the same type of aggre-
gates. However, they are not powerful enough to capture all. For instance, a com-
monly used aggregate is of the form SUM(M) = n, which is neither monotone nor
anti-monotone, but can be expressed as the conjunction of the two monotone and
anti-monotone aggregates: SUM(M) > n− 1 and SUM(M) < n + 1. Therefore,
normal logic programs with the aggregate type SUM(M) = n can be expressed in
first-order logic with this aggregate as well.

Hence, an important task is to draw a boundary. That is, does there exist a class
of aggregates such that first-order normal programs with this type of aggregates
can always be captured in first-order logic with the same type of aggregates, while
this cannot be done for normal programs with any other aggregates not in this
class?

For this purpose, we extend Liu and Truszczyński’s notion of convex con-
straints [23] to first-order convex aggregates and show that this is exactly the
boundary we need. That is, first-order normal logic programs with convex aggre-
gates can always be captured in first-order logic with the same type of aggregates.
On the contrary, for any non-convex aggregates, we can always construct a nor-
mal program with this aggregate such that it can never be captured in first-order

13

logic with the same type of aggregates providing some general assumptions in the
computational complexity theory.

Definition 6. Let AC be an aggregate context , OP ∈ ACag an aggregate symbol,
and*∈ ACco a comparison operator. Then, OP is convexwith respect to* if there
does not exist finite multisets of tuples of the same arities4 M1 ⊆ M2 ⊆ M3 and
n ∈ Z such that OPAC(M1) * n and OPAC(M3) * n holds, while OPAC(M2) * n
does not hold.

An aggregate context AC is convex, if for every aggregate symbol OP ∈ ACag

and comparison operator *∈ ACco, OP is convex with respect to *.

Example 7. Consider the aggregate contexts in Example 2.

• AC3 is non-convex since SUM is non-convex with respect to ≥. As an
example, both SUMAC3({{−1, 1}}) ≥ 0 and SUMAC3(∅) ≥ 0 hold, but
SUMAC3({{−1}}) ≥ 0 does not hold.

• If we restrict to non-negative numbers, SUM is convex with respect to≥, but
AC2 is still non-convex, since SUM is non-convex with respect to $=. As an
example, we can see that SUMAC2({{1, 2}}) $= 1 and SUMAC2(∅) $= 1 hold,
while SUMAC2({{1}}) $= 1 does not hold.

• It can be verified that AC1 is convex. Note that aggregates CARD and SUM
are convex with respect to =, though they are neither monotone nor anti-
monotone.

!

In fact, both monotone and antimonotone aggregates are subclasses of convex
aggregates.

Proposition 1. Let AC be an aggregate context, OP ∈ ACag be an aggregate
symbol and*∈ ACco a comparison operator. If OP is (anti)monotone with respect
to *, then OP is convex with respect to *.

4That is, for any t1,t2 ∈ (M1 ∪M2 ∪M3), we have |t1| = |t2|.

14

Proof: It suffices to show that if OP is non-convex with respect to *, then it is
neither monotone nor anti-monotone with respect to *.

If OP is non-convex with respect to *, then there exist multisetsM1 ⊆ M2 ⊆
M3 and n ∈ Z such that OPAC(M1) * n and OPAC(M3) * n hold, while
OPAC(M2) * n does not hold. Since M1 ⊆ M2, OPAC(M1) * n holds but
OPAC(M2) * n does not hold, OP is not anti-monotone. Similarly, since M2 ⊆
M3, OPAC(M3) * n holds but OPAC(M1) * n does not hold, then OP is not mono-
tone. !

3.1. Ordered Completion
Now we define ordered completion for normal logic programs with aggre-

gates. Let σ be a signature. By σ≤, we denote the signature σ together with the
set of new predicates

{≤PQ | P, Q ∈ σ are two intensional predicates},

where the arity of ≤PQ is the sum of the arities of P and Q.5 The ordered com-
pletion of a program Π is defined as a formula over the signature τ(Π)≤.

Let Π be a program. Then by Trans(Π), we denote the formula
∧

P,Q,R∈Pint(Π)

∀xyz(≤PQ (xy)∧ ≤QR (yz) →≤PR (xz)).

Also, given two predicates P and Q, we use ̂P (x) < Q(y) to denote the formula

≤PQ (xy) ∧ ¬ ≤QP (yx).

Definition 7 (ordered completion with aggregates). Let Π be a program. Then
the modified completion of Π, denoted by MComp(Π), is the formula

Π̂ ∧
∧

P∈Pint(Π)

∀x
[
P (x) →

∨

r∈Π\Π⊥
Head(r)=P (x)

∃y
(
Body(r) ∧ Po ̂s(r) < P (x) ∧ PosAg ̂g(r) < P (x)

)]
,

(9)

where

5Note that P and Q might be the same predicate.

15

• Π̂ is
∧

r∈Π r̂,

• Po ̂s(r) < P (x) is the formula
∧

Q(y)∈Pos(r)\PosAgg(r)
Q∈Pint(Π)

(̂Q(y) < P (x)),

• PosAg ̂g(r) < P (x) is the formula
∧

δ∈PosAgg(r)

(OP〈v : ∃w(Bd(δ) ∧ P ̂s(δ) < P (x))〉 * t),

in which P ̂s(δ) < P (x) is a shorthand of
∧

1≤i≤s
Qi∈Pint(Π)

(Qi
̂(yi) < P (x)).

Finally, the ordered completion of Π, denoted by OC(Π), is the formula

MComp(Π) ∧ Trans(Π).

Let us take a closer look at Definition 7. First of all, for non-aggregate atoms
in Body(r), we treat them the same way as in the original definition of ordered
completion [2]. That is, for each positive non-aggregate atom in Pos(r), we in-
troduce the comparison atoms via the formula Po ̂s(r) < P (x). However, this is
not done for negative non-aggregate atoms.

For aggregate atoms occurring in Body(r), similar to non-aggregate atoms,
we also distinguish between the negative and positive occurrences. For negative
occurrences, we also do not introduce the comparison atoms into these aggregates.
However, for positive occurrences, we need to introduce the comparison assertions
via PosAg ̂g(r) < P (x), where PosAg ̂g(r) < P (x) denotes the formula:

∧

δ∈PosAgg(r)

(OP〈v : ∃w(Bd(δ) ∧ P ̂s(δ) < P (x))〉 * t),

which simply introduces the comparison atoms into the positive body Ps(δ) of
each aggregate atom inPosAgg(r), i.e., via the formulas of the formP ̂s(δ) < P (x).
The reason that we introduce the comparison atoms for these positive aggregates
is that we need to keep track of the derivation order as implied by the stable model
semantics.

16

Example 8. (Example 5 continued) The ordered completion of Π1, denoted by
OC(Π1), is the conjunction of Trans(Π1) and the following sentences:

∀x(R1(x) → P (x)), (10)
∀x∀y(P (y) ∧ R2(y, x) → P (x)), (11)
∀x(SUM〈y : P (y) ∧R3(x, y)〉 > 3 → P (x)), (12)

∀x(P (x) → (R1(x) ∨ ∃y(P (y) ∧R2(y, x) ∧ ̂P (y) < P (x))∨
(SUM〈y : P (y) ∧R3(x, y)〉 > 3∧

SUM〈y : P (y) ∧R3(x, y) ∧ ̂P (y) < P (x)〉 > 3))). (13)
Now consider again the aggregate context AC1 in Example 2 and the structures
M1,M2,M3 in Example 6.

• M1 is not a model of (12). So it cannot be expanded to a model ofOC(Π1).

• BothM2 andM3 are models of (10)-(12).

• LetM′
2 be a structure expanded fromM2 by the additional interpretation

for ≤PP :
≤M′

2
PP = {bc, bd, cd}.

It can be verified that
M′

2 |= Trans(Π1),

M′
2 |= R1(x)[x/b],

M′
2 |= P (y) ∧ R2(y, x) ∧ ̂P (y) < P (x)[xy/bc],

M′
2 |= SUM〈y : P (y) ∧R3(x, y)〉 > 3∧

SUM〈y : P (y) ∧R3(x, y) ∧ ̂P (y) < P (x)〉 > 3[x/d].

So,M′
2 is a model of OC(Π1).

• LetM′
3 be a model of Trans(Π1) expanded fromM3. Now we show that

M′
3 is not a model of OC(Π1). Indeed, since we have

M′
3 $|= ̂P (y) < P (x)[xy/aa],

we also have
M′

3 $|= P (y) ∧R2(y, x) ∧ ̂P (y) < P (x)[xy/aa],

M′
3 $|= SUM〈y : P (y) ∧R3(x, y) ∧ ̂P (y) < P (x)〉 > 3[x/a].

Therefore,M′
3 is not a model of (13).

17

!

In general, we have the following theorem.

Theorem 1 (main theorem). Let AC be a convex aggregate context, Π a pro-
gram and A a finite structure of τ(Π). Then, A is a stable model of Π on AC if
and only if A can be expanded to a model of OC(Π).

3.2. The Proof of Theorem 1
To prove Theorem 1, we need to use the notion of externally supported set [6].

Roughly speaking, a set of ground atoms is externally supported if there exists
a ground atom in the set and an associated rule that supports the atom (i.e., the
atom is the head of the ground rule) and whose positive body could be satisfied
by external ground atoms (i.e., ground atoms not in this set). Then, we provide a
lemma showing that a structure is a stable model of a program if and only if it is a
model of the program and every subset of ground atoms included in this structure
is externally supported. Then based on this lemma, we finally give the proof of
the main theorem.

LetΠ be a program andA a structure of signature σ such that τ(Π) ⊆ σ. Then
a ground atom is an expression of the form P (a), where P is a predicate and a is
a tuple of domain elements matching the arity of P . By [Pint(Π)]A, we denote the
set of ground atoms {P (a) | a ∈ PA, P ∈ Pint(Π)}.

Definition 8 (Externally supported set). Let AC be an aggregate context, Π a
program, and A a structure of σ such that τ(Π) ⊆ σ. A set of ground atoms
S ⊆ [Pint(Π)]A is externally supported (under AC, Π, and A) if there exists a
ground atom P (a) ∈ S and a rule r of the form P (x) ← Body(r) with local
variables yr, such that for some assignment of the form xyr/abr,

• A |= Body(r)[xyr/abr];

• (Pos(r) \ PosAgg(r))[xyr/abr] ∩ S = ∅;

• For all aggregate atoms δ ∈ PosAgg(r) of the form (1),

OPAC({{fA(cv) | A |= Bd(δ)[α], P s(δ)[α]∩ S = ∅}}) * fA(t[xyr/abr]),

where α is the assignment of the form xyrwv/abrcwcv, and cw and cv are
tuples of domain elements.

18

Lemma 1. 6 Let AC be an aggregate context, Π a program, and A a structure
of τ(Π). Then, A is a stable model of Π if and only if A |= Π̂ and every S ⊆
[Pint(Π)]A is externally supported.

Proof: Suppose that Pint(Π) = {P1, . . . , Pn}. Let U = {U1, . . . , Un} be a set of
new predicates such that for each 1 ≤ i ≤ n, Ui has the same arity of Pi.

(⇒) Since A |= SM(Π), we have A |= Π̂. It suffices to show that every
set S ⊆ [Pint(Π)]A is externally supported. We prove this by contradiction. As-
sume that there exists a set S ⊆ [Pint(Π)]A that is not externally supported. We
construct a structure U of τ(Π) ∪U as follows:

• Dom(U) = Dom(A) and fU and fA are identical;

• cU = cA for each constant c ∈ τ(Π);

• P U = PA for each predicate P ∈ τ(Π);

• UU
i = PA

i \ {a | Pi(a) ∈ S} for 1 ≤ i ≤ n.

Clearly, U |= U < Pint(Π). Since A |= SM(Π), there exists a rule r of the
form (4) and an assignment xyr/abr such that U $|= r∗[xyr/abr]. Then, we
have U |= Body(r)∗[xyr/abr] and U $|= Head(r)∗[xyr/abr]. It follows A |=
Body(r)[xyr/abr] and A |= Head(r)[xyr/abr]. So, Head(r)[xyr/abr] ∈ S.

As we assume that S is not externally supported, by Definition 8, we have

(1) either there exists an atom β ∈ Pos(r)\PosAgg(r) such that β[xyr/abr] ∈
S,

(2) or there exists an aggregate atom δ of the form (1) such that

OPAC({{fA(cv) | A |= Bd(δ)[xyrwv/abrcwcv],

P s(δ)[xyrwv/abrcwcv] ∩ S = ∅,
cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}) * fA(t[xyr/abr])

(14)

does not hold.

6Note that this lemma holds without the assumption of convex aggregate contexts.

19

In both cases, we will show that U $|= Body(r)∗[xyr/abr], which is a contradic-
tion.

(1) We already have β[xyr/abr] ∈ S, so U $|= β∗[xyr/abr]. It follows U $|=
Body(r)∗[xyr/abr].

(2) By the construction of U , for every cw ∈ Dom(A)|w| and cv ∈ Dom(A)|v|,

U |= Bd(δ)∗[xyrwv/abrcwcv]

if and only if

A |= Bd(δ)[xyrwv/abrcwcv] and Ps(δ)[xyrwv/abrcwcv] ∩ S = ∅.

Therefore,

{{fU(cv) | U |= Bd(δ)∗[xyrwv/abrcwcv], cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}
={{fA(cv) | A |= Bd(δ)[xyrwv/abrcwcv], P s(δ)[xyrwv/abrcwcv] ∩ S = ∅,

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}.

By (14), we have that

OPAC({{fU(cv) | U |= Bd(δ)∗[xyrwv/abrcwcv],

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}) * fU(t[xyr/abr]) (15)

does not hold. Therefore,

U $|= (OP〈v : ∃wBd(δ)∗〉 * t)[xyr/abr],

and U $|= Body(r)∗[xyr/abr].

(⇐) Since A |= Π̂, it suffices to show that

A |= ¬∃U(U < Pint(Π) ∧
∧

r∈Π\Π⊥

r∗).

Again, we prove this by contradiction. Otherwise, let U be a structure of τ(Π)∪U
such that U is an expansion of A and

U |= U < Pint(Π) ∧
∧

r∈Π\Π⊥

r∗. (16)

Let S = {P (a) | a ∈ PA
i \ UU

i , Pi ∈ Pint(Π)}. By (16), S is not empty. Since
S is externally supported, there exist a rule r of the form (4) and an assignment
xyr/abr such that

20

• Head(r)[xyr/abr] ∈ S and A |= Body(r)[xyr/abr];

• (Pos(r) \ PosAgg(r))[xyr/abr] ∩ S = ∅;

• For all aggregate atoms δ ∈ PosAgg(r) of the form (1),

OPAC({{fA(cv) | A |= Bd(δ)[xyrwv/abrcwcv], P s(δ)[xyrwv/abrcwcv] ∩ S = ∅,
cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}) * fA(t[xyr/abr]).

(17)

By the construction of U , we have U |= Body(r)∗[xyr/abr] since

• for negative atoms, U |= ¬γj[xyr/abr], (1 ≤ j ≤ m);

• for positive non-aggregate atoms β ∈ Pos(r)\PosAgg(r),U |= β∗[xyr/abr];

• for positive aggregate atoms δ ∈ PosAgg(r),

OPAC({{fU(cv) | U |= Bd(δ)[xyrwv/abrcwcv],

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}) * fU(t[xyrwv/abrcwcv])

and

OPAC({{fU(cv) | U |= Bd(δ)∗[xyrwv/abrcwcv],

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}) * fU(t[xyr/abr]).

We also have that U $|= Head(r)∗[xyr/abr]. This is a contradiction since U |=
r∗[xyr/abr] by (16). This completes our proof. !

Now, we are ready to prove our main theorem.
Proof: (⇒) By Lemma 1, for every set S ⊆ [Pint(Π)]A, S is externally supported.
We first define a level mapping, denoted by lm, from the set of ground atoms
[Pint(Π)]A to the numbers. Consider the following procedure:

(I) Let i = 0, and T = [Pint(Π)]A be the set of atoms whose levels are still
undefined.

(II) If T = ∅, then quit. Otherwise, T is externally supported, so there exist a
ground atom P (a) ∈ T and a rule r of the form P (x) ← Body(r) with
local variables yr, such that for some assignment of the form xyr/abr,

21

– A |= Body(r)[xyr/abr];
– (Pos(r) \ PosAgg(r))[xyr/abr] ∩ S = ∅;
– For all aggregate atoms δ ∈ PosAgg(r) of the form (1),

OPAC({{fA(cv)|A |= Bd(δ)[α], P s(δ)[α]∩T = ∅}}) * fA(t[xyr/abr]),

where α is the assignment of the form xyrwv/abrcwcv, and cw and
cv are tuples of domain elements.

(III) Let lm(P (a)) = i, i = i + 1, and T = T \ {P (a)}.

(IV) Go back to (II).

S is finite, so the procedure defined above always terminates when T = ∅. Based
on this ranking, we expand A to A′ of the signature τ(Π) ∪ σ≤ such that

≤A′

PQ= {ab | lm(P (a)) ≤ lm(Q(b))},

where P, Q ∈ Pint(Π). Now it remains to show that A′ |= OC(Π). By the
definition of A′, we have A′ |= Π̂ ∧ Trans(Π). It suffices to show that for
every P (a) ∈ [Pint(Π)]A, there exist a rule r of the form P (x) ← Body(r)
with local variables yr and an assignment of the form xyr/abr such that P (a) =
Head(r)[xyr/abr], and

A′ |= P (x) →
(
Body(r) ∧ Po ̂s(r) < P (x) ∧ PosAg ̂g(r) < P (x)

)
[xyr/abr].

Actually, the rule r and the assignment xyr/abr in (II) in the procedure are ex-
actly what we need.

(⇐) Since A′ |= OC(Π), then A′ |= Π̂. Therefore, the reduct of A′ on
τ(Π) is a model of Π̂ since Π̂ mentions no comparison predicates. It remains to
show that for all S ⊆ [Pint(Π)]A

′ , S is externally supported. Otherwise, there
exists S ⊆ [Pint(Π)]A

′ that is not externally supported. In the following, we will
construct an infinite sequence of ground atoms:

P1(a1), . . . , Pi(ai), . . .

such that

(i) Pi(ai) ∈ S, i ≥ 1;

22

(ii) A′ |=≤Pi+1Pi (ai+1ai) ∧ ¬ ≤PiPi+1 (aiai+1), i ≥ 1;

(iii) Pi(ai) $= Pj(aj), i $= j.

This is a contradiction since S is finite. By A′ |= Trans(Π), we only need to
consider (i) and (ii), since (iii) is a consequence of (ii). We construct the sequence
by induction. Assume that P1(a1) is a ground atom in S. If we already have
P1(a1), . . . , Pi(ai), we will find Pi+1(ai+1) as follows. Since A′ |= Pi(ai) and A′

is a model of OC(Π), there exists a rule Pi(x) ← Body(r) with local variables
yr and an assignment xyr/aibr such that

A′ |= Body(r) ∧ Po ̂s(r) < P (x) ∧ PosAg ̂g(r) < P (x)[xyr/aibr]. (18)

By assumption, S is not externally supported. Consider the rule r and the assign-
ment xyr/aibr,

• either there is an atom β ∈ Pos(r)\PosAgg(r) such that β[xyr/aibr] ∈ S,

• or there is an aggregate atom δ of the form (1) such that

OPAC(M1) * fA(t[xyr/aibr]) does not holds, (19)

where

M1 = {{fA(cv) | A |= Bd(δ)[xyrwv/aibrcwcv],

P s(δ)[xyrwv/aibrcwcv] ∩ S = ∅,
cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}. (20)

For the first case, let Pi+1(ai+1) = β[xyr/aibr]. Then, (i) holds trivially, and (ii)
holds by (18). For the second case, letM2 andM3 be the multisets such that

M2 = {{fA(cv) | A |= Bd(δ)[xyrwv/aibrcwcv]

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}, (21)

M3 = {{fA(cv) | A |= Bd(δ) ∧ P ̂s(δ) < P (x)[xyrwv/aibrcwcv],

cw ∈ Dom(A)|w|, cv ∈ Dom(A)|v|}}. (22)

By (18), we have

OPAC(M2) * fA(t[xyr/aibr]) (23)
OPAC(M3) * fA(t[xyr/aibr]) (24)

23

By (20),(21) and (22), we haveM1 ⊆ M2 andM3 ⊆ M2. SinceAC is a convex ag-
gregate context, we haveM3 $⊆ M1 by (19), (23) and (24). So, there exists an atom
Q(x′) ∈ Ps(δ) such that Q(x′)[xyrwv/aibrcwcv] ∈ S and A′ |=≤QP (x′x) ∧
¬ ≤PQ (xx′)[xyrwv/aibrcwcv]. Let Pi+1(xi+1) = Q(x′)[xyrwv/aibrcwcv]. It
can be verified that both (i) and (ii) hold.

This completes the proof. !

3.3. A Negative Result on Non-Convex Aggregates
Theorem 1 shows that the stable models of a normal program with convex

aggregates can be captured by its ordered completion. However, this result does
not hold for non-convex aggregates. Consider the following example.

Example 9. Let Π2 be the following program with a single rule:

r1 : P (x) ← SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z, R2(x, z).

Here, P is the only intensional predicate and R1, R2 are extensional predicates.
Now letM be a structure on τ(Π2) such that

Dom(M) = {a, b, c},
fM(a) = 2, fM(b) = 3, fM(c) = 4,

RM
1 = {aab, abb, aac, abc, baa, bba, caa, cca},

RM
2 = {ab, ac, ba, ca},

PM = {a, b}.

In addition, letM′ be a τ(Π2)≤-structure expanded fromM such that

≤PP = {ba}.

We now show that, under the non-convex aggregate context AC2 in Example 2,
M′ is a model of OC(Π2) butM is not a stable model of Π2.

On the one side, OC(Π2) is the conjunction of Trans(Π2) and the following
sentences:

∀x∀z(R2(x, z) ∧ SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z → P (x)), (25)
∀x(P (x) → ∃z(R2(x, z) ∧ SUM〈y : P (y) ∧R1(x, y, z)〉 $= z

∧ SUM〈y : P (y) ∧ R1(x, y, z) ∧ ̂P (y) < P (x)〉 $= z)) (26)

24

It is obvious thatM′ |= Trans(Π2). To showM′ is a model of (25), it suffices
to verify that

M′ |= SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z[xz/ab],

M′ |= SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z[xz/ac],

M′ |= SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z[xz/ba],

M′ |= SUM〈y : P (y) ∧ R1(x, y, z)〉 $= z[xz/ca].

To showM′ is a model of (26), it suffices to verify that

M′ |= SUM〈y : P (y) ∧R1(x, y, z)〉 $= z

∧ SUM〈y : P (y) ∧ R1(x, y, z) ∧ ̂P (y) < P (x)〉 $= z[xz/ba],

M′ |= SUM〈y : P (y) ∧R1(x, y, z)〉 $= z

∧ SUM〈y : P (y) ∧ R1(x, y, z) ∧ ̂P (y) < P (x)〉 $= z[xz/ac].

On the other side, to show that M is not a stable of Π2, it suffices to show
that M is not a model of (8). Indeed, let U ′ = {a} ⊂ PM. Then we have
M |= U < P [U/U ′] andM |= r∗1[U/U ′]. Hence,M $|= ¬∃U(U < P ∧ r∗1). !

In fact, convex aggregate is a maximal subclass for this task. That is, for any
given non-convex aggregate context, we can always construct a normal program
with these aggregates such that it can never be captured in first-order logic with the
same type of aggregates, providing some general assumptions in the complexity
theory. Actually, we can prove a stronger result that normal programs under any
given non-convex aggregate context are able to capture the full expressive power
of disjunctive programs (without aggregates).

First of all, we introduce some background. A disjunctive program with ag-
gregates (or disjunctive program) is a finite set of disjunctive rules of the form

α1; . . . ;αk ← β1, . . . , βl, not γ1, . . . , not γm, (27)

where αi, (1 ≤ i ≤ k) are standard atoms, βi, (1 ≤ i ≤ l), and γj , (1 ≤ j ≤ m)
are atoms. The stable models of a disjunctive program are defined as the models
of SM(Π), where SM(Π) is the same as (8) except that for a disjunctive rule r of
the form (27), r∗ is the universal closure of the formula

Body(r)∗ →
∨

1≤i≤k

α∗
i . (28)

25

Our negative result is inspired by Ferraris’ work [16]. In order to obtain the
complexity results for propositional normal programs with arbitrary aggregate
atom, Ferraris proved the following two facts:

(Fact 1) Every propositional disjunctive rule of the form

a1; . . . ; ak ← b1, . . . , bl, not c1, . . . , not cm

can be equivalently transformed into a set of rules with implications in the bodies
as follows

a1 ← (a1 → a1), . . . , (ak → a1), b1, . . . , bl, not c1, . . . , not cm

a2 ← (a1 → a2), . . . , (ak → a2), b1, . . . , bl, not c1, . . . , not cm

...
ak ← (a1 → ak), . . . , (ak → ak), b1, . . . , bl, not c1, . . . , not cm (29)

(Fact 2) An implication p → q is strongly equivalent to the following aggregate
atom

sum〈p = −1, q = 1〉 ≥ 0, (30)
where two expressions are said to be strongly equivalent in Answer Set Program-
ming if replacing one by another in any logic program does not change the answer
sets.

Therefore, any propositional disjunctive program without aggregate atom can
be equivalently transformed into a propositional normal program with aggregates
similar to (30). As a consequence, the complexity of checking the existence of
answer sets of propositional normal program with arbitrary aggregate atom is
ΣP

2 -complete, which is higher than that of normal program with monotone and
antimonotone aggregate atom (NP -complete).

We extend Ferraris’ result in an essential way in the sense that the above pro-
cedure can be applied for every non-convex aggregate context. That is, given any
non-convex aggregate context, we can use it to simulate implications, thus to sim-
ulate disjunctive rules. The full proof of this result in the first-order case is rather
technical and tedious. We provide a sketch of the proof here, and leave the very
long detailed full proof in Appendix A.

Lemma 2. Let AC be a polynomial and non-convex aggregate context. Then, on
finite structures, every disjunctive program ΓD without aggregates can be polyno-
mially translated into a normal program ΓN with some aggregates fromAC.

26

Proof (Sketch) First, sinceAC is a non-convex aggregate context, there exist three
multisets M1, M2, M3 such that OP(M1) * N and OP(M3) * N hold while
OP(M1) * N does not hold, where OP ∈ ACag is an aggregate symbol,*∈ ACop

is a comparison operator, and N ∈ ACnum is a number. Let

• M1 = {{m1, . . . ,mN1}};

• M2 \ M1 = {{mN1+1, . . . ,mN2}};

• M3 \ M2 = {{mN2+1, . . . ,mN3}},

where N1, N2, N3 are the sizes of M1, M2, M3 respectively, and 0 ≤ N1 < N2 <
N3.

Then, we introduce some new predicates and constants to build the program
ΓN . Let QD1, . . . QDN3 be N3 new predicates. The program ΓN contains some
rules and constraints such that ifM is a stable model of ΓN , thenM |= QDi(di),
if and only if fM(dM

i) = mi, where di, (1 ≤ i ≤ N3) is a tuple of new con-
stants. In addition, let QM1, QM2, QM3 be three new predicates. With the help
of QD1, . . . QDN3 , the program ΓN is built such that if M is a stable model of
ΓN , then

M |= OP〈x : QM1(x)〉 * cn

M $|= OP〈x : QM2(x)〉 * cn

M |= OP〈x : QM3(x)〉 * cn,

where cn is a new constant forN . Note that suchM does not exist if the aggregate
context is convex.

Furthermore, for every rule r of the form (27) and two atoms Pi(vi), Pj(vj),
(1 ≤ i, j ≤ k) in Head(r), a new predicate Qr,i,j is introduced. With some
carefully defined rules and constraints in ΓN and the new predicates introduced
above, the aggregate OP〈x : Qr,i,j(x,vi,vj)〉 * cn behaves exactly the same as
the implication Pj(vi) → Pi(vi). This is similar to the (Fact 2) in Ferraris’ work
[16].

Now, we present the main idea of the translation. The normal program with
aggregates ΓN has three parts of the rules:

ΓN = AGG ∪ DEF ∪ CST,

where AGG is a set of normal rules with aggregates which could simulate the
disjunctive rules, and DEF and CST are sets of rules to define the new predicates.

27

Let r ∈ ΓD \ ΓD
⊥ be a rule of the form (27). Then, r is translated into k rules

in ΓN of the form:

αi ←β1, . . . , βl, not γ1, . . . , not γm,

OP〈x : Qr,i,1(x,vi,v1)〉 * cn,

. . . ,

OP〈x : Qr,i,k(x,vi,vk)〉 * cn,

NotLitsNew(V ar(r)), (31)

where:

• 1 ≤ i ≤ k, and k is the number of atoms in the head of r,

• P1(v1), . . . , Pk(vk) are atoms in the head of r,

• x is a tuple of distinct new variables,

• NotLitsNew(V ar(r)) denotes the set of negative atoms of the form not x =
c, where x is a variable in r and c is a new constant not in τ(ΓD).

Intuitively, the rules defined above play the same roles in first-order case as those
rules (29) do in the propositional case. This is similar to (Fact 1) in Ferraris’ work
[16].

Finally, we show that a structureMD on τ(ΓD) is a stable model of ΓD if and
only if there is a structureMN on τ(ΓN) such thatMN is a stable model of ΓN ,
where MD and MN agree on all interpretations of predicates and constants in
τ(ΓD) . !

Our negative result follows from Lemma 2 since disjunctive programs without
aggregates can capture the complexity class ΣP

2 [9] but first-order logic with new
predicates can only capture the complexity class NP [15].

Theorem 2. Let AC be a polynomial and non-convex aggregate context. Then,
there exists a normal program with aggregatesΠ such that it cannot be translated
into any first-order sentences (with extra predicates) on finite structures with the
aggregate context AC unless NP = coNP .

Proof: By Lemma 2, the following program Π3-UNCOLOR
D (a disjunctive program

without aggregates) for 3-uncolorability can be translated into a normal program

28

with aggregates Π3-UNCOLOR
N :

R(x); G(x); B(x) ←,

NC ← E(x, y), R(x), R(y),

NC ← E(x, y), G(x), G(y),

NC ← E(x, y), B(x), B(y),

R(x) ← NC,

G(x) ← NC,

B(x) ← NC,

NC ← notNC.

Assume thatNP $= coNP . As 3-uncolorability is a coNP -complete problem,
by Fagin’s theorem [15], it cannot be captured in existential second-order logic on
finite structures. Note that adding polynomial aggregate atoms into first-order
logic (existential second-order logic) does not increase the expressive power in
finite model theory. So 3-uncolorability cannot be captured in existential second-
order logic with polynomial aggregates either. Hence, it cannot be translated into
any first-order sentences (with extra predicates) on finite structures with the poly-
nomial aggregate contextAC. !

4. Implementation and Experimental Results

Based on Theorem 1, we have implemented a new system, called GROCv2
(GRounder on Ordered Completion Version 2), for computing answer sets of first-
order normal logic programs with convex aggregates. This work is an extension of
the prototype implementation GROC [2], which can only handle normal programs
without aggregates.

Following the basic ideas of GROC, GROCv2 computes the answer sets of a
normal program with convex aggregates together with an extensional database as
follows.

1. First, GROCv2 translates the program into its enhanced ordered completion
(see Definition 7).

2. Then, GROCv2 grounds the ordered completion into propositional theories
(with modular theories for dealing with comparison predicates) based on
the extensional database.

29

3. Finally, GROCv2 calls an SMT solver to compute a classical model of the
propositional theories, which is corresponding to an answer set of the orig-
inal program with the extensional database according to Theorem 1.

Note that this is significantly different from traditional ASP solvers that ground
the logic programs directly into propositional programs. There are several poten-
tial benefits. First of all, the classical first-order semantics is much simpler than
the stable model semantics. Therefore, more solving techniques, e.g. heuristic
methods and simplification techniques, can be applied. Secondly, the results of
grounding in GROCv2 are propositional theories, which can normally be solved
more easily than propositional programs. Thirdly, Step 1 is a polynomial transla-
tion and it can be done offline. Moreover, some traditional techniques might be
used here to simplify the first-order formula. Finally, Step 3 calls an SMT solver,
which is used as a black box. Hence, it can be improved by new advances in the
SAT/SMT community.

The main disadvantage of GROCv2 is that a number of new predicates (namely
the comparison predicates) are introduced, which would potentially result in a
bigger grounding theory. In principle, this is certainly the case. That is, ordered
completion needs to introduce n2 number of new predicates, where n is the num-
ber of intensional predicates in the program. However, in practice, the actual cost
is not that much for many benchmark problems. One reason is that we only need
to introduce the comparison predicates for those predicates in the same strongly
connected component in the predicate dependency graph. This will significantly
reduce the number of new predicates introduced. For instance, for the traveling
salesman problem, we only need to introduce 1 (instead of 9) comparison predi-
cate.

Also, note that we use SMT solvers in Step 3 instead of SAT solvers in GROCv2.
The only reason is that SMT solvers are more efficient for dealing with compari-
son atoms and aggregates. In principle, one can use a SAT solver instead.

The key part of GROCv2 is Step 2 - the grounder that transforms the or-
dered completion together with an extensional database into propositional the-
ories (with modular theories and aggregates). For this purpose, we first introduce
some background about propositional SMT (Satisfiability Modulo Theories) with
aggregates. In general, propositional SMT formulas are classical propositional
formulas enhanced with a modular theory to express some components that can-
not be easily handled in propositional logic, for instance 3x + y ≤ 10. However,
for dealing with comparison atoms mentioned in this paper, we only need a simple
modular theory to compare the values of two numbers mapped from propositional

30

atoms.

Definition 9. LetD be a set of propositional atoms, A propositional SMT formula
with aggregates (or SMT formula for short) on D is defined as

φ ::= 8 | α | (α1,α2)< | OP〈c1 : φ1, · · · , ck : φk〉 * c |
φ1 ∧ φ2 | ¬φ1, (32)

where α,α1,α2 ∈ D, OP ∈ AG is an aggregate symbol, *∈ CO is a comparison
symbol, c1, . . . , ck ∈ Z are integer constants, and φ1, . . . ,φk are SMT formulas.

The semantics of SMT formulas is similar to that of propositional formulas.
Let I ⊆ D be a set of propositional atoms, and F a function from D to Z. Given
an aggregate context AC, the satisfaction relation between a pair (I, F) and an
SMT formula φ, denoted by (I, F) |=AC φ (or simply (I, F) |= φ if AC is clear
from the context), is defined as:

• (I, F) |=AC 8;

• (I, F) |=AC α, if α is an atom and α ∈ I;

• (I, F) |=AC (α1,α2)<, if F (α1) < F (α2);

• (I, F) |=AC OP〈c1 : φ1, . . . , ck : φk〉 * c, if OP ∈ ACag, *∈ ACco,M is in
the domain of OPAC and OPAC(M) * c, where

M = {{ci | (I, F) |=AC φi, (1 ≤ i ≤ k}});

• (I, F) |=AC φ1 ∧ φ2, if (I, F) |=AC φ1 and (I, F) |=AC φ2;

• (I, F) |=AC ¬φ1, if it is not the case that (I, F) |=AC φ1.

A set of propositional atoms I ⊆ D is a model of φ if there exists a function F
from D to Z such that (I, F) |= φ.

Now, we are able to ground a first-order formula with aggregates into SMT
formulas defined above under a given domain. Let σ and σ ′ be two signatures
such that they contain the same constants and the set of predicates in σ ′ is a subset
of that in σ. Let A be a structure on σ′. By DA, we denote the set

DA = {P (a) | P ∈ Pint, a ∈ Dom(A)n, where n is the arity of P}.

Let Φ be a first-order formula with aggregates on σ≤, and y/a an assignment
such that free(Φ) ⊆ y. The grounding of Φ on x/a with respect to A, denoted
by GRA(Φ,y/a), is an SMT formula defined recursively as follows:

31

• 8, if Φ = α is either an equality atom or a standard atom of the form P (t)
such that P is a predicate in σ′, and A |= α[y/a];

• ¬8, if Φ = α is either an equality atom or a standard atom of the form P (t)
such that P is a predicate in σ′, and A $|= α[y/a];

• P (t)[y/a], if Φ = P (t) is a standard atom such that P is a predicate in σ
but not in σ′;

• (P (t1)[y/a], Q(t2)[y/a])<, if Φ =≤PQ (t1t2) such that ≤PQ is a compari-
son predicate in σ≤;

• OP〈M∗〉 * fA(t[y/a]), ifΦ = δ is an aggregate atom of the form (1), where

M∗ = {{(fA(c) : GRA(∃wBd(δ),yv/ac)) | c ∈ M ′, fA(c) is defined}},

and

M ′ = {c | A |= Bd(δ)[ywv/abc],b ∈ Dom(A)|w|, c ∈ Dom(A)|v|}
(33)

• ¬GRA(Φ1,y/a), if Φ is of the form ¬Φ1;

• GRA(Φ1,y/a) ∨ GRA(Φ2,y/a), if Φ is of the form Φ1 ∨ Φ2;

• GRA(
∧

a∈Dom(A) Φ1[y/a],y/a), if Φ is of the form ∀yΦ1.

If Φ is a formula without free variables, then the grounding of Φ with respect to
A is simply written as GRA(Φ).

The following theorem shows that we can compute the models of ordered
completions by grounding.

Theorem 3. Let Π be a program, and Ae a finite structure on τext(Π). Let A be
a structure on τ(Π)≤, which is an expansion of Ae and A |= Trans(Π). Then,
A |= OC(Π) iff IA |= GRAe(OC(Π)), where

IA = {P (a) | P ∈ Pint(Π), a ∈ PA}.

Proof: Let P (a),Q(b), andR(c) be three elements in IA. SinceA |= Trans(Π),
we have A |=≤PQ (xy)∧ ≤QR (yz) →≤PR (xz)[xyz/abc].

Therefore, there exists a function FA from IA to Z such that:

32

• FA(P (a)) $= FA(Q(b)) if P (a) and Q(b) are different;

• FA(P (a)) < FA(Q(b)) if and only if A |=≤PQ (xy)[xy/ab].

It suffices to prove the following result.

Let Φ be a formula on τ(Π)≤, and y/a an assignment such that
free(Φ) ⊆ y. Then,A |= Φ[y/a] if and only if (IA, FA) |= GRAe(Φ,y/a).

We prove this by induction on the structure of Φ.

• It is straightforward that A |= 8 if and only if (IA, FA) |= GRAe(8),
and A |= P (t)[y/a] if and only if (IA, FA) |= GRAe(P (t),y/a), where
P ∈ τext(Π).

• For intensional predicate P ∈ τint(Π), we also have A |= P (t)[y/a] if and
only if IA |= GRAe(P (t),y/a) by noticing that P (a) ∈ IA if and only if
a ∈ PA for every tuple a that matches the arity of P .

• For a comparison atom≤PQ (t1t2),A |=≤PQ (t1t2)[y/a], where free(t1t2) ⊆
y, if and only if

FA(P (t1)[y/a]) < FA(Q(t2)[y/a])

if and only if

(IA, FA) |= (P (t1)[y/a], Q(t2)[y/a])<

if and only if
(IA, FA) |= GRAe(Φ).

• If Φ = δ is an aggregate atom of the form (1) such that free(Φ) ⊆ y,
we will show that A |= δ[y/a] if and only if (IA, FA) |= GRAe(δ,y/a).
Consider the following set and multiset:

M ′ = {c | A |= Bd(δ)[ywv/abc],b ∈ Dom(A)|w|, c ∈ Dom(A)|v|},
(34)

M∗ = {{(fA(c) : GRA(∃wBd(δ),yv/ac)) | c ∈ M ′, fA(c) is defined}},
(35)

M1 = {{fA(c) | c ∈ M ′, fA(c) is defined}} (36)
M2 = {{c | (c,φ) ∈ M∗, (I, F) |=AC φ}} (37)

33

We haveM1 = M2 by noticing that

A |= Bd(δ)[ywv/abc],

if and only if
A |= ∃wBd(δ)[yv/ac],

if and only if
(IA, FA) |= GRA(∃wBd(δ),yv/ac).

Hence, A |= δ[y/a] if and only if (IA, FA) |= GRAe(δ,y/a).

• If Φ is of the form ¬Φ1, Φ1 ∧ Φ2 and ∀xΦ1, it is also straightforward to see
that A |= Φ[y/a] if and only if (IA, FA) |= GRAe(Φ,y/a).

!

Based on Theorem 3, we have implemented a new solver GROCv2. Now
we report some experimental results. We use Z3 (version 4.3.2)7 in GROCv2
as the underlying SMT solver. We compare our approach GROCv2 + Z3 with
three state-of-the-art ASP solvers, namely DLV (version 4.2.1),8 CLASP (version
3.0.0),9 and CMODELS (version 3.85),10. We use GRINGO (version 3.0.5)11 as
the grounder for the solvers CLASP and CMODELS. The reason why we choose
CLASP, DLV, and CMODELS here is because the first two are representative ASP
solvers based on conflict analysis, while the last is a representative solver based
on loop formulas.

We are mainly interested in non-tight programs as for tight programs, ordered
completion is just Clark’s completion. In this paper, we consider three benchmark
programs, the bounded-traveling salesman problem, the Nurikabe puzzle, and the
weight-bounded dominating set problem.

Tables 1 and 2 report our results for the bounded traveling salesman program.
Here, Table 1 contains the results for our randomly generated instances while Ta-
ble 2 contains the results taken from the ASPARAGUS benchmark suite.12 For

7 http://z3.codeplex.com/
8 http://www.dlvsystem.com/
9 http://potassco.sourceforge.net/
10 http://www.cs.utexas.edu/users/tag/cmodels.html
11 http://potassco.sourceforge.net/
12 http://asparagus.cs.uni-potsdam.de/instanceclass/show/id/34

34

randomly generated instances, “rand x y i” represents a random graph with x
number of nodes and y edges and of instance i. We set the timeouts to be 1000.00
sec, denoted by “—–” in the tables. Note that we also include the grounding time
for CLASP as well as CMODELS. For clarity, we pick up the best solver for
each instance, highlighted by bold fonts. From Tables 1 and 2, it can be observed
that GROCv2 + Z3 and GRINGO + CLASP outperform DLV and GRINGO +
CMODELS in most cases on the bounded traveling salesman program while the
previous two solvers are comparable. Interestingly, for randomly generated in-
stances, GROCv2 + Z3 seems to have an advantage over GRINGO + CLASP on
big problem instances.

Table 3 reports the experimental results on the Nurikabe puzzle. Here, we omit
the results of DLV as it seems not to return the correct answers. One can obtain
a similar conclusion on this program. That is, GROCv2 + Z3 and GRINGO +
CLASP are slightly better than GRINGO + CMODELS and the previous two are
comparable with each other. Again, for randomly generated instances, the bigger
the problem is, the better GROCv2 + Z3 performs in comparison with GRINGO
+ CLASP. Table 4 reports our experiments on the weight-bounded dominating set
program with the instances from the ASPARAGUS benchmark suites.13 On this
program, GRINGO + CLASP is the clear winner. In addition, GROCv2 + Z3
performs slightly worse than DLV as well, although it is comparable to GRINGO
+ CMODELS.

To sum up, our solver GROCv2 + Z3 is comparable to other state-of-the-art
ASP solvers in the literature. Since this is a first implementation so that many
simplified techniques, e.g., first-order simplification of ordered completion, are
not employed, we believe that ordered completion provides a new promising way
to implement answer set programming. We have done some experimental analy-
sis on other benchmark programs as well, including N-queens, bounded-spanning
tree and projected hamiltonian cycle. For more details about our solver and the
benchmark program instances, please see the following link http://staff.scm.uws.edu.au/˜yz
Unfortunately, the current version of GROCv2 does not support functions so that
it is not able to handle some benchmark programs. We leave it to our future in-
vestigations.

13http://asparagus.cs.uni-potsdam.de/instanceclass/show/id/33

35

Instances GROCv2 + Z3 CLASP DLV CMODELS
rand 50 300 1 109.23 (SAT) 9.95 (SAT) —– (?) —– (?)
rand 50 300 2 280.17 (SAT) —– (?) —– (?) —– (?)
rand 50 300 3 0.03 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT) 0.01 (UNSAT)
rand 50 300 4 12.81 (SAT) 125.42 (SAT) —– (?) —– (?)
rand 50 300 5 38.71 (SAT) 132.88 (SAT) —– (?) —– (?)
rand 50 300 6 96.23 (SAT) —– (?) —– (?) —— (?)
rand 50 300 7 0.03 (UNSAT) 0.01 (UNSAT) 0.05 (UNSAT) 0.01 (UNSAT)
rand 50 300 8 0.48 (SAT) 4.13 (SAT) 632.11 (SAT) 35.89 (SAT)
rand 50 300 9 89.49 (SAT) 315.93 (SAT) —– (?) —– (?)
rand 50 300 10 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)
rand 60 350 1 0.79 (SAT) 18.85 (SAT) —– (?) —– (?)
rand 60 350 2 32.35 (SAT) —– (?) —– (?) —– (?)
rand 60 350 3 109.61 (SAT) 140.03 (SAT) —– (?) —– (?)
rand 60 350 4 34.39 (SAT) 236.68 (SAT) —– (?) —– (?)
rand 60 350 5 0.88 (SAT) 76.91 (SAT) —– (?) —– (?)
rand 60 350 6 483.07 (SAT) 79.70 (SAT) —– (?) —– (?)
rand 60 350 7 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.05 (UNSAT)
rand 60 350 8 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.05 (UNSAT)
rand 60 350 9 8.01 (SAT) 101.7 (SAT) 119.68 (SAT) —– (?)
rand 60 350 10 —– (?) 105.70 (SAT) —– (?) —– (?)
rand 70 400 1 123.84 (SAT) —– (?) —– (?) —– (?)
rand 70 400 2 658.51 (SAT) 340.13 (SAT) —– (?) —– (?)
rand 70 400 3 113.39 (SAT) 9.57 (SAT) —– (?) —– (?)
rand 70 400 4 281.80 (SAT) —– (?) —– (?) —– (?)
rand 70 400 5 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.06 (UNSAT)
rand 70 400 6 43.30 (SAT) —– (?) —– (?) —– (?)
rand 70 400 7 17.02 (SAT) 361.151 (SAT) —– (?) —– (?)
rand 70 400 8 —– (?) —– (?) —– (?) —– (?)
rand 70 400 9 424.07 (SAT) —– (?) —– (?) —– (?)
rand 70 400 10 87.85 (SAT) —– (?) —– (?) —– (?)

Table 1: Bounded-Traveling Salesman (randomly generated).

36

Instances GROCv2 + Z3 CLASP DLV CMODELS
dom rand 70 300 x 3 533.23 (UNSAT) 690.24 (UNSAT) —– (?) —– (?)
rand 70 300 x 0 —– (?) —– (?) —– (?) —– (?)
rand 70 300 x 3 438.49 (UNSAT) 635.40 (UNSAT) —– (?) —– (?)
rand 70 300 x 4 0.03 (UNSAT) 0.02 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT)
rand 70 300 x 5 0.06 (SAT) 0.01 (SAT) 0.10 (SAT) 8.732 (SAT)
rand 70 300 x 7 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)
rand 70 300 x 8 0.03 (UNSAT) 0.01 (UNSAT) 0.02 (UNSAT) 0.05 (UNSAT)
rand 70 300 x 9 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.05 (UNSAT)
rand 70 300 x 11 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)
rand 70 300 x 12 0.02 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)
rand 70 300 x 14 0.04 (SAT) 0.02 (SAT) —– (?) 92.42 (SAT)
rand 80 340 y 0 0.03 (UNSAT) 0.02 (UNSAT) 0.02 (UNSAT) 0.05 (UNSAT)
rand 80 340 y 4 0.03 (UNSAT) 0.01 (UNSAT) 0.02 (UNSAT) 0.06 (UNSAT)
rand 80 340 y 10 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.06 (UNSAT)
rand 80 340 y 11 0.03 (UNSAT) 0.01 (UNSAT) 0.02 (UNSAT) 0.06 (UNSAT)
rand 80 340 y 13 —– (?) —– (?) —– (?) —– (?)
rand 80 340 y 15 0.03 (UNSAT) 0.01 (UNSAT) 0.02 (UNSAT) 0.06 (UNSAT)
rand 80 340 y 16 0.03 (UNSAT) 0.02 (UNSAT) 0.02 (UNSAT) 0.05 (UNSAT)
rand 80 340 y 17 0.03 (UNSAT) 0.02 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)
rand 80 340 y 18 0.03 (UNSAT) 0.01 (UNSAT) 0.01 (UNSAT) 0.04 (UNSAT)

Table 2: Bounded-Traveling Salesman (from ASPARAGUS website).

37

Instances GROCv2 + Z3 CLASP DLV CMODELS
puzzle 10 10 1 20.84 (UNSAT) 4.09 (UNSAT) N/A 60.62 (UNSAT)
puzzle 10 10 2 35.91 (SAT) 1.62 (SAT) N/A 12.14 (SAT)
puzzle 10 10 3 20.84 (SAT) 0.85 (SAT) N/A 4.62 (SAT)
puzzle 10 10 4 25.08 (SAT) 1.97 (SAT) N/A 11.46 (SAT)
puzzle 10 10 5 15.72 (SAT) 0.83 (SAT) N/A 8.40 (SAT)
puzzle 10 10 6 11.62 (SAT) 1.48 (SAT) N/A 35.40 (SAT)
puzzle 10 10 7 15.45 (SAT) 0.73 (SAT) N/A 4.33 (SAT)
puzzle 12 12 1 20.70 (SAT) 1.61 (SAT) N/A 17.33 (SAT)
puzzle 12 12 2 25.29 (SAT) 1.49 (SAT) N/A 24.81 (SAT)
puzzle 12 12 3 58.81 (SAT) 1.84 (SAT) N/A 3.85 (SAT)
puzzle 12 12 4 0.09 (UNSAT) 0.72 (UNSAT) N/A 0.28 (UNSAT)
rand 10 10 n5 1 90.22 (UNSAT) 287.25 (UNSAT) N/A 518.52 (UNSAT)
rand 10 10 n5 2 131.27 (UNSAT) 14.11 (UNSAT) N/A 72.91 (UNSAT)
rand 10 10 n5 3 54.74 (UNSAT) 104.72 (UNSAT) N/A 106.97 (UNSAT)
rand 10 10 n5 4 153.76 (UNSAT) 289.89 (UNSAT) N/A 881.90 (UNSAT)
rand 10 10 n5 5 18.83 (UNSAT) 52.21 (UNSAT) N/A 70.55 (UNSAT)
rand 10 10 n5 6 0.05 (UNSAT) 0.31 (UNSAT) N/A 0.11 (UNSAT)
rand 10 10 n5 7 135.01 (UNSAT) 277.87 (UNSAT) N/A 818.98 (UNSAT)
rand 10 10 n5 8 93.76 (UNSAT) 157.11 (UNSAT) N/A 517.34 (UNSAT)
rand 10 10 n5 9 255.49 (UNSAT) 385.82 (UNSAT) N/A —– (?)
rand 10 10 n5 10 124.18 (UNSAT) 226.53 (UNSAT) N/A 361.99 (UNSAT)
rand 10 10 n6 1 12.18 (UNSAT) 24.18 (UNSAT) N/A 69.37 (UNSAT)
rand 10 10 n6 2 154.63 (UNSAT) 99.38 (UNSAT) N/A 275.44 (UNSAT)
rand 10 10 n6 3 174.78 (UNSAT) 198.42 (UNSAT) N/A —– (?)
rand 10 10 n6 4 190.39 (UNSAT) 168.76 (UNSAT) N/A —– (?)
rand 10 10 n6 5 158.91 (UNSAT) 104.35 (UNSAT) N/A 457.56 (UNSAT)
rand 10 10 n6 6 314.21 (UNSAT) 739.65 (UNSAT) N/A —– (?)
rand 10 10 n6 7 607.40 (UNSAT) —– (?) N/A —– (?)
rand 10 10 n6 8 0.06 (UNSAT) 0.23 (UNSAT) N/A 0.12 (UNSAT)
rand 10 10 n6 9 395.40 (UNSAT) 541.80 (UNSAT) N/A —– (?)
rand 10 10 n6 10 511.52 (UNSAT) 807.27 (UNSAT) N/A —– (?)
rand 12 12 n7 1 —– (?) —– (?) N/A —– (?)
rand 12 12 n7 2 270.16 (UNSAT) 230.20 (UNSAT) N/A 910.31 (UNSAT)
rand 12 12 n7 3 —– (?) —– (?) N/A —– (?)
rand 12 12 n7 4 0.10 (UNSAT) 0.69 (UNSAT) N/A 0.30 (UNSAT)
rand 12 12 n7 5 —– (?) —– (?) N/A —– (?)
rand 12 12 n7 6 —– (?) —– (?) N/A —– (?)
rand 12 12 n7 7 554.98 (UNSAT) 771.46 (UNSAT) N/A —– (?)
rand 12 12 n7 8 0.10 (UNSAT) 0.71 (UNSAT) N/A 0.29 (UNSAT)
rand 12 12 n7 9 —– (?) —– (?) N/A —– (?)
rand 12 12 n7 10 —– (?) —– (?) N/A —– (?)

Table 3: Nurikabe (hand coded and randomly generated).

38

Instances GROCv2 + Z3 CLASP DLV CMODELS
rand 100 400 1159666138 1 0.28 (UNSAT) 0.04 (UNSAT) 0.05 (UNSAT) 0.56 (UNSAT)
rand 100 400 1159666138 2 0.34 (UNSAT) 0.05 (UNSAT) 0.05 (UNSAT) 0.27 (UNSAT)
rand 100 400 1159666138 3 0.32 (UNSAT) 0.04 (UNSAT) 0.06 (UNSAT) 0.18 (UNSAT)
rand 100 400 1159666138 5 0.27 (UNSAT) 0.05 (UNSAT) 0.04 (UNSAT) 0.47 (UNSAT)
rand 100 400 1159666138 6 0.29 (UNSAT) 0.06 (UNSAT) 0.05 (UNSAT) 0.58 (UNSAT)
rand 100 400 1159666138 7 0.22 (UNSAT) 0.04 (UNSAT) 0.04 (UNSAT) 0.44 (UNSAT)
rand 100 400 1159666138 8 0.44 (UNSAT) 0.07 (UNSAT) 0.06 (UNSAT) 0.66 (UNSAT)
rand 100 400 1159666138 9 0.51 (UNSAT) 0.05 (UNSAT) 0.09 (UNSAT) 0.54 (UNSAT)
rand 100 400 1159666138 13 0.33 (UNSAT) 0.04 (UNSAT) 0.05 (UNSAT) 0.50 (UNSAT)
rand 100 400 1159666138 19 0.32 (UNSAT) 0.06 (UNSAT) 0.09 (UNSAT) 0.79 (UNSAT)
rand 150 600 1159731678 3 0.81 (UNSAT) 0.12 (UNSAT) 0.11 (UNSAT) 2.40 (UNSAT)
rand 100 400 1159666138 5 0.78 (UNSAT) 0.08 (UNSAT) 0.09 (UNSAT) 1.87 (UNSAT)
rand 100 400 1159666138 6 0.76 (UNSAT) 0.09 (UNSAT) 0.11 (UNSAT) 2.07 (UNSAT)
rand 100 400 1159666138 7 1.15 (UNSAT) 0.10 (UNSAT) 0.10 (UNSAT) 1.97 (UNSAT)
rand 100 400 1159666138 8 0.76 (UNSAT) 0.09 (UNSAT) 0.11 (UNSAT) 1.89 (UNSAT)
rand 100 400 1159666138 11 0.76 (UNSAT) 0.08 (UNSAT) 0.11 (UNSAT) 1.85 (UNSAT)
rand 100 400 1159666138 12 0.73 (UNSAT) 0.22 (UNSAT) 0.11 (UNSAT) 1.95 (UNSAT)
rand 100 400 1159666138 14 0.76 (UNSAT) 0.08 (UNSAT) 0.10 (UNSAT) 0.53 (UNSAT)
rand 100 400 1159666138 15 0.72 (UNSAT) 0.08 (UNSAT) 0.11 (UNSAT) 1.89 (UNSAT)
rand 100 400 1159666138 17 0.79 (UNSAT) 0.09 (UNSAT) 0.12 (UNSAT) 2.49 (UNSAT)

Table 4: Weight-Bounded Connected Dominating Set (from ASPARAGUS instances)

39

5. Related Work

As a crucial building block of answer set programs, aggregates are extensively
studied in the literature [4, 10, 13, 16, 21, 22, 23]. Although the syntactic form
of aggregates is usually presented in a first-order language, its semantics is nor-
mally defined propositionally via grounding. Recently, several approaches are
proposed to define a genuine first-order semantics for aggregates. An early at-
tempt is due to Lee and Meng [22], although a more restricted form only for the
choice and counting aggregates already appeared in [21]. In fact, our semantics
for first-order aggregates is essentially equivalent to Lee and Meng’s definition,
when restricted into the syntax with aggregates of the form (1) although there is
a slight difference. Lee and Meng’s stable model semantics considers the number
constant symbols from Z as part of the signature so that the domains of the un-
derlying structure are assumed to contain the numbers from Z. On the contrary,
our notion does not consider numbers in the domain of a structure A. Instead, we
use a partial function fA that maps the domain elements of Dom(A) to integers.
This is addressed in Definition 3 by the notion of an extended structure. The only
difference between extended structures and standard first-order structures is the
function fA that maps elements of Dom(A) to Z. It should be noted that our no-
tion of an extended structure generalizes the notion by that of Lee and Meng [22]
since we can always map domain elements with number symbols into the numbers
they represent, e.g., if Dom(A) contains the number symbols −1 and 3, then we
can simply set fA(−1) = −1 and fA(3) = 3, where fA will be partially fixed for
the number symbols from Z for all structures A. The reason for our notion is that
it is more abstract in the sense that it does not consider number symbols in the
meta-level. Furthermore, it also allows us to only consider finite domains since
Lee and Meng’s notion always assumes all numbers from Z to be presented in the
domain of all underlying structures.

An alternative definition of aggregates is the FLP semantics [13], which is
extended into the first-order case recently [4]. The FLP semantics is inherently
different from the stable model semantics for aggregates. For instance, the former
satisfies the anti-chain property [13] while the latter does not. However, these
two semantics coincide if we only allow positive atoms in aggregates, that is,
Ng(δ) = ∅ for any aggregate atoms of the form (1). In fact, this is the case for
many ASP benchmark programs, including the benchmark programs we tested in
Section 4.

Another aggregate framework that is related to our work is the SP semantics
of [30]. The SP semantics of normal programs with aggregates is defined via a

40

fixed point operator that behaves identically to the three-valued immediate conse-
quence operator “Φagg

P ” independently proposed in [26]. Although the semantics
itself is based on a fixed point type characterization, which is different from our
translational approach, this framework is related to our work in the sense that our
aggregate syntax of the form (1) is similar to their notion of an intensional multiset
of the form

{{x | ∃z1, . . . , zrP (y1, . . . , ym)}},

where {x, z1, . . . , zr} ⊆ y1, . . . , ym (see Definition 1 of [30]).
Aggregates are also defined for HEX programs [10], which is an extension

of logic programs by introducing higher order external atoms. The semantics of
aggregates in HEX programs is also defined in a similar manner as the FLP seman-
tics. Interestingly, it is shown that external atoms in HEX programs generalizes
the notion of aggregate atoms [10].

Our definition of convex aggregates is a lift of Liu and Truszczyński’s no-
tion [23] to the first-order case, although the syntax is presented quite differently.
In fact, Liu and Truszczyński observed that normal programs with polynomial,
convex aggregates does not increase the computational complexity. For instance,
checking the existence of answer sets for normal programs and normal programs
with polynomial, convex aggregates are both in NP. However, the negative re-
sult that convex aggregate is the maximal subclass for the above property is not
considered. In other words, we discover that normal programs with non-convex
aggregates will inevitably jump into another complexity level. From Lemma 2,
normal programs with non-convex aggregates can capture disjunctive programs,
thus checking the existence of answer sets for such programs is ΣP

2 complete.
Our negative result (see Lemma 2 and Theorem 2) is inspired by Ferraris’

work [16]. Ferraris’ work considered monotone and antimonotone aggregates but
not the generalized concept of convex aggregates. He showed that, in the propo-
sitional case, there exists an aggregate context such that disjunctive programs can
be converted into normal logic programs with aggregate atoms under this context.
We further proved that this is the case for all non-convex aggregate context, both
in the propositional case and in the first-order case. As a consequence, convex
aggregates exactly draws a boundary of the expressive power as well as com-
putational complexity of aggregates in normal logic programs. That is, in the
propositional case, the complexity of checking the answer set existence for nor-
mal logic programs with any convex aggregate atoms is NP -complete, which is
the same as that for normal logic program without aggregates. In contrast, the

41

complexity of checking the answer set existence for normal logic programs under
any non-convex aggregate context is ΣP

2 -complete, which is on a higher com-
plexity level. In the first-order case, our result shows that normal logic programs
with any convex aggregate atoms can be converted into first-order logic with the
same type of aggregates (see Theorem 1), while this can never be done for normal
logic programs under any non-convex aggregate context providing some general
assumptions in the complexity theory (see Theorem 2).

Interestingly, Alviano and Faber [1] recently have obtained a similar result for
the FLP semantics in the propositional case. That is, under the FLP semantics,
propositional programs with convex aggregates will not increase the complexity.
However, adding a simple non-convex aggregates will result in a complexity jump
from the first level of polynomial hierarchy to the second level. In this paper, we
are mainly focused on the Ferraris’ semantics but not the FLP semantics. Never-
theless, following the proofs, our results hold for the FLP semantics as well. The
main difference is that we consider the first-order case instead of the propositional
case. We show that convex aggregates draws the boundary not only on complex-
ity but also on expressiveness (i.e., translatability to classic first-order logic with
aggregates) as well.

Finally, we would address the relation of our work with the first-order loop
formulas approach of Lee and Meng [22]. A main difference is that first-order
loop formulas work for arbitrary aggregates while our enhanced ordered com-
pletion only works for convex aggregates. This is partially because first-order
loop formulas are infinite theories in general while ordered completions always
produce finite theories. From a semantic viewpoint, loop formulas is about the
encoding of the external support of a set of atoms (which is infinite at the first-
order level), while the ordered completion is about the encoding of a derivation
order, although they both imply the stability of a model for the class of normal
program with convex aggregates.

6. Conclusion

The main contributions of this paper are as follows. Firstly, we extended
the notion of ordered completion for first-order programs with aggregates, and
showed that the stable models of a program with convex aggregates are corre-
sponding to the models of its ordered completion on finite structures (Theorem 1).
This is an important extension as most ASP benchmark programs for real world
problems need to use aggregates and these aggregates are indeed convex. Sec-
ondly, we showed that convex aggregate is a maximal subclass for the above task.

42

More precisely, given a non-convex aggregate context, we can always construct
a normal program under this aggregate context that can never be translated into a
first-order sentence with the same type of aggregates providing some assumptions
in the complexity theory (Theorem 2). To the best of our knowledge, our nega-
tive result is one of the first two results [1] to show that convex aggregates exactly
draws a boundary of the expressive power as well as the computational complexity
of aggregate atoms in answer set programming. Finally, we showed that we can
ground a program with an extensional database into a propositional SMT theory
in order to compute the answer sets (Theorem 3). Based on this, we implement
an ASP solver and compare it with some modern ASP solvers. The experiments
show that this new direction of answer set solving is promising, particularly for
non-tight programs on large problem instances.

Acknowledgement

We would like to thank the anonymous reviewers for their valuable comments
and suggestions. This work is partially supported by the grant NSFC 61173010.

References

[1] Mario Alviano and Wolfgang Faber. The complexity boundary of answer set
programming with generalized atoms under the flp semantics. In LPNMR,
pages 67–72, 2013.

[2] Vernon Asuncion, Fangzhen Lin, Yan Zhang, and Yi Zhou. Ordered com-
pletion for first-order logic programs on finite structures. Artif. Intell., 177-
179:1–24, 2012.

[3] Chitta Baral. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

[4] Michael Bartholomew, Joohyung Lee, and Yunsong Meng. First-order ex-
tension of the FLP stable model semantics via modified circumscription. In
IJCAI-2011, pages 724–730, 2011.

[5] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano,
Annamaria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber,
Onofrio Febbraro, Nicola Leone, Marco Manna, Alessandra Martello, Clau-
dio Panetta, Simona Perri, Kristian Reale, Maria Carmela Santoro, Marco

43

Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The third answer set
programming competition: Preliminary report of the system competition
track. In LPNMR, pages 388–403, 2011.

[6] Yin Chen, Fangzhen Lin, YisongWang, and Mingyi Zhang. First-order loop
formulas for normal logic programs. In KR, pages 298–307, 2006.

[7] Keith L. Clark. Negation as failure. In Logics and Databases, pages 293–
322, 1978.

[8] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner.
Modular nonmonotonic logic programming revisited. In ICLP, pages 145–
159, 2009.

[9] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Expressive power and
complexity of disjunctive datalog under the stable model semantics. In IS/KI,
pages 83–103, 1994.

[10] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits.
A uniform integration of higher-order reasoning and external evaluations in
answer-set programming. In IJCAI, pages 90–96, 2005.

[11] Wolfgang Faber and Nicola Leone. On the complexity of answer set pro-
gramming with aggregates. In LPNMR, pages 97–109, 2007.

[12] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Aggregate functions in
DLV. In Answer Set Programming: Advances in Theory and Implementa-
tion, pages 274–288, 2003.

[13] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and com-
plexity of recursive aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

[14] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell’Armi, and
Giuseppe Ielpa. Design and implementation of aggregate functions in the
DLV system. TPLP, 8(5-6):545–580, 2008.

[15] Ronal Fagin. Generalized first-order spectra and polynomial-time recogniz-
able sets. In Proceedings of SIAM-AMS 7, pages 27–41, 1974.

[16] Paolo Ferraris. Logic programs with propositional connectives and aggre-
gates. ACM Transactions on Computational Logic, 12(4):25, 2011.

44

[17] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and
circumscription. Artif. Intell., 175(1):236–263, 2011.

[18] Paolo Ferraris and Vladimir Lifschitz. On the stable model semantics of
first-order formulas with aggregates. In Proceedings of the 2010 Workshop
on Nonmonotonic Reasoning, 2010.

[19] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
On the implementation of weigh constraints in conflict-driven ASP solvers.
In ICLP’09, volume 5649, pages 250–264. Springer Verlag, 2009.

[20] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of International Logic Programming
Conference and Symposium, pages 1070–1080. MIT Press, 1988.

[21] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A reductive semantics for
counting and choice in answer set programming. In AAAI, pages 472–479,
2008.

[22] Joohyung Lee and Yunsong Meng. On reductive semantics of aggregates in
answer set programming. In LPNMR, pages 182–195, 2009.

[23] Lengning Liu and Miroslaw Truszczynski. Properties and applications of
programs with monotone and convex constraints. J. Artif. Intell. Res. (JAIR),
27:299–334, 2006.

[24] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alterna-
tive logic programming paradigm. In The Logic Programming Paradigm: a
25-Year Perspective, pages 375–398. Springer-Verlag, 1999.

[25] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Ann. Math. and AI, 25(3-4):241–273, 1999.

[26] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Partial stable
models for logic programs with aggregates. In LPNMR, pages 207–219,
2004.

[27] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded
and stable semantics of logic programs with aggregates. TPLP, 7(3):301–
353, 2007.

45

[28] Enrico Pontelli, Tran Cao Son, and Islam Elkabani. A treatment of ag-
gregates in ASP (system description). In LPNMR-2004, pages 356–360.
Springer, 2004.

[29] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and imple-
menting the stable model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[30] Tran Cao Son and Enrico Pontelli. A constructive semantic characterization
of aggregates in answer set programming. TPLP, 7(3):355–375, 2007.

[31] Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. Answer sets for logic
programswith arbitrary abstract constraint atoms. J. Artif. Intell. Res. (JAIR),
29:353–389, 2007.

Appendix A. Proof of Lemma 2

We present the full proof of Lemma 2 in this section. In the following, we
always assume a non-convex aggregate contextAC and a disjunctive program ΓD.
In Appendix A.1, we will define a translation from ΓD to a normal program ΓN

with the same type of aggregates. Lemma 2 can be decomposed into the following
two lemmas.

Lemma 3. Let MN be a structure on τ(ΓN). If MN is a stable model of ΓN ,
then there exists a stable modelMD of ΓD such thatMN andMD agree on all
interpretations of constants and predicates in τ(ΓD).

Lemma 4. Let MD be a structure on τ(ΓD). If MD is a stable model of ΓD,
then there exists a stable modelMN of ΓN such thatMD andMN agree on all
interpretations of constants and predicates in τ(ΓD).

Lemma 3 will be shown in Appendix A.2, and Lemma 4 will be shown in Appendix A.3.
We first introduce some notations. Recall that the aggregate contextAC is non-

convex. By Definition 6, there exist three multisets of tuples M1, M2, M3 such
that M1 ⊆ M2, OP(M1) * N and OP(M3) * N hold while OP(M1) * N does
not hold, where OP ∈ ACag is an aggregate symbol, *∈ ACop is a comparison
operator, and N ∈ ACnum is a number. Let

• M1 = {{m1, . . . ,mN1}},

• M2 \ M1 = {{mN1+1, . . . ,mN2}},

46

• M3 \ M2 = {{mN2+1, . . . ,mN3}},
where N1, N2, N3 be the size of M1, M2, M3 respectively, and 0 ≤ N1 < N2 <
N3. Without loss of generality, we assume all tuples inM3 are of the same length
K.

We introduce some new constants. Let Cnew be a set of new constants

Cnew = {cm,s | ms ∈ M3, m ∈ ms, (1 ≤ s ≤ N3)} ∪ {cn, cc}.
where cn is a new constant for N , cc is a special new constant which is used
in rule (A.12) for Proposition 5, and the rest of new constants are for the tuples
of numbers in M1, M2, M3. We use D to denote the following set of tuples of
constants

D = {d1, . . . ,dN1 , . . . ,dN2, . . . ,dN3},
where ds (1 ≤ s ≤ N3) is the tuple of constants obtained from ms ∈ M3 by
replacing each m ∈ ms by cm,s. Notice that di and dj , (1 ≤ i $= j ≤ N3), are
always different tuple of constants. We use NotLitNew(x) to denote the set of
negated atoms

{notx = c | x ∈ x, c ∈ Cnew \ {cc}},
where x is a tuple of variables. Intuitively,NotLitNew(x)means that variables in
x and constants in Cnew \{cc}will never be mapped to the same domain elements.

We introduce some new predicates for the program. Let Pnew be a set of new
predicates

Pnew = Q ∪QD ∪QM,

where

Q ={Qr,i,j | r ∈ Γ is a rule of the form (27) , 1 ≤ i $= j ≤ k},
QD ={QDi | 1 ≤ i ≤ K},
QM ={QMi | i = 1, 2, 3}.

Intuitively, Q is a set of predicates for constructing aggregate atoms, QD for
representing elements in a tuple, and QM for encodingM1, M2, M3.

Furthermore, we introduce some new predicates and tuples of predicates for
the second-order formulas like (8). Let U be a set of new predicates

U = {UP | P ∈ Pint(ΓD) ∪ Pnew, UP and P have the same arity.}
We use PD andUD to denote the tuple of predicates in Pint(ΓD) and the tuple of
the correspondence predicates in {UP | P ∈ Pint(ΓD)} respectively. We use PN

and UN to denote the tuple of predicates in Pint(ΓD) ∪ Pnew and the tuple of the
correspondence predicates in U respectively.

47

Appendix A.1. The Translation from Disjunctive Programs to Normal Programs
with Non-convex Aggregates

In this section, we define a normal program with aggregates, denoted by ΓN ,
which captures the answer sets of ΓD. In general, ΓN is a normal program with
aggregates built from τ(ΓD) together with the set of new constants Cnew and the
set of new predicates Pnew. It is the union of three sets of rules:

ΓN = AGG ∪ DEF ∪ CST,

where

• AGG is a set of normal rules with aggregates, which simulates the disjunc-
tive rules;

• DEF is a set of rules about the new predicates inQ;

• CST is a set of rules about the new predicates in QD andQM.

Now we define the sets of rules AGG, DEF and CST. Without loss of general-
ity, we assume that there is no constant in the heads of the rules in ΓD. Otherwise,
we remove the constants in the head of a rule by using equalities. For example,
P (x, c) ← E(x, y) can be rewritten as P (x, z) ← E(x, y), z = c when c is a
constant.

Let r ∈ ΓD \ ΓD
⊥ be a rule of the form (27). Let v1, . . . ,vk be the tuples of

variables occurring in α1, . . . ,αk in the head of r. By rN
i , we denote the rule:

αi ←β1, . . . , βl, not γ1, . . . , not γm,

OP〈x : Qr,i,1(x,vi,v1)〉 * cn,

. . . ,

OP〈x : Qr,i,k(x,vi,vk)〉 * cn,

NotLitsNew(V ar(r)), (A.1)

where:

• 1 ≤ i ≤ k, and k is the number of atoms in the head of r;

• x is a tuple of distinct new variables and |x| = K;

• V ar(r) is the tuple of variables in r.

48

Wewill show that, together with the rules inDEF and CST, normal rules rN
1 , . . . , rN

k

exactly capture the disjunctive rule r. Let AGG be the following set of rules:

ΓD
⊥ ∪ {rN

i | r ∈ ΓD \ ΓD
⊥ is a rule of the form (27) , (1 ≤ i ≤ k)}. (A.2)

Then, we define the rules in DEF. Let r be a rule of the form (27), and assume
that αi = Pi(vi) and αj = Pj(vj). For every predicate Qr,i,j ∈ Q, we use
DEF(Qr,i,j) to denote the set of rules:

Qr,i,j(ds,vi,vj) ← NotLitsNew(vivj), for 1 ≤ s ≤ N1, (A.3)
Qr,i,j(ds,vi,vj) ← Pj(vj), NotLitsNew(vi), for N1 < s ≤ N2, (A.4)
Qr,i,j(ds,vi,vj) ← Pi(vi), Pj(vj), for N2 < s ≤ N3, (A.5)

← Qr,i,j(x,vi,vj), not Pj(vj), notQD1(x), . . . , not QDN1(x),
(A.6)

← Qr,i,j(x,vi,vj), not Pi(vi), notQD1(x), . . . , notQDN2(x),
(A.7)

← Qr,i,j(x,vi,vj), not QD1(x), . . . , notQDN3(x), (A.8)

Let DEF be the following set of rules:
⋃

Qr,i,j∈Q

DEF(Qr,i,j). (A.9)

Finally, let CST be the set of the following rules:

• for predicate P ∈ τ(ΓD), c ∈ Cnew \ {cc} and 1 ≤ i ≤ j,

← P (x1, . . . , xs), xi = c, (A.10)

where j is the arity of P ;

• for constant c1 ∈ τ(ΓD) and c2 ∈ Cnew \ {cc},

← c1 = c2, (A.11)

• for c ∈ Cnew \ {cc},

← c = cc, (A.12)

49

• for two different constants c1, c2 ∈ Cnew \ {cn, cc},

← c1 = c2, (A.13)

•

← not OP〈x : QM1(x)〉 * cn, (A.14)
← OP〈x : QM2(x)〉 * cn, (A.15)
← not OP〈x : QM3(x)〉 * cn, (A.16)

• for 1 ≤ i ≤ N1,

QM1(di) ←, (A.17)

• for 1 ≤ i ≤ N2,

QM2(di) ←, (A.18)

• for 1 ≤ i ≤ N3,

QM3(di) ←, (A.19)

•

← QM1(x), not QD1(x), . . . , not QDN1(x), (A.20)
← QM2(x), not QD1(x), . . . , not QDN2(x), (A.21)
← QM3(x), not QD1(x), . . . , not QDN3(x), (A.22)

• for 1 ≤ i ≤ N3,

QDi(di) ←, (A.23)

• for 1 ≤ i ≤ N3 and 1 ≤ j ≤ K,

← QDi(x1, . . . , xj, . . . xK), notxj = cmi,j , (A.24)

wheremi = (m1, . . . , mj , . . . , mK) is a tuple inM3.

50

Given a disjunctive program ΓD, the number of the rules of ΓN is polynomial,
and the length of each rule is also polynomial. So, ΓN can be built in polynomial
time with respect to the length of ΓD.

Next, we prove some propositions which could illustrate why we define these
rules. Proposition 2 shows the properties of the sets of new predicates QD and
QM. Proposition 3 and Proposition 4 show that the implication can also be sim-
ulated by aggregate atoms when the aggregate context is non-convex.

LetM be a structure on τ(ΓN). We useDom1(M) andDom2(M) to denote
two subsets of Dom(M) such that

Dom2(M) = {cM | c ∈ Cnew \ {cc}},
Dom1(M) = Dom(M) \ Dom2(M).

We have the following proposition.

Proposition 2. Let M be a structure on τ(ΓN) such that M |= DEF ∪ CST.
Then,

(1) For predicate P ∈ τ(ΓD), if a ∈ PM then a ∈ Dom1(M)|a|.

(2) For predicate QDi, (1 ≤ i ≤ N3), QDM
i = {dM

i }.

(3) For predicate QMi(i = 1, 2, 3), QMM
i = {dM

1 , . . . ,dM
Ni
}.

Proof: M is a model of rule (A.10), so (1) holds. M is a model of rules (A.23)
and (A.24), so (2) holds. M is a model of rules (A.17) - (A.19) and (A.20) -
(A.22), so (3) holds. !

Proposition 3. Let M be a structure on τ(ΓN) such that M |= DEF ∪ CST.
Then,

M |= (Pj(vj) → Pi(vi)) ↔ (OP〈x : Qr,i,j(x,vi,vj)〉 * cn)[v1vj/bc]

where

• r ∈ ΓD be a rule of the form (27),

• αi = Pi(vi) and αj = Pj(vj)(1 ≤ i $= j ≤ k) are two atoms in the head of
r,

• b ∈ Dom(M)|b| and c ∈ Dom(M)|c|.

51

Proof: The proposition is a direct consequence of the following three statements:

(1) M |= ¬Pj(vj) → (OP〈x : Qr,i,j(x,vi,vj)〉 * cn)[vivj/bc];

(2) M |= (¬Pi(vi) ∧ Pj(vj)) → (OP〈x : Qr,i,j(x,vi,vj)〉 $* cn)[vivj/bc];
and

(3) M |= (Pi(vi) ∧ Pj(vj)) → (OP〈x : Qr,i,j(x,vi,vj)〉 * cn)[vivj/bc]

(1) Assume that M |= ¬Pj(vj)[v1vj/bc]. Let a ∈ Dom(M)K be a tuple of
domain elements. By rules (A.3) and (A.6), abc ∈ QM

r,i,j if and only if there
exists 1 ≤ s ≤ N1 such thatM |= QDs(x)[x/a]. Furthermore, by rules (A.17)
and (A.20), abc ∈ QM

r,i,j if and only if a ∈ QMM
1 . We also have

M |= OP〈x : Qr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.25)

if and only if
M |= OP〈x : QM1(x)〉 * cn. (A.26)

So, both rule (A.25) and rule (A.26) hold, sinceM is a model of rule (A.14).

(2) Assume that M |= (¬Pi(vi ∧ Pj(vj))[v1vj/bc]. Let a ∈ Dom(M)K be a
tuple of domain elements. By rules (A.3), (A.4) and (A.7), abc ∈ QM

r,i,j if and
only if there exists 1 ≤ s ≤ N2 such thatM |= QDs(x)[x/a]. Furthermore, by
rules (A.18) and (A.21), abc ∈ QM

r,i,j if and only if a ∈ QMM
2 . We have

M |= OP〈x : Qr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.27)

if and only if
M |= OP〈x : QM2(x)〉 * cn. (A.28)

So, neither rule (A.27) nor rule (A.28) holds, sinceM is a model of rule (A.15).

(3) Assume thatM |= (Pi(vi∧Pj(vj))[v1vj/bc]. Let a ∈ Dom(M)K be a tuple
of domain elements. By rules (A.3) - (A.5) and (A.8), abc ∈ QM

r,i,j if and only
if there exists 1 ≤ s ≤ N3 such thatM |= QDs(x)[x/a]. Furthermore, by rule
(A.19) and (A.22), abc ∈ QM

r,i,j if and only if a ∈ QMM
3 . We have

M |= OP〈x : Qr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.29)

if and only if
M |= OP〈x : QM3(x)〉 * cn. (A.30)

52

So, both rule (A.29) and rule (A.30) hold, sinceM is a model of rule (A.16).
!

LetM be a structure on τ(ΓN) and U a structure on τ(ΓN)∪UN . U is called
a Q-reserve extension ofM if U is an extension ofM and

• UU
P = UM

P if UP ∈ UN and P ∈ QD ∪QM,

• abc ∈ UU
P if and only if at least one of the following holds:

a ∈ QM1
U and bc ∈ Dom1(M)|bc|, (A.31)

a ∈ QM2
U ,b ∈ Dom1(M)|b|, and c ∈ UU

Pj
, (A.32)

a ∈ QM3
U ,b ∈ UU

Pi
, and c ∈ UU

Pj
. (A.33)

where

– P is a predicate of the form Qr,i,j ∈ Q, r ∈ ΓD is a rule of the form
(27), and αi = Pi(vi) and αj = Pj(vj) are two atoms in the head of r,

– a,b, c are tuples of domain elements such that |a| = K, and b and c
match the arity of Pi and Pj respectively.

Proposition 4. LetM be a structure on τ(ΓN) such thatM |= DEF∪CST. If U
is a Q-reserve extension ofM then,

U |= (UPj (vj) → UPi(vi)) ↔ (OP〈x : UQr,i,j(x,vi,vj)〉 * cn)[v1vj/bc]

where

• r ∈ ΓD is a rule of form (27),

• αi = Pi(vi) and αj = Pj(vj)(1 ≤ i $= j ≤ k) are two atoms in the head of
r,

• b ∈ Dom(M)|b| and c ∈ Dom(M)|c|.

Proof: The proof is similar to that of Proposition 3. We will show:

(1) U |= ¬UPj (vj) → (OP〈x : UQr,i,j(x,vi,vj)〉 * cn)[vivj/bc]

(2) U |= (¬UPi(vi) ∧ UPj (vj)) → (OP〈x : UQr,i,j(x,vi,vj)〉 $* cn)[vivj/bc]

53

(3) U |= (UPi(vi) ∧ UPj(vj)) → (OP〈x : UQr,i,j(x,vi,vj)〉 * cn)[vivj/bc]

(1) Assume that M |= ¬UPj (vj)[v1vj/bc]. Let a ∈ Dom(M)K be a tuple of
domain elements. By (A.31), if abc ∈ QM

r,i,j then a ∈ QMM
1 . We have

U |= OP〈x : UQr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.34)

if and only if
U |= OP〈x : UQM1(x)〉 * cn. (A.35)

So, both rule (A.34) and rule (A.35) hold, since U is a model of rule (A.14) and
QMU

1 = UU
QM1

.

(2) Assume that U |= (¬UPi(vi ∧ UPj(vj))[v1vj/bc]. Let a ∈ Dom(M)K be a
tuple of domain elements. By (A.31), if abc ∈ QM

r,i,j, then a ∈ QMM
2 . We have

U |= OP〈x : UQr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.36)

if and only if
U |= OP〈x : UQM2(x)〉 * cn. (A.37)

So, neither rule (A.36) nor rule (A.37) holds, since U is a model of rule (A.15),
and QMU

2 = UU
QM2

.

(3) Assume that U |= (UPi(vi ∧ UPj(vj))[v1vj/bc]. Let a ∈ Dom(M)K be a
tuple of domain elements. By (A.33), if abc ∈ QM

r,i,j then a ∈ QMM
3 . We have

U |= OP〈x : UQr,i,j(x,vi,vj)〉 * cn[vivj/bc] (A.38)

if and only if
U |= OP〈x : UQM3(x)〉 * cn. (A.39)

So, both rule (A.38) and rule (A.39) hold, since U is a model of rule (A.16), and
QMU

3 = UU
QM3

. !

Appendix A.2. The Proof of Lemma 3
In this section, we will show that ifMN is a stable model of ΓN , then there ex-

ists a stable modelMD of ΓD such thatMN andMD agree on all interpretations
of constants and predicates in τ(ΓD).

LetMN be a stable model of ΓN . ByMD, we denote the structure on τ(ΓD)
such that

54

• Dom(MD) = Dom1(MN),

• fMD(c) = fMN (c), for every constant c ∈ Dom(MD),

• cMD = cMN , for every constant c ∈ Dom(MD),

• a ∈ PMD if and only if a ∈ PMN and a ∈ Dom(MD)|a|, for every
predicate P ∈ τ(ΓD).

Proposition 5 shows thatMD is well defined in the sense that the domain of
MD is not empty. Proposition 6 shows thatMN andMD agree on the interpre-
tations of all constants and predicates in τ(ΓD).

Proposition 5. Dom(MD) contains at least one domain elements.

Proof: MN is a model of rule (A.12). So cc is interpreted to a domain element
different to any other constants in Cnew. Thus, ccMN ∈ Dom(MD). !

Proposition 6. Let P ∈ τ(ΓD) be a predicate, and a ∈ Dom(MN)|a| a tuple
of domain elements that matches the arity of P . Then, a ∈ P MD if and only if
a ∈ PMN .

Proof: By Proposition 2, if a ∈ PMN then a ∈ Dom(MD)|a|. So, by the con-
struction ofMD, a ∈ PMD if and only if a ∈ PMN . !

Now, we present the proof of Lemma 3.
Proof: We first show thatMD |= Γ̂D. Otherwise, there exists a rule r of the form
(27) and a substitution θ on V ar(r) such thatMD $|= r̂θ. SoMD |= Body(r)θ
and MD $|= αiθ, (1 ≤ i ≤ k). We also have MN $|= αiθ, (1 ≤ i ≤ k), by
Proposition 6. Then, by Proposition 3, we haveMN |= OP〈x : Qr,i,jx,vi,vj)〉 *
cnθ, (1 ≤ i $= j ≤ k). When we consider the rule r′ ∈ ΓN of the form (A.1),
we haveMN |= Body(r′)θ andMN $|= Head(r′)θ. This is a contradiction to the
fact thatMN is a stable model of ΓN .

It remains to show

MD |= ¬∃UD(UD < PD ∧
∧

r∈ΓD\Γ⊥
D

r̂∗). (A.40)

We show this by contradiction. Otherwise, there exists a structure UD on τ(ΓD)∪
UD such that UD |= UD < PD and UD |=

∧
r∈ΓD

r̂∗.

55

Let UN be a Q-reserve extension ofMN such that UUN
P = UUD

P when P is an
intensional predicate in ΓD. In the following, we will show that

UN |= UN < PN ∧
∧

r∈ΓN\Γ⊥
N

r̂∗, (A.41)

which is a contradiction to the fact thatMN is a stable model of ΓN .
It suffices to show:

(a) UN |= UN < PN ;

(b) UN |= r∗, for rule r ∈ CST,

(c) UN |= r∗, for rule r ∈ DEF,

(d) UN |= r∗, for rule r ∈ AGG.

Note that for (b)-(d), we do not need to consider the constraints.

(a) Consider the predicates P and UP :

• If P is an intensional predicate in ΓD, then UUN
P = UUD

P . We also have
UD |= UD < PD. So we have UN |= UD < PD;

• If P ∈ QD ∪QM, then UUN
P = UMN

P . So we have UN |= UP = P ;

• If P is a predicate of the form Qr,i,j ∈ Q, r ∈ ΓD is a rule of the form (27),
and αi = Pi(vi) and αj = Pj(vj) are two atoms in the head of r, we also
have UD |= UD < PD. Notice that QMUN

i = QMMN
i , i = 1, 2, 3, and that

P UN
i ⊆ PMN

i and P UN
j ⊆ PMN

j .

So we have UN |= UN < PN .

(b) Let r be a rule of the form (A.17), (A.18), (A.19), or (A.23), we have UN |= r∗,
since UUN

P = UMN
P for P ∈ QD ∪QM.

(c) Let r be a rule of the form (A.3). Let vivj/ bc be an assignment onDom(UN),
and ds a tuple in D, where (1 ≤ s ≤ N1). We have dUN

s ∈ QMUN
1 , since UN is

a model of rules (A.17) and (A.20). If UN |= NotLitsNew(vivj)[vivj/ bc], we
have bc ∈ Dom(M|bc|

D). By (A.31), UN |= UQr,i,j(ds,vi,vj)[vivj/ bc]. Thus,
UN |= r∗.

56

Let r be a rule of the form (A.4). Let vivj/ bc be an assignment onDom(UN),
and ds a tuple inD, where (N1 < s ≤ N2). We have dUN

s ∈ QMUN
2 , since UN is a

model of rules (A.18) and (A.21). If UN |= UPj(vj)∧NotLitsNew(vivj)[vivj/ bc],
we haveb ∈ Dom(MD)|b| and c ∈ UUN

Pj
. By (A.32), UN |= UQr,i,j(ds,vi,vj)[vivj/ bc].

Thus, UN |= r∗.
Let r be a rule of the form (A.5). Let vivj/ bc be an assignment onDom(UN),

and ds, (N2 < s ≤ N3), be a tuple in D. We have dUN
s ∈ QMUN

3 , since UN is a
model of rules (A.19) and (A.22). If UN |= UPi(vi)∧UPj (vj)[vivj/ bc], we have
b ∈ UUN

Pi
and c ∈ UUN

Pj
. By (A.33), UN |= UQr,i,j(ds,vi,vj)[vivj/ bc]. Thus,

UN |= r∗.

(d) Let r be a rule of the form (27), and rN
i a rule of the (A.1), 1 ≤ i ≤ k. We

will show UN |= (rN
i)∗ by contradiction.

Assume that there exists an assignment θ such that UN |= Body(rN
i

∗
)θ and

UN $|= α∗
i θ. By UN |= Body(rN

i
∗
), we have

UN |= OP〈x : UQr,i,j(x,vi,vj)〉 * cnθ,

where i $= j and 1 ≤ j ≤ k. So we have

UN |= α∗
j → α∗

i

by Proposition 4. Since UN $|= α∗
i θ, we have UN $|= α∗

jθ, 1 ≤ j ≤ k.
However, UD, UD and UN agree on every predicate in τ(ΓD). Therefore, we

also have UD |= Body(r∗)θ and UD $|= α∗
jθ, 1 ≤ j ≤ k. This is a contradiction,

since UD |= r∗. !

Appendix A.3. The Proof of Lemma 4
In this section, we will show that ifMD is a stable model of ΓD, then there ex-

ists a stable modelMN of ΓN such thatMD andMN agree on all interpretations
of constants and predicates in τ(ΓD).

LetMD be a structure on τ(Γ). ByMN , we denote the structure on τ(ΓN)
such that:

• Dom(MN) = Dom1(MN)∪Dom2(MN), whereDom1(MN) = Dom(MD)
and Dom2(MN) = {cMN | c ∈ Cnew \ {cc}} is a set of new domain ele-
ments;

57

• the constants in τ(ΓD) are interpreted the same as those in MD, the new
constant c ∈ Cnew \{cc} is interpreted as the new domain element cMN , and
cc is interpreted as any of the domain element in Dom1(MD);

•

fMN (c) =

fMD(c), c ∈ Dom(MD)
m, c is a domain element of the form cMN

m,s

N, c is a domain element of the form (cn)MN

• PMN = PMD if P is a predicate in τ(ΓD);

• QMMN
i = {dMN

1 , . . . ,dMN
Ni

} if QMi is a predicate inQM, i = 1, 2, 3;

• QDMN
i = {dMN

i } if QDi is a predicate inQD, 1 ≤ i ≤ N3;

• abc ∈ QMN
r,i,j if and only if at least one of the following holds:

a ∈ QMMN
1 , and bc ∈ Dom1(MN)|bc| (A.42)

a ∈ QMMN
2 ,b ∈ Dom1(MN)|b|, and c ∈ PMN

j (A.43)
a ∈ QMMN

3 ,b ∈ PMN
i , and c ∈ PMN

j . (A.44)

where

– Qr,i,j ∈ Q, r ∈ ΓD is a rule of the form (27), and αi = Pi(vi) and
αj = Pj(vj) are two atoms in the head of r,

– a,b, c are tuples of domain elements such that |a| = K, and b and c
match the arity of Pi and Pj respectively.

Now, we present the proof of Lemma 4.
Proof: First, we show thatMN is a model of ΓN . It suffices to show that ΓN is a
model of the rules in CST, DEF and AGG.

(1) Consider the rules in CST.

• MN is a model of rule (A.10), since PMN = PMD if P is a predicate in
τ(ΓD);

• MN is a model of rules (A.11) and (A.12), since the constant cc and con-
stants in τ(ΓD) are interpreted as the domain elements in Dom1(MN)
while constants in Cnew are interpreted as domain elements inDom2(MN);

58

• MN is a model of rule (A.13), since constants in Cnew \ {cc} are always
interpreted as new distinct domain elements inDom2(MN);

• MN is a model of rule (A.14), since

QMMN
1 = {dMN

1 , . . . ,dMN
N1

},
fMN ({dMN

1 , . . . ,dMN
N1

}) = {m1, . . . ,mN1} = M1,

and OP(M1) * N ;

• Similarly to rule (A.14),MN is a model of rules (A.15) and (A.16);

• MN is a model of rules (A.17 - A.24), sinceQMMN
i = {dMN

1 , . . . ,dMN
Ni

}(i =

1, 2, 3) and QDMN
i = {dMN

i }, (1 ≤ i ≤ N3).

(2) Consider the rules in DEF.

• Let r be a rule of the form (A.3). Let vivj/bc be an assignment onDom(MN)
andds a tuple inD, where (1 ≤ s ≤ N1). IfMN |= NotLitsNew(vivj)[vivj/ bc],
thenbc ∈ Dom1(MD)|bc|. By (A.44), we haveMN |= Qr,i,j(ds,vi,vj)[vivj/ bc].
So,MN is a model of r. Similarly,MN is a model of rules of the form (A.4)
and (A.5).

• Let r be a rule of the form (A.6). Let xvivj/abc be an assignment on
Dom(MN). IfMN |= Qr,i,j(ds,vi,vj)∧¬Pj(vj)[xvivj/abc], then (A.42)
holds and (A.43) and (A.43) do not hold. So we have a ∈ {dMN

1 , . . . ,dMN
N1

}.
Thus,MN is a model of rule (A.6). Similarly,MN is a model of rules of
the form (A.7) and (A.8).

(3) Consider the rules in AGG. Let r be a rule of the form (27), and rN
i a rule

of the (A.1), 1 ≤ i ≤ k. We will showMN |= (rN
i) by contradiction.

Assume that there exists an assignment θ such thatMN |= Body(rN
i)θ and

MN $|= αiθ. We have

MN |= OP〈x : Qr,i,j(x,vi,vj)〉 * cnθ

where i $= j and 1 ≤ j ≤ k. By Proposition 3, we have

MN |= (αj → αi)θ.

Note that we have already shownMN |= DEF∪CST. Together withMN $|= αiθ,
we haveMN $|= αjθ, for all 1 ≤ j ≤ k. In addition,MD andMN agree on every

59

predicates in τ(ΓD). So, we haveMD |= Body(r)θ andMD $|= αjθ, 1 ≤ j ≤ k.
This is a contradiction, sinceMD |= r.

It remains to show

MN |= ¬∃UN (UN < PN ∧
∧

r∈ΓN\Γ⊥
N

r̂∗). (A.45)

We show this by contradiction. Otherwise, there exists a structure UN on τ(ΓN)∪
UD such that UN is an extension ofMN and

UN |= UN < PN ∧
∧

r∈ΓN\Γ⊥
N

r̂∗. (A.46)

Let UD be a structure on τ(ΓD) ∪UN such thatDom(UD) = Dom1(MD, cUD =
cUN for every constant c ∈ τ(ΓD) and P UD = P UN for every predicate P ∈
τ(ΓD). By the construction of UN andMN , UD also agrees on all interpretations
of constants and predicates in τ(ΓD). In the following, we will show

UD |= UD < PD ∧
∧

r∈ΓD\Γ⊥
D

r̂∗. (A.47)

This is a contradiction to the fact thatMD is a stable model of ΓD.
We first show that UN is a Q-reserve extension ofMN , and UN |= UD < PD

Since UN |=
∧

r∈CST r̂∗, we have QMUN
i = {dUN

1 , . . . ,dUN
Ni

}(i = 1, 2, 3) and
QDUN

i = {dUN
i }, (1 ≤ i ≤ N3). So, UUN

P = UMN
P for predicate UP ∈ UN ,

where P ∈ QD ∪QM. Furthermore, we can see that it is impossible that for all
predicates P ∈ τ(ΓD), P UN = UUN

P . Otherwise, we have QUN
r,i,j = UUN

Qr,i,j
, since

UN |=
∧

r∈DEF r̂∗. This is a contradiction to the fact that UN |= UN < PN .
By the construction of UN , UD and UN agree on the interpretations of all pred-

icates in τ(ΓD), so we also have UD |= UD < PD. It remains to show UD |= r̂∗,
where r is a rule of the form (27). If there is a rule r ∈ ΓD and UD $|= r. Then
there exists a substitution θ such that UD |= Body(r∗)θ and UD $|= α∗

i θ for all
1 ≤ i ≤ k. Note that UD and UN agree on the interpretation of all predicates in
τ(ΓD), we have UN $|= α∗

i θ for all 1 ≤ i ≤ k, thus UN |= (α∗
j → α∗

i)θ for all
1 ≤ i $= j ≤ k. By Proposition 4, UN |= (OP〈x : UQr,i,j(x,vi,vj) * cn)θ for all
1 ≤ i $= j ≤ k. This is a contradiction to the fact that UN |= r̂N

i
∗θ and UN $|= α∗

i θ
for all 1 ≤ i ≤ k.

This completes the proof. !

60

