
Answer Set Programs with One Incremental
Variable

Junjun Deng and Yan Zhang

Abstract. In the past decade, Answer Set Programming (ASP) has
emerged as a popular paradigm for declarative problem solving, and a
number of answer set solvers have been developed. However, most exist-
ing solvers require variables occurring in a logic program to be bounded
by some finite domains, which limits their applications in one way or
another. In this paper, we introduce answer set programs with one in-
cremental variable to overcome this limitation. Based on existing ASP
solving techniques, an approach to solve answer set programs with one in-
cremental variable is proposed, and a prototype solver is then developed
based on this approach. By conducting some experiments, our approach
is shown to be comparable to iClingo’s modular domain description ap-
proach in the incremental problem solving setting.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative language for problem solv-
ing. Normally a problem is described in an ASP program containing bounded
variables, and given an instance of that problem, an ASP grounder will output
one propositional ASP program, which is handed to a propositional ASP solver
to search for answer sets. This process is intuitive and straightforward for many
classical search problems. However, some real-world applications may call for
unbounded variables.

The Graph Coloring Problem (GCP) is a classical NP hard problem. Given
an undirected graph, the goal is to find the least number of colors such that
there exists at least one legal graph coloring scheme which assigns every vertex
of the graph a color such that no two adjacent vertices have the same color.

Example 1. If the number of available colors k is provided, we can encode this
problem into an ASP program such that each answer set of that program corre-
sponds to a legal coloring scheme.

col(1..k).

color(V,C)← node(V ), col(C), not ncolor(V,C).

ncolor(V,C)← node(V ), col(C), col(C1), color(V,C1), C 6= C1.

← edge(V 1, V 2), col(C), color(V 1, C), color(V 2, C).2

However, if k is unknown and to be minimized, then the domain of predicate col
is unbounded, thus above program is not valid. Another example is the planning



problem, where we search for a sequence of actions to reach the goal state, and
the length of that sequence is also not known precisely.

To solve the problems comprising a parameter which reflects its solution size,
an incremental approach to both grounding and solving in ASP is proposed in
[2]. This approach introduces a (parametrized) domain description as a triple
(B,P,Q) of logic programs, among which P and Q contain a single parameter k
ranging over the natural numbers: a) B is meant to describe static knowledge;
b) P [k] capture knowledge accumulating with increasing k; c) Q[k] is specific for
each value of k. The goal is to decide if the program R[k] = B∪

⋃
1≤i≤k P [i]∪Q[i]

has an answer set for some integer k [2].
Based on that domain description concept, an incremental ASP solver called

iClingo [2] was developed, which can solve problems encoded in modular domain
description. However, this incremental ASP approach requires programmers to
split the whole encoding into three parts, and ensure that their domain descrip-
tion is modular. In addition, some intuitive encodings are excluded from modular
domain description for some problems, e.g. GCP in Example 1.

Our goal is to develop an approach that is not only easy and intuitive for
users to encode their problems, but also allows solvers to compute answer sets
efficiently. In this paper, we propose a new approach for answer set program-
ming, where programs are armed with one incremental variable. This incremen-
tal variable is ranging over the natural numbers, thus can model problems with
unbounded variables. Based on the Clark’s completion and loop formula [7], we
propose a dynamic transformation for answer set programs with one incremental
variable. With that we can bypass grounding to propositional rules, and directly
construct dynamic transformation formula which is valid even when value of
the incremental variable increases, and feed it to a propositional ASP solver
repetitively until answer sets are found.

The rest of the paper is organized as follows. In Section 2 we define answer
set programs with one incremental variable (ivASP). Then safe ivASP programs
are introduced in Section 3. Section 4 presents the dynamic transformation of
ivASP programs. Based on that transformation, we then develop a prototype
solver for safe ivASP programs, and report its performance in Section 5. Finally
we conclude this paper with related works in Section 6.

2 ASP with One Incremental Variable

In this section, we introduce answer set programs with one incremental variable
(ivASP). The language of ivASP is defined over an alphabet including the follow-
ing classes of symbols: (a) constants, (b) function symbols F including builtin
+ and −; (c) variable symbols V; (d) predicate symbols P including builtin ≤,≥
and =; and (e) a special variable k ranged over natural numbers, which is called
the incremental variable. A term is inductively defined as follows:

– A variable (including k) is a term.
– A constant is a term.



– If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn)
are terms.

A term is said to be ground if no variable occurs in it. An atom is of the form
p(t1, . . . , tn) where p is a n-ary predicate symbol and each ti is a term. An atom
is ground if all ti (1 ≤ i ≤ n) in the atom is ground. A literal is either an atom
or an atom preceded by the symbol “not”.

A logic program is a finite set of rules of the form

a← b1, . . . , bm, not cm+1, . . . , not cn

where a is an atom or ⊥, and bi, ci are atoms.
A rule is ground if all of its atoms are ground, and a logic program is ground

if every rule in it is ground. The head atom (a here) of a rule r is denoted as
head(r). {b1, . . . , bm} is called the positive body, denoted by pos(r). Similarly,
{not cm+1, . . . , not cn} is called the negative body of a rule, denoted by neg(r),
and each not ci is called negative literal. All atoms of a rule atom(r) = head(r)∪
pos(r) ∪ neg(r).

The Herbrand Universe of a language L, denoted by HUL, is the set of
all ground terms formed with the functions and constants (no variables) in L.
Similarly, the Herbrand Base of a language L, denoted by HBL, is the set of all
ground atoms formed with predicate P from L and terms from HUL.

Let r be a rule in the ivASP language L. The grounding of r in L on level L
where L ∈ N, denoted by ground(r,L, L), is the set of all rules obtained from
r by all possible substitutions of elements of HUL ∪ {1..L} for the variables in
r except k, and the substitution of L for the special variable k. For any ivASP
logic program Π, we define

ground(Π,L, L) = ∪r∈Πground(r,L, L) (1)

and we use ground(Π,L) as a shorthand for ground(Π,L(Π), L).
A Herbrand interpretation of a logic program Π is any subset of its Herbrand

Base. A Herbrand interpretation I of Π is said to satisfy a ground rule, if

i) if a 6= ⊥ then {b1, . . . , bm} ⊆ I ∧ {cm+1, . . . , cn} ∩ I = ∅ implies that a ∈ I;
ii) otherwise a = ⊥, {b1, . . . , bm} 6⊆ I ∨ {cm+1, . . . , cn} ∩ I 6= ∅

A Herbrand model A of a logic program Π is a Herbrand interpretation I of Π
such that it satisfies all rules in Π.

Definition 1. Given a ground logic program Π, for any set S of atoms from
Π, let ΠS be the program obtained from Π by deleting

i) each rule that has a negative literal not b in its body with b ∈ S, and
ii) all negative literals in the bodies of the remaining rules.

The set S is a stable model (answer set) of Π if S is a minimal Herbrand model
of ΠS [6].



Definition 2. Given an ivASP program Π, a pair of a set of atoms S ⊆ HBL(Π)

and an integer L, (S,L) is a stable model (answer set) of Π if S is a stable model
of ground(Π,L).

Two ivASP programs are equivalent if their answer sets are the same.

Example 2. Following is an ivASP program:

p(1..k).

q(X + 1)← p(X), not p(X + 1).

The pair ({p(1), q(2)}, 1) and ({p(1), p(2), q(3)}, 2) are two answer sets of it. 2

3 Safe ivASP programs

Given an ivASP program Π, its grounding program may consist of infinite num-
ber of rules. To make the problem of finding answer sets feasible, we should con-
sider ivASP programs that is equivalent to ground programs with finite rules.
This calls for the definition of safe ivASP programs.

Definition 3. Given a logic program Π, the dependency graph DG(Π) = (VΠ , EΠ)
of Π is a graph where each node corresponds to a predicate in Π and there is an
edge from node p to node q iff there exists a rule in Π where p is the predicate
symbol in head and q is a predicate symbol in the body.

In a logic program Π, a predicate p depends on a predicate q iff there is a path
from p to q in the dependency graph DG(Π). A predicate p is an extensional
predicate iff it does not depend on any predicate including itself.

Definition 4. In an ivASP program Π, a predicate p ∈ Π is a domain predicate
iff it holds that every path in DG(Π) starting from the node corresponding to p
is cycle-free.

Since the domain (extension) of a domain predicate can be computed without
search, domain predicates are able to serve as the basis for an efficient grounding.

Given a variable X in a rule of a logic program, it is range bounded if there
are at least a lower bound atom of the form X ≥ Y and an upper bound atom
of the form X ≤ Z in the positive body where Y and Z are integer constants or
range bounded variables.

Definition 5. A rule r in an ivASP program is safe if it holds that: if the head
predicate of r is an extensional predicate, then every variable except k occurs in
the head is also range bounded; otherwise, every variable except k that occurs in
the rule also appears in a positive domain predicate. An ivASP program is safe
if every rule in it is safe.

In practice, a rule of the form p(a..k) is commonly used as a shorthand of p(X)←
a ≤ X,X ≤ k, thus is safe by definition. Example 1 is a safe ivASP program.



In Equation (1), the grounding of an ivASP program instantiates rules based
on the Herbrand Universe. This naive grounding method may generate too many
unnecessary rules in practice. Given a safe ivASP program Π and an integer L,
a more concise ground program grd(Π,L) which is equivalent to ground(Π,L)
can be constructed as follows:

1. Build the dependency graph DG(Π), and identify a set of domain predicates
D(Π). Then predicates in D(Π) are sorted topologically from bottom to top
in DG(Π), resulting an ordered set D(Π) = (p1, p2, . . . pi, . . . pn) such that
for any two predicates pi, pj ∈ D(Π), if pi depends on pj then i > j.

2. For any predicate p that is a leaf node in DG(Π) (extensional predicate), its
ground instances are determined by fact atoms, or instantiated from range
bound variables of the program. These ground atoms are added to grd(Π,L),
and the domain of this predicate, Dom(p) is populated.

Dom(p) = {c̄|p(c̄). ∈ Π} ∪⋃
{(c1, . . . , cn)|p(X̄)←

∧
Xi∈X̄ lb ≤ Xi, Xi ≤ ub. ∈ Π, lbi ≤ ci ≤ ubi(1 ≤ i ≤ n)}

where c̄ is a tuple of constants, X̄ is a tuple of variables and lb and ub are
expressions which can be evaluated to integers.

3. For each domain predicate d ∈ D(Π) which is not extensional, compute its
domain Dom(d) based on set operations for domains in Table 1.

4. Given the occurrence of a domain predicate of this form d(X,Y, ...), let its
variable binding Bind(d) = {(X/x, Y/y, ...)|(x, y, ...) ∈ Dom(d)}. For all
rules r ∈ Π, the variable binding of r, Br is the natural join of variable
bindings of all positive domain predicates, Br =./d∈D(Π)∩pos(r) Bind(d).
Then some elements in Br are filtered out if they do not satisfy any relation
test in the body of r. Finally instantiations of r is obtained through substi-
tutions of variables to bindings in Br, and grd(Π,L) = grd(Π,L)∪{r/θ|θ ∈
Br, r ∈ Π}.

Table 1. Set operations for domains

Rules Operations

p(X)← q(X)
Dom(p) = Dom(q) ∪Dom(r)

p(X)← r(X)

p(X)← q(X), r(X) Dom(p) = Dom(q) ∩Dom(r)

p(X)← q(X), not r(X) Dom(p) = Dom(q) \Dom(r)

p(X,Y )← q(X), r(Y ) Dom(p) = Dom(q)×Dom(r)

p(X,Y, Z)← q(X,Y ), r(Y,Z) Dom(p) = Dom(q) ./ Dom(r)

Proposition 1. Given a safe ivASP program and an integer L ≥ 0, grd(Π,L)
is equivalent to ground(Π,L).

4 Dynamic Transformation

In the incremental problem solving setting, one of the most important techniques
is computation reuse. To do this, we regard each logic program as a propositional



formula by employing Lin and Zhao’s loop formulas [7]. Our main idea is to revise
the completion formula and loop formula so that they are valid when the value
of the incremental variable increases. To do this, we distinguish propositional
clauses in the completion formula and loop formula that may be changed and
annotate them with auxiliary propositional variables such that those clauses are
satisfied whenever they become invalid.

To define the dynamic transformation, we first need some notations. Suppose
Π is a safe ivASP program, a a ground atom, and L a natural number. We
define (a) the supporting rules of an atom on level L, supL(a,Π) = {r ∈
grd(Π,L) | head(r) = a}; (b) the ground rules firstly instantiated on level L,
ruleL(Π) = grd(Π,L) \ ∪0≤l<Lgrd(Π, l); and (c) the atoms firstly instantiated
on level L, atomL(Π) = atom(grd(Π,L)) \ ∪0≤l<Latom(grd(Π, l)).

A ground rule r is cumulative wrt Π if for any two integers 1 ≤ L1 <
L2 it holds that r ∈ grd(Π,L1) implies r ∈ grd(Π,L2). Let cmL(Π) be the
set of rules in ruleL(Π) which are cumulative wrt Π, and ncm≤L(Π) be the
set of rules grd(Π,L) \ ∪0≤l≤Lcml(Π). A ground atom a ∈ atomL(Π) is level
restrained if supl(a,Π) = supL(a,Π) for all integers l > L. Given a natural
number L, let lrL(Π) denotes the sets of all level restrained atoms in atomL(Π),
lr≤L(Π) be the set of atoms ∪0≤l≤Llrl(Π), and nlr≤L(Π) be the set of atoms
atom(grd (Π,L)) \ lr≤L(Π).

Definition 6 (Dynamic Completion Formula). Given a safe ivASP pro-
gram Π and an integer L ≥ 0, the dynamic completion formula of Π on level
L, denoted by DCF (Π,L), is the conjunction of the static part

∧
r∈cmL(Π)

[
b̂ody(r) ⊃ head(r)

]
∧

∧
a∈lrL(Π)

a ⊃ ∨
r∈supL(a,Π)

b̂ody(r)

 , (2)

and the dynamic part

∧
r∈ncm≤L(Π)

[
b̂ody(r) ∧ kL ⊃ head(r)

]
∧

∧
a∈nlr≤L(Π)

a ∧ kL ⊃ ∨
r∈supL(a,Π)

b̂ody(r)

 ,
(3)

where b̂ody(r) denotes the conjunction of all literals in body(r).

For each natural number L, an auxiliary variable kL is introduced to annotate
precedents of clauses in the dynamic part. When these clauses become invalid,
the assignment of false to kL make them satisfied. As we will see later, this
technique is also applied to the dynamic loop formula.

Next, let us define the dynamic loop formula for ivASP programs. Suppose
P is a ground logic program. The positive dependency graph of P is the directed
graph whose vertices are atoms appearing in P and that consists of all edges
from p to q such that p and q positively occur in the head and the body of a rule
in P respectively. A nonempty set ` of atoms occurring in P is called a loop of
P if for each pair of atoms a and b, there is a path from a to b in the positive
dependency graph of P such that each vertex in the path belongs to `.



Definition 7 (Dynamic Loop Formula). Given an ivASP program Π and
a natural number L, the dynamic loop formula, denoted by DLF (Π,L), is the
conjunction of the static part∧

`∈LL(Π)∧`⊆lr≤L(Π)

∧
a∈`

[a ⊃ ES(`, grd(Π,L))] , (4)

and the dynamic part ∧
`∈loopL(Π)∧` 6⊆lr≤L(Π)

∧
a∈`

[a ∧ kL ⊃ ES(`, grd(Π,L))] , (5)

where loopL(Π) is the set of all loops of grd(Π,L), and LL(Π) = loopL(Π) \
∪0≤l<Lloopl(Π), ES(`, grd(Π,L)) is the formula ∨a∈` ∨r∈supL(a,Π)∧pos(r)∩`=∅

b̂ody(r).

Theorem 1. Let Π be a safe ivASP program and L a natural number. Then a
set A of ground atoms is an answer set of grd(Π,L) iff A ∪ {kL} is a model of∧

0≤l≤L

[DCF (Π, l) ∧DLF (Π, l)] . (6)

Proof. Let ϕ be the formula obtained from (6) by substituting ⊥ for each kl
where 0 ≤ l < L and by substituting > for kL. Let ϕ1 =

∧
0≤l≤LDCF (Π, l) and

ϕ2 =
∧

0≤l≤LDLF (Π, l) then ϕ = ϕ1 ∧ ϕ2.

ϕ1 =
∧

0≤l≤L

∧
r∈cml(Π)

[
b̂ody(r) ⊃ head(r)

]
∧

∧
0≤l≤L

∧
a∈lrl(Π)

a ⊃ ∨
r∈supl(a,Π)

b̂ody(r)


∧

∧
r∈ncm≤L(Π)

[
b̂ody(r) ⊃ head(r)

]
∧

∧
a∈nlr≤L(Π)

a ⊃ ∨
r∈supL(a,Π)

b̂ody(r)

 ,
Note that grd(Π,L) =

⋃
0≤l≤L cml(Π) ∪ ncm≤L(Π), and for a level restrained

atom a, supl(a,Π) = supL(a,Π) as l < L, thus conjuncts in ϕ1 can be merged,
resulting

ϕ1 =
∧

r∈grd(Π,L)

[
b̂ody(r) ⊃ head(r)

]
∧

∧
a∈atom(grd(Π,L))

a ⊃ ∨
r∈supL(a,Π)

b̂ody(r)

 ,
which is exactly the Clark’s completion of grd(Π,L). In addition,

ϕ2 =
∧

0≤l≤L

∧
`∈Ll(Π)∧`⊆lr≤l(Π)

∧
a∈`

[a ⊃ ES(`, grd(Π, l))]

∧
∧

`∈loopL(Π)∧` 6⊆lr≤L(Π)

∧
a∈`

[a ⊃ ES(`, grd(Π,L))] ,



Algorithm 1 ivASPSolve

Require: A safe ivASP program Π.
Ensure: Returns an answer set of Π or “no answer set”.
1: l← 1
2: ∆← ∅
3: while l ≤ UB do
4: P ← Ground(Π, l)
5: ∆← ∆ ∧DCF (Π, l)
6: (res,Ans,∆′)← ASPSolve(P,∆, kl)
7: ∆← ∆′

8: if res = true then
9: return Ans

10: else
11: l← l + 1
12: end if
13: end while
14: return no answer set

For level restrained atoms, once they are grounded on a level, their supporting
rules do not change on higher levels, so for a loop ` whose elements are all
level restrained atoms, its external support does not change as well. Therefore
ES(`, grd(Π, l)) = ES(`, grd(Π,L)).

ϕ2 =
∧

`∈loopL(Π)

∧
a∈`

[a ⊃ ES(`, grd(Π,L))] ,

which equals to the loop formula of grd(Π,L). By Theorem 1 of [7], we then
obtain the desired result. 2

5 Implementation and Experiment

Theorem 1 provides an approach to solve ivASP programs, as we can determine
whether a set of ground atoms is the answer set by checking if it satisfies Equation
6.

Algorithm 1 shows the high level structure of our prototype solver called
ivASP. After initialization, it repetitively grounds the program, computes the
dynamic completion formulas, and then call ASPSolve to do actual searching,
until answer sets are found or global configured upper bound UB is reached.
Ground is a grounding procedure that outputs rules without variables, and
marks each atom as level restrained or not and each rule as cumulative or
not. Then dynamic completion formulas can be constructed. ∆ is the constraint
(clause) array, and stores all the constraints transformed from the input program
and constraints learnt during search.

ASPSolve is a conflict-driven constraint learning ASP solving procedure,
based on Algorithm 1 in [4]. The differences are: (a) the last argument kl is an
assumption that forces kl be in the answer set. (b) for any detected unfounded



set, its dynamic loop formula (instead of normal loop formula) is added to ∆;
and (c) if the input ground logic program has a answer set Ans, then it returns
(true,Ans,∆); otherwise it return (false, ∅, ∆). Each call of ASPSolve would
probably add more learnt constraints to ∆, thus constraints learnt from current
levels can be utilized on later levels.

To evaluate the performance of our proposed approach to ivASP solving, we
compare ivASP to iClingo in some benchmarks. The first series of instances are
from the GCP problem. The encoding of GCP for ivASP is like Example 1 with
the addition of two meta-statement declaring k as the incremental variable and
atoms instantiated from ncolor as non-level restrained. By treating GCP as a
finite model computation problem, we derive its domain description [5], which is
the encoding of GCP for iClingo. For the Towers of Hanoi problem, we use the
encoding and benchmarks from [2]. The rest of benchmarks are from the FNT
(First-order form syntactically non-propositional Non-Theorem) division of the
CASC-23 competition, also requiring iclingo to solve in at least 2 steps and more
than 0.1 second. Similar to fmc2iasp, which compiles finite model computation
(FMC) problems to iClingo programs, we also implement a tool that can convert
FMC problems to ivASP programs.

The experiments are all done in a linux desktop with an Intel Core i7-3520M
CPU and 4 GB memory. In Table 2, total times of ivASP and iClingo running
each selected instances are listed, with “–” denoting timeout in 500 seconds. The
second column n denotes the least value of the incremental variable when answer
sets are found.

As a conclusion, when a problem is natural to express by an ivASP program,
our approach has advantages in both the language and efficiency, as shown in
the GCP instances. In general, the performance of ivASP in these benchmarks
is comparable to that of iClingo, though there indeed some instances iClingo
shows over performance to ivASP. Nevertheless, we need to emphasize that this
is mainly due to the shortage of optimization of ivASP at this stage, that we
will seriously take into account in our next research.

6 Conclusion and Related Works

In this paper, an incremental variable was introduced to ASP language for incre-
mental problem solving, and a dynamic transformation, which is based on the
techniques of loop formulas [7] and conflict-driven learning [3], was then pro-
posed to accelerate the solving of answer sets for the new language. With this
transformation, a prototype system, ivASP, was developed, and the effectiveness
of our system was demonstrated by experiments on some benchmarks.

Another system, iClingo [2], was also developed for incremental answer set
solving. However, the problems to be solved in this system are required be-
ing encoded in three parts, which challenges the programmer on both domain
knowledge and programming techniques. Instead our system only requires the
problems being encoded in a natural way. Surprisingly, our system is still com-
parable to their system with regard to computation efficiency.



Table 2. Running time of ivASP and iClingo in selected benchmarks

instance n ivASP iClingo

1 FullIns 3 4 0.010 0.000
1 Insertions 4 5 38.270 51.760

2 FullIns 3 5 0.010 0.000
2 Insertions 3 4 0.020 0.010
3 Insertions 3 4 0.170 0.140

queen5 5 5 0.010 0.000
queen6 6 7 1.810 2.460
queen7 7 7 0.060 0.050
queen8 8 9 – –
queen8 12 12 97.020 183.450
queen9 9 10 – –

Towers of Hanoi

33 36.810 8.350
34 27.460 9.450
36 112.750 21.200
39 213.750 52.030
41 393.200 99.070

LCL651+1.010 2 0.090 0.120
LCL651+1.020 2 0.360 0.370
LCL653+1.005 2 0.110 0.090
LCL653+1.015 2 0.310 0.340
LCL655+1.010 2 5.790 3.460
LCL659+1.015 2 270.580 59.690
LCL661+1.001 2 0.140 0.120

instance n ivASP iClingo

LCL661+1.015 2 0.150 0.170
LCL669+1.015 2 0.180 0.260
LCL671+1.015 2 2.520 2.780
LCL677+1.015 2 0.160 0.200
LCL689+1.010 2 0.150 0.140
LCL689+1.020 2 0.270 0.340

NLP160+1 2 1.360 1.260
NLP161+1 2 2.670 1.370
NLP162+1 2 1.310 1.260
NLP164+1 2 2.090 2.300
NLP165+1 2 2.040 2.370
NLP190+1 2 46.870 22.330
NLP192+1 2 13.360 13.430
NLP193+1 2 21.100 21.960
NLP194+1 2 13.800 13.980
NLP195+1 2 13.220 13.080
NLP196+1 2 20.830 24.880
NLP211+1 7 1.450 0.540
NLP212+1 7 1.480 0.570
NLP213+1 7 1.440 0.560

SYN330+1 8 0.360 0.230
SYN335+1 11 106.950 59.930
SYN519+1 3 0.080 0.170

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York, NY, USA (2003)

2. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: En-
gineering an incremental asp solver. In: Logic Programming, pp. 190–205. Springer
(2008)

3. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Proceedings of the 20th international joint conference on Artifical intel-
ligence. pp. 386–392 (2007)

4. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence (2012)

5. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based
system for finite model computation. AI Commun. 24(2), 195–212 (Apr 2011)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic programming. vol. 161
(1988)

7. Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers.
Artificial Intelligence 157(1), 115–137 (2004)


