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In this article, we consider the issue of how first-order answer set programs can be extended for handling
preference reasoning. To this end, we propose a progression-based preference semantics for first-order an-
swer set programs while explicit preference relations are presented. We study essential properties of the
proposed preferred answer set semantics. To understand the expressiveness of preferred first-order answer
set programming, we further specify a second-order logic representation which precisely characterizes the
progression-based preference semantics.
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1. INTRODUCTION

Preferences play an important role in knowledge representation and reasoning. In the
past decade, a number of approaches for handling preferences have been developed
in various nonmonotonic reasoning formalism (e.g., see a survey by Delgrande et al.
[2004]), while adding preferences into answer set programming (ASP) has promis-
ing advantages from both implementation and application viewpoints [Brewka 2006;
Delgrande et al. 2003].

In recent years, as an important enhancement of traditional ASP approaches, first-
order answer set programs have intensively been studied by researchers [Asuncion
et al. 2012a; Lee and Palla 2010; Zhang and Zhou 2010]. First-order answer set pro-
gramming generalizes the traditional propositional ASP paradigm in which the se-
mantics of a program with variables is precisely captured by a second-order sentence,
and hence program grounding will be no longer needed to compute answer sets of the
underlying program [Ferraris et al. 2011; Lin and Zhou 2011]. This provides a new
research direction to develop more efficient ASP solvers, because it has been well un-
derstood that program grounding is the most computationally expensive phase in all
current ASP solvers, that is, Gebser et al. [2007].
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An important research agenda in this direction is to redevelop important function-
alities and properties, that have been successful in propositional ASP, under the new
framework of first-order ASP [Asuncion et al. 2012a, 2012b; Lee and Meng 2009]. In
this article, we propose a semantic framework for preferred first-order answer set pro-
grams in the case of normal logic programs, and show how preference reasoning is
properly captured under this new framework. In particular, in this article, we make
the following original contributions towards the development of preferred first-order
answer set programming:

—We propose a progression-based preference semantics for first-order answer set pro-
grams. This semantics is a generalization of the progression semantics for first-order
normal answer set programs proposed by Zhang and Zhou [2010], which also extends
Delgrande et al.’s preference semantics for propositional ASP [Delgrande et al. 2003;
Schaub and Wang 2003].

—We investigate essential semantic properties of preference reasoning under the pro-
posed preferred first-order ASP. In order to prove these important properties, we
specifically consider the grounding of preferred answer set programs and establish
its connections to the first-order case.

—Finally, we address the expressiveness of preferred first-order ASP in relation to
classical second-order logic. In particular, we show that the proposed preferred
semantics can be precisely represented by a second-order sentence on arbitrary
structures. Furthermore, by restricting on finite structures, the preferred semantics
can be characterized by an existential second-order sentence. As a consequence of
this result, we know that on finite structures, a preferred first-order normal logic
program can always be represented by a first-order sentence under an extended
vocabulary. Applying such second-order characterization method, we further gen-
eralize Schaub and Wang’s and Brewka and Eiter’s approaches of preferred logic
programs [Schaub and Wang 2003; Brewka and Eiter 1999] to the corresponding
first-order cases respectively.

The rest of the article is organized as follows. Section 2 provides logical preliminaries
that we will need throughout this article. Section 3 focuses on the development of a
progression-based semantics for preferred first-order answer set programs. Section 4
proposes a grounding semantic characterization for preferred first-order answer set
programs, and investigates several important semantic properties based on such
grounding characterization. Section 5 then provides a logical formulation on the
preferred answer set semantics, which shows that the progression-based preferred
answer set semantics can be precisely represented by a second-order sentence
on arbitrary structures. Such formulation may be further simplified if only finite
structures are considered. Section 6 compares our approach with other existing
propositional preferred logic programming frameworks in detail, and reveals some
interesting insights in this aspect. Finally, Section 7 concludes the article with some
remarks.

2. BASIC CONCEPTS

In this section, we first introduce necessary logical concepts and notions that we will
need in this article, and then provide a semantic overview of first-order answer set
programs.

2.1. Logical Preliminaries

We start with necessary logic notions and concepts. We consider a second-order lan-
guage without function symbols but with equality. A vocabulary τ is a finite set that
consists of relation symbols (or predicates) including the equality symbol = and constant
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symbols (or constants). Each predicate is associated with a natural number, called its
arity. Given a vocabulary, term, atom, substitution, (first-order and second-order) for-
mula and (first-order and second-order) sentence are defined in a standard way. In
particular, an atom is called an equality atom if it has the form t1 = t2, where t1 and t2
are terms. Otherwise, it is called a proper atom.

A structure A of vocabulary τ (or a τ -structure) is a tuple A = (A, cA1 , . . . , cAm, PA
1 , . . . ,

PA
n ), where A is a nonempty set called the domain of A (sometimes we use Dom(A) to

denote A’s domain), cAi (1 ≤ i ≤ m) is an element in A for every constant ci in τ , and PA
j

(1 ≤ j ≤ n) is a k-ary relation over A for every k-ary predicate Pj in τ . PA
j is also called

the interpretation of Pj in A. A structure is finite if its domain is a finite set. In this
article, we will consider arbitrary structures without restricting to finite structures
unless we specifically mention it.

Given two vocabularies τ1 and τ2 where τ2 ⊆ τ1, and a structure A of τ1, we say that
the restriction of A on τ2, denoted by A �τ2 , is a structure of τ2 whose domain is the same
as A’s, and for each constant c and relation symbol R in τ2, cA and RA are in A �τ2 . On
the other hand, if we are given a structure A′ of τ2, a structure A of τ1 is an expansion
of A′ to τ1, if A has the same domain of A′ and retains all cA

′
and RA′

for all constants
c and relation symbols R in τ2.

Let A be a τ -structure and A = Dom(A). An assignment in A is a function η from
the set of variables to A. An assignment can be extended to a corresponding function
from the set of terms to A by mapping η(c) to cA, where c is an arbitrary constant.
Let P(−→x ) be an atom and η an assignment in structure A. We also use P(−→x )η ∈ A to
denote η(−→x ) ∈ PA. The satisfaction relation |= between a structure A and a formula
φ associated with an assignment η, denoted by A |= φ[η], is defined as usual. Let −→x
be the set of free variables occurring in a formula φ. Then, the satisfaction relation
only relies on the assignment of −→x . In this case, we write A |= φ(−→x /

−→a ) to denote
the satisfaction relation, where −→a is a tuple of elements in A. In particular, if φ is a
sentence, then the satisfaction relation is independent on the assignment. In this case,
we simply write A |= φ for short.

Given a τ -structure A and an assignment η in A, if P is a predicate in τ , then we use
A∪ {P(−→x )η} to denote a new structure of τ which is obtained from A by expanding the
interpretation of predicate P in A (i.e., PA to PA ∪ {η(−→x )}). If P is a set of predicates,
we simply write Pη ⊆ A if for each P ∈ P, P(−→x )η ∈ PA. Similarly, we write Pη ∩A = ∅
if for each P ∈ P, P(−→x )η ∩ PA = ∅.

Let A1 and A2 be two τ -structures sharing the same domain, that is, Dom(A1) =
Dom(A2), and for each constant c in τ , cA1 = cA2 . By A1 ⊆ A2, we simply mean that for
each predicate P ∈ τ , PA1 ⊆ PA2 . By A1 ⊂ A2, we mean that A1 ⊆ A2 but not A2 ⊆ A1.
We write A1 ∪A2 to denote the structure of τ where the domain of A1 ∪A2 is the same
as A1 and A2’s domain, each constant c is interpreted in the same way as in A1 and
A2, and for each predicate P in τ , PA1∪A2 = PA1 ∪ PA2 .

2.2. An Overview of First-Order Answer Set Programs

In this article, we will focus on normal answer set programs. Whenever there is no
confusion, we may simply say answer set programs or logic programs (programs) in
our discussions throughout this article. A rule is of the form:

α ← β1, . . . , βk, not γ1, . . . , not γl, (1)

where α is a proper atom or the falsity ⊥ (i.e., an empty head), and β1, . . . , βk, γ1, . . . , γl
(k, l ≥ 0) are atoms. Here, α is called the head, {β1, . . . , βk} the positive body and
{not γ1, . . ., not γl}, the negative body of the rule, respectively. Sometimes, for convenience
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we use Head(r), Pos(r) and Neg(r) to denotes the sets {α}, {β1, . . . , βk} and {γ1, . . . , γl},
respectively.

A (first-order) normal answer set program (or simply called program) � is a finite
set of rules. Every relation symbol occurring in the head of some rule of � is called an
intentional predicate, and all other relation symbols in � are extensional predicates. We
use the notions τ (�) to denote the vocabulary containing all of the relation symbols and
constants in �, τint(�) to denote the vocabulary containing all intentional predicates
in �, and τext(�) to denote the vocabulary containing all extensional predicates and
constants in �. We also use notions P(�), Pint(�), and Pext(�) to denote the sets of all
predicates, intentional, and extensional predicates in �, respectively. A proper atom
P(−→t ) is extensional (intentional) if P is extensional (intentional). Furthermore, given
a set X of atoms, we denote by Pred(X) the set of all the predicate symbols occurring
in X. For instance, given a rule r of the form (1), Pred(Pos(r)) denotes the set of all the
predicate symbols occurring in the set {β1, . . . , βk}. Obviously, we use Head(�), Pos(�)
and Neg(�) to denote the unions of all Head(r), Pos(r) and Neg(r) for all rules r ∈ �,
respectively.

For convenience, from here on, we abbreviate by FO and SO the words first-order
and second-order respectively.

2.3. Semantics

For an FO answer set program �, denote by �̂ the FO sentence:∧
r∈�,

r: α←β1,...,βk,not γ1,...,not γl

∀−→xr (β1 ∧ · · · ∧ βk ∧ ¬γ1 ∧ · · · ∧ ¬γl → α), (2)

where for a rule r ∈ �, −→xr denotes the tuple of distinguishable variables occurring in
r. The formula �̂ is usually referred to as the universal closure of �. Then, a τ (�)-
structure A is an answer set of � iff A is a model of the following SO sentence ϕ:

�̂ ∧ ¬∃−→u (−→u <
−→
P ∧ �̂∗(−→u )), (3)

where:

—
−→
P = P1 . . . Pk denotes the tuple of intentional predicates P1, . . . , Pk of �;

—−→u = u1 . . . uk denotes the tuple of predicates variables u1, . . . , uk such that for each i
(1 ≤ i ≤ k), the arity of ui matches that of Pi;

—−→u <
−→
P is an SO formula:∧

Pi∈−→
P

∀−→x (ui(−→x ) → Pi(−→x )) ∧ ¬∧
Pi∈−→

P
∀−→x (Pi(−→x ) → ui(−→x ));

—and finally, �̂∗(−→u ) is an SO formula obtained from �̂ by replacing every Pi occurring
among α, β1, . . . , βk in Formula (2) with the predicate variable ui (1 ≤ i ≤ k) on �̂.

These semantics for the FO answer set program generalizes the traditional stable
model semantics for propositional answer set programs [Baral 2003; Gelfond and
Lifschitz 1988]. Here under the given FO structure, the extensional predicates are
viewed as the initial input to the program �, while minimization applies to the
underlying intentional predicates. It has been shown by Chen et al. [2011] that the
given FO answer set program semantics definition is equivalent to Ferraris et al.’s
original FO stable model semantics [Ferraris et al. 2011] when we restrict to normal
answer set programs.

Example 2.1. We consider a simple program � consisting of the following two rules:

P(x) ← not Q(x),
Q(x) ← Q(x).
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Note that program � has no extensional predicate. According to the given definition,
�’s answer sets are precisely the models of the formula ∀x(P(x) ∧ ¬Q(x)).

3. A PROGRESSION-BASED SEMANTICS

Let � be an FO program, and <⊆ � × � an irreflexive and transitive relation. Then
(�,<) is called a preferred FO program. Intuitively, if r1, r2 ∈ � and (r1, r2) ∈< (we may
write r1 < r2), we mean that r1 is more preferred than r2. That is, when we evaluate �,
we consider that r1 has a higher priority than r2 during the evaluation. However, this
intuition is quite vague, and we need to make this precise.

To develop a semantics for preferred FO answer set programs, we first introduce
some useful notions. Let � be an FO program and r a rule in �. We denote by Var(r)
and Const(r) the set of all variables and constants occurring in r respectively. We also
denote by Term(r) the set Var(r) ∪ Const(r). Consider a τ (�)-structure M and r ∈ �. We
define the set 
(�)M as follows:


(�)M = {(r, η) | r ∈ � and η : Term(r) −→ Dom(M)}.
Basically, 
(�)M contains all rules of � with the reference of all possible associated
assignments in the structure M. Such assignment references will be essential in the
development of the semantics for preferred programs.

Given a program �, let M be a τ (�)-structure. We specify M0(�) to be a new τ (�)-
structure obtained from M as follows:

M0(�) = (
Dom(M), cM

0

1 , . . . , cM
0

r , PM0

1 , . . . , PM0

s , QM0

1 , . . . , QM0

n

)
,

where cM
0

i = cMi for each constant ci of τ (�) (1 ≤ i ≤ r), PM0

j = PM
j for each extensional

predicate Pj in τext(�) (1 ≤ j ≤ s), and QM0

k = ∅ for each intentional predicate Qk in
τint(�) (1 ≤ k ≤ n). Furthermore, for some X ⊆ 
(�)M, we also define λM0 (X) to be a
τ (�)-structure generated from M0 and X in the following way:

λM0 (X) = M0(�) ∪ {Head(r)η | (r, η) ∈ X}.
We are now ready to present a progression-based semantics for preferred FO pro-

grams.

Definition 3.1 (Preferred Evaluation Stage). Let (�,<) be a preferred FO answer
set program and M a τ (�)-structure. We define a sequence as follows:

�0(�)M = {(r, η) | (1) Pos(r)η ⊆ M0(�) and Neg(r)η ∩ M = ∅;
(2) there does not exist a rule r′∈ � and an assignment η′

such that r′ < r, Pos(r′)η′ ⊆ M and
Neg(r′)η′ ∩ M0(�) = ∅};

�t+1(�)M = �t(�)M ∪ {(r, η) | (1) Pos(r)η ⊆ λM0 (�t(�)M) and
Neg(r)η ∩ M = ∅;

(2) there does not exist a rule r′ ∈ �
and an assignment η′ such that r′ < r,

(r′, η′) �∈ �t(�)M, and Pos(r′)η′ ⊆ M
and Neg(r′)η′ ∩ λM0 (�t(�)M) = ∅}.

Let �∞(�)M = ⋃∞
t=0 �t(�)M, where �t(�)M is called the t-th preferred evaluation stage

of (�,<) based on M.

Let us take a closer look at Definition 3.1. First, M0(�) contains all extensional
relations as input, and any rule r with the highest priority, where its positive body is
satisfied in M0(�) (i.e., Pos(r)η ⊆ M0(�)) and negative body is not satisfied in M (i.e.,
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Neg(r)η ∩ M0(�) = ∅), will be generated along with the underlying assignment η (i.e.,
as a tuple (r, η)). This forms the initial stage, �0(�)M.

Second, we consider the structure λM0 (�t(�)M), that is obtained from the structure
M0(�) by expanding all relations derived from the rules in �t(�)M (with the associated
assignments). Then, the structure λM0 (�t(�)M) will be used as a basis to evaluate
program (�,<) at the (t+1)-th stage. Condition (1) in �t+1(�)M is quite straightforward:
the positive body of the rule to be generated should be satisfied by the structure obtained
from the previous evaluation stages, and the negative body should not be satisfied in
M. Condition (2) in �t+1(�)M, on the other hand, takes the preference into account.
In particular, in addition to condition (1), we further require a rule to be generated
based on two criteria: (a) no other rules with higher priorities have not been generated
earlier; and (b) these rules’ positive bodies are already satisfied in M and their negative
bodies are not satisfied (not defeated) by the structure λM0 (�t(�)M) generated from the
previous stages. Generally speaking, this strategy ensures that when we consider a
rule for application, other more preferred rules had already been settled in the sense
that the more preferred rules had already been derived or that they cannot possibly
ever be derived since either their positive bodies are not satisfied by M or that they
are already defeated by the structure from the previous stage.

Definition 3.1 may be viewed as the generalization of Zhang and Zhou’s progression
semantics [Zhang and Zhou 2010] for the FO normal answer set programs by taking
preference into account. We should also emphasize its connection to Schaub and Wang’s
order preservation semantics for propositional preferred logic programs [Schaub and
Wang 2003]. Specifically, the condition (2) in the specification of �t+1(�)M is a first-order
generalization of Schaub and Wang’s immediate consequence operator (i.e., operator
T(�,<),Y X for D-preference in Definition 6 in Schaub and Wang [2003]). Nevertheless,
Schaub and Wang’s order preservation semantics may not be directly extended into
our first-order case, because during each evaluation stage, we must keep track of the
assignments that are applied to all rules in the progression evaluation. Without such
assignment references, the rules generated from the evaluation stage will lose their
preference features because rules with different priorities may be instantiated to the
same grounded rule.

Definition 3.2 (Progression-Based Preferred Semantics). Let (�,<) be a preferred
FO program and M a τ (�)-structure. M is called a preferred answer set of (�,<) iff
λM0 (�∞(�)M) = M.

Example 3.3. Let us consider the following simple preferred program (�1,<1),
where

r1: Flies(x) ← Bird(x), not Cannot f ly(x),
r2: Cannot f ly(x) ← Penguin(x), not Flies(x),
r2 <1 r1.

We consider a finite structure M, where

Dom(M) = {cody, tweety},
BirdM = {cody, tweety},
PenguinM = {tweety},
FliesM = {cody}, and
Cannot f lyM = {tweety}.

In �1, Bird and Penguin are extensional predicates, and Flies and Cannot f ly are
intentional. According to Definition 3.1, we have
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�0(�1)M = {(r2, η) | η : {x} −→ {tweety}},
�2(�1)M = �1(�1)M = �0(�1)M ∪ {(r1, η

′) | η′ : {x} −→ {cody}}.
Then from Definition 3.2, we have

λM0 (�2(�1)M) = M0 ∪ {Cannot f ly(tweety), Flies(cody)} = M.

So M is a preferred answer set of (�1,<1).

PROPOSITION 3.4. Let (�,<) be a preferred program. If <= ∅, then a structure M of
τ (�) is a preferred answer set of (�,<) iff M is an answer set of �.

PROOF. By restricting the preference relation < to be empty, the definition of �t(�)M
is simplified to the following form:

�0(�)M = {(r, η) | Pos(r)η ⊆ M0(�) and Neg(r)η ∩ M = ∅};
�t+1(�)M = �t(�)M ∪ {(r, η) | Pos(r) ⊆ λM0 (�t(�)M)

and Neg(r)η ∩ M = ∅}.
It is easy to observe the correspondence between �t(�)M and Mt(�) in Definition 1
from Zhang and Zhou [2010]. Indeed, we can show that for each t ≥ 0, λM0 (�t(�)M) =
Mt+1(�). Therefore, λM0 (�∞(�)M) = M∞(�). Then from Theorem 1 by Zhang and
Zhou [2010], we conclude that M is a preferred answer set of (�,∅) iff M is an answer
set of �.

PROPOSITION 3.5. Let (�,<) be a preferred program. If a τ (�)-structure M is a pre-
ferred answer set of (�,<), then M is an answer set of �.

PROOF. We prove this proposition by using a result from Zhang and Zhou [2010],
which provides a progression-based answer set semantics for FO answer set programs.
Such progression semantics is a special case of our progression-based preferred seman-
tics specified in Definition 3.1.

We first give Zhang and Zhou’s progression semantics as follows. Let � be an FO
answer set program and 
� = {Q1, . . . , Qn} the set of all the intentional predicates of
�. Consider a structure M of τ (�). The t-th simultaneous evolution stage of � based
on M (t ≥ 0), denoted as Mt(�), is a structure of τ (�) defined inductively as follows:

M0(�) = (
Dom(M), cM

0

1 , . . . , cM
0

r , PM0

1 , . . . , PM0

s , QM0

1 , . . . , QM0

n

)
,

where cM
0

i = cMi for each constant ci of τ (1 ≤ i ≤ r),
PM0

j = PM
j for each extensional predicate Pj in τext(�)

(1 ≤ j ≤ s), and QM0

k = ∅ for each intentional predicate Qk
in τint(�) (1 ≤ k ≤ n);

Mt+1(�) = Mt(�) ∪ {Qi(−→x )η | there exists a rule
Qi(−→x ) ← β1, . . . , βm, not γ1, . . . , not γl ∈ � and an assignment η

such that for all j (1 ≤ j ≤ m), β jη ∈ Mt(�), and for all
k (1 ≤ k ≤ l), γkη �∈ M};

M∞ =
∞⋃

t=0
Mt(�).

Then, by Theorem 1 from Zhang and Zhou [2010], we know that M is an answer set of
� iff M∞(�) = M.
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Now to prove this proposition, we will show that under the condition λM0 (�∞(�)M) =
M, λM0 (�∞(�)M) ⊆ M∞(�) and M∞(�) ⊆ λM0 (�∞(�)M). Indeed, it is easy to show
the former holds by the definition of λM0 (�∞(�)M). Therefore, it is only left to show
M∞(�) ⊆ λM0 (�∞(�)M). We show this by induction on t that Mt(�) ⊆ λM0 (�∞(�)M).

Basis. Clearly, since λM0 (�∞(�)M) = M0(�) ∪ {Head(r)η | (r, η) ∈ �∞(�)M}, then it
immediately follows that M0(�) ⊆ λM0 (�∞(�)M).

Step. Assume for 0 ≤ t′ ≤ t we have Mt′
(�) ⊆ λM0 (�∞(�)M).

We show Mt+1(�) ⊆ λM0 (�∞(�)M). On the contrary, suppose Mt+1(�) �⊆ λM0 (�∞(�)M).
Then there exists a rule r ∈ � and an assignment η such that Pos(r)η ⊆ Mt(�) and
Neg(r)η ∩ M = ∅, and where Head(r)η ∈ Mt+1(�) and Head(r)η /∈ λM0 (�∞(�)M). Now,
since Mt(�) ⊆ λM0 (�∞(�)M) (i.e., by the inductive assumption), then for some n ≥ 0,
we have Mt(�) ⊆ λM0 (�n(�)M). Furthermore, since Head(r)η /∈ λM0 (�∞(�)M), then we
also have Head(r)η /∈ λM0 (�n+1(�)M), and hence, that (r, η) /∈ �n+1(�)M. Then, by the
definition of �n+1(�)M, there must exists a rule r′ < r and an assignment η′ such that:

(a) Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�n(�)M)) = ∅;
(b) (r′, η′) /∈ �n(�)M,

that is, a rule blocking r from being applied at stage n + 1. Now, for a k ≥ 0 and
(arbitrary) rule r∗ ∈ � and corresponding assignment η∗, set Bk(r∗, η∗) to be such that

B0(r∗, η∗) = {(r′, η′) |r′ < r∗, Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ M0(�) = ∅} and

Bk(r∗, η∗) = {(r′, η′) |(a) r′ < r∗;

(b) Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�k(�)M) = ∅;

(c) (r′, η′) /∈ �k(�)M}
for k ≥ 1. Intuitively, Bk(r∗, η∗) comprises the pair (r′, η′) that blocks (r∗, η∗) from being
applied at stage k+1. Now, the following Claims 1, 2, and 3 reveal important properties
of the set Bk(r∗, η∗).

CLAIM 1. For all k′ ≥ k ≥ 1, we have Bk(r∗, η∗) ⊇ Bk′
(r∗, η∗). In other words, we do not

gain anymore pairs (r′, η′) blocking (r∗, η∗) from being applied as we progress along the
stages of �k′

(�)M.

PROOF OF CLAIM 1. For simplicity we assume that k ≥ 1 (the case where we allow k = 0
immediately follows). Set k′ to be such that k′ ≥ k and let (r′′, η′′) ∈ Bk′

(r∗, η∗). Then by
the definition of Bk′

(r∗, η∗), we have:

(a) r′′ < r∗;

(b) Pos(r′′)η′′ ⊆ M and Neg(r′′)η′′ ∩ λM0 (�k′
(�)M) = ∅;

(c) (r′′, η′′) /∈ �k′
(�)M.

Then by the monotonicity of �k′
(�)M for k′ ≥ k (i.e., �k(�)M ⊆ �k′

(�)M), we also have:

(a) r′′ < r∗;

(b) Pos(r′′)η′′ ⊆ M and Neg(r′′)η′′ ∩ λM0 (�k(�)M) = ∅;

(c) (r′′, η′′) /∈ �k(�)M,

and hence, that (r′′, η′′) ∈ Bk(r∗, η∗). This ends the proof of Claim 1.
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CLAIM 2. For each (r′, η′) ∈ Bk(r∗, η∗), Bk(r′, η′) ⊆ Bk(r∗, η∗). That is, for each pairs
(r′, η′) ∈ Bk(r∗, η∗) blocking (r∗, η∗) from being applied at stage k + 1, the pairs (r′′, η′′)
blocking (r′, η′) in turn at stage k+1, are themselves in Bk(r∗, η∗). Intuitively, this implies
Bk(r∗, η∗) satisfies some form of closure.

PROOF OF CLAIM 2. Set (r′, η′) ∈ Bk(r∗, η∗) and let (r′′, η′′) ∈ Bk(r′, η′). Then we have
r′ < r∗ and r′′ < r′ by the definitions of Bk(r∗, η∗) and Bk(r′, η′), respectively. Then, by
transitivity, we also have r′′ < r∗. Hence, by the definition of Bk(r∗, η∗), we also have
(r′′, η′′) ∈ Bk(r∗, η∗). This ends the proof of Claim 2.

CLAIM 3. Bk(r∗, η∗) = ∅ for some ordinal k ≥ 1. That is, eventually, there will be some
stage k ≥ 1 such that there will be no more pairs (r′, η′) blocking (r∗, η∗) from being
applied. First, we provide the intuition of the proof of Claim 3.

Basically, under the assumption �∞(�)M = M, we prove by showing that for all
the pairs (r′, η′) ∈ Bk(r∗, η∗), there will be some l > 0 such that either �k+l(�)M will
“defeat” (r′, η′) (i.e., as in Neg(r′)η′ ∩ �k+l(�)M �= ∅) or gets “eaten up” by it (i.e., as in
(r′, η′) ∈ �k+l(�)M).

PROOF OF CLAIM 3. First, we show for all k ≥ 1, Bk(r∗, η∗) �= ∅ implies there exists
some l > 0 such that Bk(r∗, η∗) ⊃ Bk+l(r∗, η∗). Thus, for a k ≥ 1, let (r′, η′) ∈ Bk(r∗, η∗).
Moreover, without loss of generality, assume that for all (r′′, η′′) ∈ Bk(r∗, η∗), we have
r′′ �< r′ (i.e., note that due to the finiteness of �, we will always have these pairs
(r′, η′) ∈ Bk(r∗, η∗)). Then we have Bk(r′, η′) = ∅. This is because if Bk(r′, η′) �= ∅ and let
(r′′, η′′) ∈ Bk(r′, η′), we will have r′′ < r′ by the definition of Bk(r′, η′), which contradicts
the initial assumption about the pair (r′, η′). Now, as (r′, η′) ∈ Bk(r∗, η∗), then by the
definition of Bk(r∗, η∗), we have Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�k(�)M) = ∅. Also,
since λM0 (�∞(�)M) = M by assumption, then for some l ≥ 0, we have Pos(r′)η′ ⊆
λM0 (�k+l(�)M). Now there can only be two possibilities.

Case 1. Neg(r′)η′ ∩ M = ∅. Then since we also have Bk+l(r′, η′) = ∅ by Claim 1
(i.e., since Bk(r′, η′) = ∅), then we have (r′, η′) ∈ M0(�k+l+1(�)M by the definition of
�k+l+1(�)M since (r′, η′) will now be applicable at this stage (i.e., since there are no
pairs (r′′, η′′) blocking (r′, η′) from application at stage k + l + 1 since Bk+l(r′, η′) = ∅).
Then by the definition of Bk+l+1(r∗, η∗), we have (r′, η′) /∈ Bk+l+1(r∗, η∗), which implies
Bk(r∗, η∗) �= Bk+l+1(r∗, η∗). Then since by Claim 1, we have Bk(r∗, η∗) ⊇ Bk+l+1(r∗, η∗),
then we must have Bk(r∗, η∗) ⊃ Bk+l+1(r∗, η∗).

Case 2. Neg(r′)η′ ∩ M �= ∅. Then there could be further two possibilities.

—Subcase 1. Neg(r′)η′ ∩ λM0 (�k+l(�)M) �= ∅. Then we have (r′, η′) /∈ Bk+l(r∗, η∗) by
the definition of Bk+l(r∗, η∗). Moreover, since (r′, η′) ∈ Bk(r∗, η∗), then it must be
that k + l > k, which implies l > 0. Hence, similarly to before, we have also that
Bk(r∗, η∗) ⊃ Bk+l(r∗, η∗) with l > 0.

—Subcase 2. Neg(r′)η′ ∩λM0 (�k+l(�)M) = ∅. Then since λM0 (�∞(�)M) = M by assump-
tion, there exists some m > 0 such that Neg(r′)η′ ∩ λM0 (�k+l+m(�)M) �= ∅, which
implies (r′, η′) /∈ Bk+l+m(r∗, η∗) by the definition of Bk+l+m(r∗, η∗). Hence, in a similar
manner, we have Bk(r∗, η∗) ⊃ Bk+l+m(r∗, η∗) with m > 0.

Therefore, we have that for all k ≥ 1, Bk(r∗, η∗) �= ∅ implies there exists some l > 0
such that Bk(r∗, η∗) ⊃ Bk+l(r∗, η∗). Now we show for all k ≥ 1 and l > 0, Bk(r∗, η∗) ⊃
Bk+l(r∗, η∗) implies �k(�)M ⊂ �k+l(�)M. Hence, assume that Bk(r∗, η∗) ⊃ Bk+l(r∗,
η∗) and let (r′, η′) ∈ Bk(r∗, η∗) where (r′, η′) /∈ Bk+l(r∗, η∗). Then by the definition of
Bk(r∗, η∗) we have:
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(1) r′ < r∗;
(2) Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�k(�)M) = ∅;
(3) (r′, η′) /∈ �k(�)M.

Also, since (r′, η′) /∈ Bk+l(r∗, η∗), then by the definition of Bk+l(r∗, η∗), we have either:

(1) Neg(r′)η′ ∩ λM0 (�k+l(�)M) �= ∅, or
(2) (r′, η′) ∈ �k+l(�)M.

In either of these two aforementioned possibilities, it can be seen that �k(�)M �=
�k+l(�)M. Therefore, since �k(�)M ⊆ �k+l(�)M, then we must have �k(�)M ⊂
�k+l(�)M. Hence, from this, we obtain the equivalent true statement: if for all k ≥ 1
and l > 0 we have �k(�)M = �k+l(�)M, then Bk(r∗, η∗) = Bk+l(r∗, η∗). Now, by the
monotonicity of �k(�)M for all k ≥ 1 and its guaranteed convergence, it follows that
there exists some K ≥ 1 such that for all l > 0, �K(�)M = �K+l(�)M (i.e., reached its
convergent point). Then we also have BK(r∗, η∗) = BK+l(r∗, η∗). Then since this holds
for all l > 0, we must have BK(r∗, η∗) = ∅ for if BK(r∗, η∗) �= ∅, then this will contradict
the given result that there exists some l > 0 for which BK(r∗, η∗) ⊃ BK+l(r∗, η∗) (i.e.,
which also means BK(r∗, η∗) �= BK+l(r∗, η∗)). This ends the proof of Claim 3.
Therefore, by Claim 3, there exists some ordinal n′ > n for which Bn′

(r, η) = ∅. Then
at this stage (i.e., n′), there would be no other pairs (r′, η′) blocking (r, η) from be-
ing applied. Now, by the monotonicity of �n(�)M for all n ≥ 0, we have Pos(r)η ⊆
λM0 (�n′

(�)M) and Neg(r)η ∩ M = ∅. Then this implies (r, η) ∈ �n′+1(�)M, which fur-
ther implies Head(r)η ∈ λM0 (�∞(�)M). This then contradicts the initial assumption
Head(r)η /∈ λM0 (�∞(�)M). Therefore, we must have Mt+1(�) ⊆ λM0 (�∞(�)M). This
completes our proof of M∞(�) ⊆ λM0 (�∞(�)M).

4. PROPERTIES OF PREFERRED ANSWER SETS

In this section, we study some essential properties of the preferred answer set seman-
tics proposed in the previous section. First, from Proposition 3.5, we know that for any
preferred program (�,<), its preferred answer sets must also be answer sets of �. Now
we take a closer look at the relationship between the existence of an answer set of �
and of a preferred one of (�,<).

Example 4.1. Let (�2,<2) be a preferred program as follows:

r1 : P(x) ← Q(x),
r2 : Q(x) ←,
r1 <2 r2.

Note that �2 has no extensional predicate, and any structure M on τ (�2) where
PM = QM = Dom(M) is an answer set of �2. But (�2,<2) has no preferred answer set.
To see this, we consider Definition 3.1. For any M which is an answer set of �2, we have
�0(�2)M = �1(�2)M = ∅. It follows that λM0 (�∞(�2)M) = M′ where PM′ = QM′ = ∅.
By Definition 3.2, M cannot be a preferred answer set of (�2,<2).

Now we consider another preferred program (�3,<3) as follows:

r1 : P(y) ← P(x), Q(x),
r2 : P(x) ← Q(x),
r1 <3 r2.

Here, Q is the only extensional predicate of �3. It is not difficult to show that for any
answer set M of �3 where PM = QM �= ∅, M cannot be a preferred answer set of
(�3,<3). However, (�3,<3) has one preferred answer set M′ in which PM′ = QM′ = ∅.
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Program (�2,<2) from Example 4.1 suggests that the existence of answer set for a
program � does not necessarily imply the existence of a preferred answer set for a
corresponding preferred program (�,<). On the other hand, program (�3,<3) seems
to suggest that if the positive body for each rule of the program contains proper atoms,
then a preferred answer set always exists. The following proposition shows that this is
the case.

PROPOSITION 4.2. Let � be an answer set program where for each rule r ∈ �, Pos(r)
contains proper atoms. Then for any preferred program (�,<) built upon �, (�,<) has
a preferred answer set.

PROOF. Since for each rule r ∈ �, Pos(r) contains proper atoms, we can always
construct a structure M in which for all proper atoms P(−→x ) ∈ Pext(�) ∪Pint(�), we set
PM = ∅. In this case, we can see that M is an answer set of �. Furthermore, from
Definitions 3.1 and 3.2, we know that M is also an answer set of (�,<) because for any
preference relation <⊆ � × �, �∞(�)M = ∅.

It is also worth mentioning that simplifications suitable for nonpreferred programs
usually are not applicable to preferred programs. Consider the following program:

r1 : P(x) ← Q(x),
r2 : Q(x) ← R,
r3 : R ←,
r1 < r3.

This program has no preferred answer set. But if we replace rule r2 as follows based
on the fact that there is no preference relation between r2 and r3:

r′
2 : Q(x) ←,

then the new program

r1 : P(x) ← Q(x),
r′

2 : Q(x) ←,
r3 : R ←,
r1 < r3.

has an answer set. In fact, such simplification has already changed the original pro-
gram’s semantics.

4.1. Grounding Preferred Logic Programs

It has been observed that the answer sets of FO programs can always be obtained via its
grounded correspondence [Asuncion et al. 2012a]. We would like to explore whether this
approach is also suitable for preferred FO answer set programs, because a grounding
based approach will provide an effective means to study semantic properties of the
corresponding FO preferred logic programs.

Nevertheless, unlike the case of FO answer set programs, a naive grounding method
does not work for preferred programs. Let us consider the following program (�4,<4):

r1 : P(x) ← Q(y),
r2 : P(z) ← Q(z),
r1 <4 r2.

If we simply ground � under a domain consisting of a singleton {a}, the grounded
program would only contain one instance {P(a) ← Q(a)}, while the original preference
relation r1 <4 r2 collapses with this instance. This problem may be avoided by relating
each rule of � with a corresponding tag predicate, as showed in the following.
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Let (�,<) be an FO preferred answer set program on vocabulary τ (�). A preferred
program (�′,<′) is called the tagged preferred program of (�,<), if (1) for each rule in
�:

ri : α ← β1, . . . , βk, not γ1, . . . , not γl,

�′ contains its tagged rule of the form:

r′
i : α ← β1, . . . , βk, not γ1, . . . , not γl, T agi(−→x ),

where −→x is the tuple of all variables occurring in ri and T agi is a new extensional
predicate not in τ (�); (2) �′ does not contain any other rules; and (3) for two rules r′

i
and r′

j in �′, r′
i <′ r′

j iff ri < rj specified in (�,<).
Let (�,<) be a preferred answer set program on vocabulary τ (�) and (�′,<′) the

tagged preferred program of (�,<) on vocabulary τ (�′) = τ (�) ∪ {T ag1, . . . , T agk}1.
Given a τ -structure M, we construct an expansion M′ of M to τ (�′) as follows:

(1) Dom(M′) = Dom(M);
(2) For each predicate P and constant c in τ , PM′ = PM and cM

′ = cM;
(3) For each n-ary T agi in τ ′ (1 ≤ i ≤ k), T agM′

i = Dom(M′)n.

Let r′ ∈ �′ and η an assignment on structure M′ of τ (�′). We use the notation r′η to
denote the ground instance of r′ based on η. Now we are ready to define the grounding
of a preferred answer set program.

Definition 4.3. Let (�,<) be a preferred answer set program, M a structure of τ (�),
(�′,<′) the tagged answer set program of (�,<), and M′ the expansion of M to τ (�′)
as described earlier. We say that a pair (Ground(�)M,<∗) is the grounded preferred
answer set program of (�,<) based on M, if

(1) Ground(�)M = {r∗ | r∗ : Head(r)η ← Body(r)η, T ag(−→x )η, where r ∈ � and
η is an assignment on M′} ∪
{P(−→a ) ← | P ∈ Pext(�) and P(−→a ) ∈ PM} ∪
{T agi(−→a ) ← | T agi(−→a ) ∈ T agM′

i (1 ≤ i ≤ k)}
∪ {a = a ←| a is an element of Dom(M′)}2;

(2) <∗= {(r∗
i , r∗

j ) | r∗
i , r∗

j ∈ Ground(�)M for some r′
k, r′

l ∈ �′ such that there exist
assignments η and η′ on M′ satisfying r∗

i = r′
kη, r∗

j = r′
lη

′

and r′
k <′ r′

l}.
Example 4.4. We consider the preferred program (�1,<1) from Example 3.3 again.

Under the structure M given in Example 3.3, the grounded preferred program of
(�1,<1) is as follows:

r∗
1 : Flies(cody) ← Bird(cody), not Cannot f ly(cody), Tag1(cody),

r∗
2 : Flies(tweety) ← Bird(tweety), not Cannot f ly(tweety), Tag1(tweety),

r∗
3 : Cannot f ly(cody) ← Penguin(cody), not Flies(cody), Tag2(cody),

r∗
4 : Cannot f ly(tweety) ← Penguin(tweety), not Flies(tweety), Tag2(tweety),

r∗
5 : Bird(cody) ←,

r∗
6 : Bird(tweety) ←,

r∗
7 : Penguin(tweety) ←,

r∗
8 : Tag1(cody) ←,

r∗
9 : Tag1(tweety) ←,

1We assume that � contains rules r1, . . . , rk.
2Here, we view a = a as a propositional atom.
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r∗
10 : Tag2(cody) ←,

r∗
11 : Tag2(tweety) ←,

r∗
12 : cody = cody ←,

r∗
13 : tweety = tweety ←,

r∗
3 <∗ r∗

1 ,
r∗

3 <∗ r∗
2 ,

r∗
4 <∗ r∗

1 ,
r∗

4 <∗ r∗
2 .

Now let us consider the preferred program (�4,<4) we discussed earlier under the
finite structure M = ({a}, {P(a)}, {Q(a)}). It is clear that M is an answer set of �4.
By Definition 4.3, it is easy to see that the grounded preferred program of program
(�4,<4) consists of the following rules and preferences:

r∗
1 : P(a) ← Q(a), Tag1(a),

r∗
2 : P(a) ← Q(a), Tag2(a),

r∗
3 : Q(a) ←,

r∗
4 : Tag1(a) ←,

r∗
5 : Tag2(a) ←,

r∗
6 : a = a ←,

r∗
1 <∗ r∗

2 .

It is noted that with the tag predicate introduced, the preference in the original pre-
ferred program (�4,<4) is preserved in its grounded preferred program.

Basically, a grounded preferred answer set program is presented in a propositional
form and may contain an infinite number of rules and preference relations, if an infi-
nite domain is considered. We will define the semantics for such grounded preferred
programs, and show that it coincides with the progression-based semantics for FO
preferred programs.

Definition 4.5 (Preferred Answer Sets for Grounded Programs). Let (�,<) be a
grounded preferred answer set program as obtained from Definition 4.3 and S a set of
propositional atoms. We define a sequence as follows:

�0(�)S = {r | (1) Pos(r) = ∅ and Neg(r) ∩ S = ∅;
(2) there does not exist a rule r′ ∈ � such that r′ < r,

Pos(r′) ⊆ S and Neg(r′) ∩ Head(r) = ∅};
�t+1(�)S = �t(�)S ∪ {r | (1) Pos(r) ⊆ Head(�t(�)S)

and Neg(r) ∩ S = ∅;
(2) there does not exist a rule r′ ∈ � such that

r′ < r, r′ �∈ �t(�)S, and Pos(r′) ⊆ S
and Neg(r′) ∩ Head(�t(�)S) = ∅}.

Let �∞(�)S = ⋃∞
t=0 �t(�)S, where �t(�)S is called the t-th preferred evaluation stage

of (�,<) based on S. S is called a preferred answer set of (�,<) iff Head(�∞(�)S) = S.

Example 4.6. Example 4.4 continued. It is easy to see that under Definition 4.5, the
grounded preferred program of (�1,<1) has a unique preferred answer set:

{Bird(cody), Bird(tweety), Penguin(tweety), Flies(cody), Cannot f ly(tweety),
Tag1(cody), Tag2(cody), T ag1(tweety), T ag2(tweety),
cody = cody, tweety = tweety}.
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On the other hand, the grounded preferred program of (�4,<4) has a unique preferred
answer set {P(a), Q(a), T ag1(a), T ag2(a), a = a}.

The following result shows that the preferred answer sets of each FO preferred
answer set program can be precisely computed through its grounded counterpart.

THEOREM 4.7. Let (�,<) be an FO preferred answer set program, M a structure of
τ (�), and (Ground (�)M,<∗) the grounded preferred answer set program of (�,<) based
on M as defined in Definition 4.3. Then, M is a preferred answer set of (�,<) iff there
is a preferred answer set S of (Ground(�)M,<∗) such that S ∩ M = M.

PROOF. (⇒) Suppose that M is a preferred answer set of (�,<). According to
Definitions 4.3 and 4.5, we construct a set S of propositional atoms from the expan-
sion M′ of M as described earlier, and show that S is a preferred answer set for the
grounded preferred program (Ground(�)M,<∗) and S ∩ M = M. Let (�′,<′) be the
tagged preferred program obtained from (�,<), the construction of S is as follows:

(1) For each predicate P ∈ τ (�′) other than =, if P(−→a ) ∈ PM′
, then P(−→a ) ∈ S (here,

P(−→a ) is treated as a propositional atom);
(2) For each element a ∈ Dom(M′), propositional atom a = a is in S (note that

Dom(M) = Dom(M′));
(3) S does not contain any other atoms.

Clearly, if we view all elements occurring in M’s relations as propositional atoms, we
have S ∩ M = M′ ∩ M = M.

Now we show that S is a preferred answer set of (Ground(�)M,<∗). For each rule
r ∈ �, we denote rT ∈ �′ as the tagged rule obtained from r by adding the corresponding
atom T ag(−→x ) to r’s positive body (see earlier definition). Also note that since Dom(M) =
Dom(M′), each assignment η ofM is also an assignment ofM′. Then, from the definition
of (Ground(�)M,<∗), we can see that for each r ∈ �, assignment η of M and t (t ≥ 0),
(r, η) ∈ �t(�)M iff rT η ∈ �t(Ground(�)M)S. On the other hand, since the only extra
rules in �∞(Ground(�)M)S are those of the forms T agi(−→a ) ← and a = a ←, while S
contains all atoms of the forms T agi(−→a ) and a = a, S is exactly the set {Head(rT η) |
rT η ∈ �∞(Ground(�)M)S} ∪ {T agi(−→a ), a = a | for all corresponding i’s, −→a ’s and a’s}.
This means that S is a preferred answer set of (Ground(�)M, <∗).

The other direction can be proved with similar arguments.

4.2. Semantic Properties

In this subsection, we study several specific properties of preferred answer set seman-
tics. As we will see, the grounded preferred answer set semantics provides a basis
for our investigation. We first define the notion of generating rules. Let (�,<) be a
grounded preferred answer set program and S a set of propositional atoms. We say
that a rule r ∈ � is a generating rule of S if Pos(r) ⊆ S and Neg(r) ∩ S = ∅. Now
consider (�,<) to be an FO preferred answer set program and M a structure of τ (�),
then we say that a rule r ∈ � is a generating rule of M under the assignment η if
M |= ̂Pos(r)η ∧ ¬ ̂Neg(r)η, where ̂Pos(r) and ¬ ̂Neg(r) denote the formulas β1 ∧ · · · ∧ βk
and ¬γ1 ∧ · · · ∧ ¬γk, respectively.

LEMMA 4.8. Let (�,<) be a grounded preferred answer set program and S an answer
set of �. Then the following two statements are equivalent:

(1) S is a preferred answer set of (�,<).
(2) For each rule r ∈ �, r ∈ �∞(�)S iff r is a generating rule of S.
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PROOF. (⇒) Suppose S is a preferred answer set of (�,<). If r ∈ �∞(�)S, then
according to Definition 4.5, we know that Pos(r) ⊆ Head(�∞(�)S) and Neg(r) ∩ S = ∅.
Since Head(�∞(�)S) = S, this implies that r is a generating rule of S.

On the other hand, suppose that r is a generating rule of S. We will show that r ∈
�∞(�)S. We prove this result by induction on the sequence of rules under ordering <.
First, consider any rule r ∈ S where there does not exist any other rule r′ in � such
that r′ < r. According to Definition 4.5, r ∈ �0(�)S if Pos(r) = ∅, otherwise there exists
some k such that r ∈ �k(�)S. Now we assume that for all generating rules r′ of S
such that r′ < r, r′ ∈ �∞(�)S. Suppose that r �∈ �∞(�)S. Then for all t, we have that
r �∈ �t(�)S. That is, for all t, either (1) Pos(r) �⊆ Head(�t−1(�)S) or Neg(r) ∩ S �= ∅;
or (2) there exists some r′ ∈ � such that r′ < r, r′ �∈ �t−1(�)S, Pos(r′) ⊆ S and
Neg(r′)∩ Head(�t−1(�)S) = ∅. Since r is a generating rule of S and S = Head(�∞(�)S),
it is obvious that case (1) cannot occur. So it has to be case (2). In this case, we can
select a sufficient large t such that for any other t′ where t′ > (t−1), no more rules from
� can be added into �t′

(�)S, that is, �t−1(�)S = �t′
(�)S for all t′ > (t − 1)3. Therefore,

for this particular t, we can find some r′ ∈ � such that r′ < r and r′ /∈ �t−1(�)S. Since
Pos(r′) ⊆ S and Neg(r′)∩ Head(�t−1(�)S) = Neg(r′)∩ Head(�∞(�)S) = Neg(r′)∩ S = ∅,
it follows that r′ is a generating rule of S. Since according to our inductive hypothesis,
we had that r′ ∈ �∞(�)S, then this is a contradiction.

(⇐) For each r ∈ �∞(�)S, r is a generating rule of S, so Pos(r) ⊆ S and Neg(r)∩S = ∅.
Also, since S is an answer set of �, it follows Head(r) ∈ S. So Head(�∞(�)S) ⊆ S. Now
we show S ⊆ Head(�∞(�)S). Consider any r ∈ � such that Head(r) ∈ S. Since S
is an answer set of �, there must exist a rule r′ ∈ � such that Head(r) = Head(r′),
Pos(r′) ⊆ S and Neg(r′) ∩ S = ∅. This means that r′ is a generating rule of S. From the
condition, we know that r′ ∈ �∞(�)S. It follows Head(r) = Head(r′) ∈ Head(�∞(�)S).
That is S ⊆ Head(�∞(�)S). Therefore, we have S = Head(�∞(�)S). So S is an answer
set of (�,<).

Now we have the following semantic characterization theorem for preferred first-
order logic programs.

THEOREM 4.9. Let (�,<) be an FO preferred answer set program and M an answer
set of �. Then, the following two statements are equivalent:

(1) M is a preferred answer set of (�,<).
(2) For each rule r ∈ �, (r, η) ∈ �∞(�)M iff r is a generating rule of M under η .

PROOF. For the given (�,<) and its answer set M, (�,<)’s grounded preferred pro-
gram is denoted as (Ground(�)M,<∗) as defined in Definition 4.3. From the proof of
Theorem 4.7, we can then construct a set of propositional atoms S from M such that
S is an answer set of (Ground(�)M,<∗) and M = M ∩ S. Then, based on Lemma 4.8,
in order to prove this theorem, it is sufficient to prove the following two results:

Result 1: (r, η) ∈ �∞(�)S iff r∗ ∈ �∞(�)S, where
r∗ : Head(r)η ← Body(r)η, T ag(−→x )η,

Result 2: r is a generating rule of M under η iff r∗ is a generating rule of S.

From the definitions of �∞(�)M, �∞(�)S and (Ground(�)M,<∗), together with Theorem
4.7, Results 1 and 2 are easily to be proved.

3Note that from the grounded preferred logic program definition (i.e., Definition 4.3) and the fact that S is a
preferred answer set of (�, <), this is always possible, because there must exist a finite number N such that
for all t > N, �t(�)S = �t+1(�)S.
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PROPOSITION 4.10. For FO preferred answer set programs (�,<1) and (�,<2) where
<1⊆<2, and a structure M of τ (�), if M is a preferred answer set of (�,<2), then M is
also a preferred answer set of (�,<1).

PROOF. By Theorem 4.7, it is sufficient to prove the propositional version of the result.
So we can assume that (�,<1) and (�,<2) are two propositional preferred programs
and <1⊆<2. Suppose S is a preferred answer set of (�,<2). First, from Definition 4.5, it
is easy to see that for all t, �t(�)<2

S ⊆ �t(�)<1
S . Further, since S is a preferred answer set

of (�,<2), we have S = Head(�∞(�)<2
S ). Now we show that S must also be a preferred

answer set of (�,<1).
To show this, we simply consider a special preferred answer set program (�,<0),

where <0= ∅. So we have �t(�)<1
S ⊆ �t(�)<0

S for all t. So we have Head(�∞(�)<2
S ) ⊆

Head(�∞(�)<1
S ) ⊆ Head(�∞(�)<0

S ). From the condition and Proposition 3.5, we know
that Head(�∞(�)<2

S ) = Head(�∞(�)<0
S ) = S. So it follows that Head(�∞ (�)<1

S ) = S,
that is, S is also a preferred answer set of (�,<1).

Now we consider the existence of preferred answer sets for a preferred program.
From Theorem 4.9, in order to see whether a structure M is a preferred answer set
for a given program, we need to compute �∞(�)M and then to check all generating
rules against M. It is always desirable to discover some stronger sufficient conditions
for the existence of preferred answer sets, by which there is no need to undertake the
computation of �∞(�)M. The following lemma and theorem are towards this purpose.

LEMMA 4.11. A grounded preferred answer set program (�,<) has a preferred answer
set if there exists an answer set S of � such that for each (r1, r2) ∈< and Head(r2) ∩
(Pos(r1) ∪ Neg(r1)) �= ∅, r2 is not a generating rule of S.

PROOF. We show that S is a preferred answer set of (�,<). We first prove that if
r ∈ �∞(�)S, then r is a generating rule of S. We prove this by induction on t. Consider
�0(�)S. Since for all r ∈ �0(�)S, Pos(r) = ∅ and Neg(r) ∩ S = ∅. This means that r
is a generating rule of S. Since S is an answer set of �, this implies Head(r) ∈ S.
Suppose for all t that r ∈ �t(�)S implies that r is a generating rule of S, which implies
Head(�t(�)S) ⊆ S. Now we consider �t+1(�)S. According to the definition, if r �∈ �t(�)S
but r ∈ �t+1(�)S, then Pos(r) ⊆ Head(�t(�)S) and Neg(r) ∩ S = ∅. From the induction
hypothesis, we have Pos(r) ⊆ Head(�t(�)S) ⊆ S. So, r is also a generating rule of S,
and hence Head(r) ∈ S.

Now we show that under the given conditions of this lemma, if r is a generating rule
of S, then r ∈ �∞(�)S. We prove this by induction on <. First, suppose that there does
not exist a rule r∗ ∈ � such that r∗ < r and r∗ is a generating rule of S. Since r is a
generating rule and S is an answer set of �, it must be the case that Pos(r) = ∅ and
hence, that r ∈ �0(�)S. Now we assume that for all generating rules r∗ such that r∗ < r
and those r∗ satisfying the condition of this lemma, that r∗ ∈ �∞(�)S. Now we consider
r. Since for any r′ where r < r′ and Head(r′) ∩ (Pos(r′) ∪ Neg(r′)) �= ∅, we have that r′ is
not a generating rule of S, then there must exist generating rules r1, . . . , rk of S such
that ri < r (i = 1, . . . , k), Pos(r) ⊆ ⋃k

i=1 Head(ri), and Neg(r) ∩ ⋃k
i=1 Head(ri) = ∅. Now,

according to the induction hypothesis, these r1, . . . , rk are in �∞(�)S. So there exists
some certain t for which we have Pos(r) ⊆ Head(�t(�)S) and Neg(r)∩S = ∅ (this is due
to the fact that r is a generating rule of S). Therefore, from the definition of �∞(�)S
(see Definition 4.5), we know that if r �∈ �∞(�)S, then for all t, there must exist a rule
r′ such that r′ < r, r′ �∈ �t−1(�)S, and Pos(r′) ⊆ S and Neg(r′) ∩ Head(�t−1(�)S). By
selecting a sufficient large t, we would have �t(�)S = �∞(�)S. This implies that there
exists some r′ such that r′ < r, r′ �∈ �∞(�)S, and r′ is a generating rule of S. This is in
contradiction with our inductive hypothesis. So r must be in �t(�)S for some t. That is,
r ∈ �∞(�)S.
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Finally, from Lemma 4.8, we know that S is also a preferred answer set of (�,<).
This completes our proof.

THEOREM 4.12. An FO preferred answer set program (�,<) has a preferred answer set
if there exists an answer set M of � such that for each (r1, r2) ∈< and for all assignments
η, η′ of M satisfying Head(r2)η′ ∩ (Pos(r1) ∪ Neg(r1))η �= ∅, r2 is not a generating rule of
M under η′.

PROOF. We prove the result by showing that the given M is a preferred answer set
of (�,<). For the given preferred answer set program (�,<) and an answer set M of
�, we consider the grounded preferred answer set program (Ground(�)M,<∗). From
Theorem 4.7, we know that there is a preferred answer set S of (Ground(�)M,<∗)
where S ∩ M = M. We can also show that for each pair of rules r1, r2 ∈ � where
r1 < r2 and assignments η, η′ of M such that Head(r2)η′ ∩ (Pos(r1) ∪ Neg(r1))η �= ∅,
there exists a corresponding pair of rules r∗

1 , r∗
2 ∈ Ground(�) such that r∗

1 <∗ r∗
2 and

Head(r∗
2) ∩ (Pos(r∗

1) ∪ Neg(r∗
1)) �= ∅, and vice versa. We can further prove that a rule

r ∈ � is not a generating rule of M under η iff there is a corresponding rule r∗ in
Ground(�) which is not a generating rule of S. Then, from Lemma 4.11, it follows that
S is a preferred answer set of (Ground(�),<∗). Finally, from Theorem 4.7, M is also a
preferred answer set of (�,<).

It is clear that the sufficient condition represented in Theorem 4.12 is semantics
based in the sense that an answer set (answer sets) of � has (have) to be computed
and verified to decide the existence of a preferred answer set. Nevertheless, from
Theorem 4.12, we actually can derive a sufficient condition which is more syntactically
oriented and is quite effective in deciding the existence of preferred answer sets. To
make our claim precise, we first introduce a useful notion.

A substitution θ is of the form (x1/t1, . . . , xk/tk), where xi is a variable and ti is a term
for all i = 1, . . . , k. By applying a substitution θ on a set X of first-order formulas, we
obtain another set of formulas, denoted as Xθ , by replacing each variable x occurring
in formulas of X with term t whenever x/t ∈ θ .

Definition 4.13. Let P(−→t ) be an atom, X a finite set of atoms, T1 and T2 two finite
sets of formulas of the forms t1 = t2 and t1 �= t2 where −→t is a tuple of terms, and t1
and t2 are terms. We call T1 and T2 the sets of term binding constraints imposing on
P(−→t ) and X, respectively. The pair (P(−→t ), X) is called unifiable under T1 and T2 if
there exists a substitution θ such that P(−→t ) ∈ Xθ and (X ∪ T2)θ ∪ T1 is consistent.

Example 4.14. Let us consider an atom P(x, y), set X = {P(x′, y′), Q(y′, z′)}, and
their term constraint sets T1 = {x = y} and T2 = {x′ �= z′, y′ = c} respectively. It is
easy to see that P(x, y) and X are unifiable under T1 and T2 because we can find a
substitution θ = (x′/x, y′/y), such that (X ∪ T2)θ = {P(x, y), Q(y, z′), x �= z′, y = c}, and
{P(x, y), Q(y, z′), x �= z′, y = c} ∪ {x = y} is consistent.

For a given FO program � and a rule r ∈ �, we specify r’s set of term binding
constraints as follows:

T (r) = {t1 = t2 | t1 = t2 ∈ Pos(r)} ∪ {t1 �= t2 | t1 = t2 ∈ Neg(r)}.
We also use Pos(r)−e and Neg(r)−e to denote the sets of all atoms of Pos(r) and Neg(r)
except the equality atoms respectively.

THEOREM 4.15. Let (�,<) be an FO preferred answer set program. Then, (�,<) has
a preferred answer set if � has an answer set and for each r1 < r2, neither (Head(r2),
Pos(r1)−e) nor (Head(r2), Neg(r1)−e) is unifiable under T (r2) and T (r1).
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PROOF. For any answer set M of � and any two assignments η and η′ of M, we
have either (1) Head(r2)η′ ∩ (Pos(r1) ∪ Neg(r1))η = ∅, or (2) Head(r2)η′ ∩ (Pos(r1) ∪
Neg(r1))η �= ∅. Case (1) implies that the condition of Theorem 4.12 holds. So under
such a situation, each answer set M of � is actually a preferred answer set of (�,<).
For case (2), since neither (Head(r2), Pos(r1)−e) nor (Head(r2), Neg(r1)−e) is unifiable
under T (r2) and T (r1), respectively, it is clear that r1 and r2 cannot be generating rules
of M under η and η′, respectively, at the same time. We consider the corresponding
grounded preferred program (Ground(�)M,<∗), where we assume that S is an answer
set of Ground(�)M (see Theorem 4.7). Obviously we have r1η <∗ r2η

′. Consequently,
we know that r1η and r2η

′ cannot be generating rules of S at the same time. If r1η is
not a generating rule of S, then relation r1η <∗ r2η

′ will not play any role in program
(Ground(�)M,<∗). On the other hand, if r2η

′ is not a generating rule, by Lemma 4.11,
S is a preferred answer set of (Ground(�)M,<∗). By Theorem 4.7, M is also an answer
set of (�,<).

5. LOGICAL CHARACTERIZATIONS

Since the answer set semantics for FO programs is defined via an SO sentence, it is
a natural question to ask whether it is also possible to characterize the progression-
based semantics for preferred FO programs through an SO sentence. In this section,
we will study this issue in detail. Our basic idea is that: we first propose an alternative
SO sentence that precisely captures the answer set semantics of FO programs. Our
formalization will be different from that of the original one as presented in Ferraris
et al. [2011] for the case when restricted to normal logic programs. Instead, our SO
formalism will be developed based on the intuition of the progression-based semantics
for first-order normal answer set programs [Zhang and Zhou 2010]. Then we extend
such an SO formalism by taking the preference into account.

To begin with, we first introduce some useful notions. We suppose that in the rest of
this article, each program � is presented in a normalized form. That is, we assume that
each proper atom occurring in a rule only contains a tuple of distinguishable variables.
Note that every program can be rewritten in such a normalized form. For instance,
if P(x1, . . . , xi−1, c, xi+1, . . . , xn) occurs in some rule r where c is a constant, then we
simply replace P(x1, . . . , xi−1, c, xi+1, . . . , xn) by P(x1, . . . , xi−1, xi, xi+1, . . . , xn) and then
add xi = c into r’s positive body. In this way, we can simply write −→xP and −→xr as the
tuples of all distinguishable variables occurring in predicate P and rule r respectively.
Now consider a program consisting of the single rule

r : S(x, y) ← E(a, y), x = a.

Then this program can be equivalently rewritten to a normalized form

r : S(x, y) ← E(z, y), x = a, z = a,

where −→xr = xyz. Now let −→x = x1 . . . xn and −→y = y1 . . . yn, then we also write −→x = −→y to
denote the formula

∧
1≤i≤n xi = yi.

For easier presentation and readability of formulas, we further assume that for any
two rules r1 and r2 where r1 �= r2 (that is, distinct rules), −→xr1 and −→xr2 are disjoint from
each other. That is, the names of the variables in r1 do not occur in r2 (and vice versa).
Note that in cases where we have to refer to the tuples −→xr1 and −→xr2 in a formula for which
they have to be disjoint, we can always relabel the variables in −→xr2 without explicitly
stating it, when clear from the context.

5.1. Formulas Representing Generating Rules and Program Completion

Similar to what we introduced in Section 4.2, here we present an FO formula to rep-
resent the notion of generating rules in terms of a structure. In particular, given a

ACM Transactions on Computational Logic, Vol. 15, No. 2, Article 11, Publication date: April 2014.



TOCL1502-11 ACM-TRANSACTION April 4, 2014 17:35

Preferred First-Order Answer Set Programs 11:19

program � and a rule r ∈ � of the form (1): α ← β1, . . . , βk, not γ1, . . . , not γl, we specify
an FO formula

ϕGEN
r (−→xr ) = ̂Pos(r) ∧ ¬ ̂Neg(r). (4)

Clearly, for a given τ (�)-structure M, M |= ϕGEN
r (−→x η) iff Pos(r)η ⊆ M and Neg(r)η ∩

M = ∅.

Example 5.1. Consider the program �5 consisting of the following rules:

r1 : S(x1, y1) ← E(z1, y1), x1 = a, z1 = a,

r2 : S(x2, z2) ← S(x2, y2), E(y2, z′
2), z2 = a, z′

2 = b.

Then we have

ϕGEN
r1

(x1, y1, z1) = E(z1, y1) ∧ x1 = a ∧ z1 = a,

ϕGEN
r2

(x2, y2, z2, z′
2) = S(x2, y2) ∧ E(y2, z′

2) ∧ z2 = a ∧ z′
2 = b.

Let � be an FO program. We define the FO sentence ϕCOMP
� to be the completion of �,

ϕCOMP
� =

∧
P∈Pint(�)

∀−→xP(P(−→xP) ↔
∨

r∈�,

Head(r)=P(−→yP )

∃−→xr
(
ϕGEN

r (−→xr ) ∧ −→xP = −→yP)
)
, (5)

where we assume that −→xP is a tuple of distinguishable variables disjoint from −→yP .

5.2. Well-Orderings on Generating Rules in Terms of Structures

Given an FO program � and a τ (�)-structure M, let �(�)M4 denote the set:

{(r, η) | r ∈ �, Pos(r)η ⊆ M and Neg(r)η ∩ M = ∅},
that is, those generating rules under the structure M. Then a well-order on �(�)M is
a structure W = (�(�)M,<W ) with domain �(�)M and binary relation <W on �(�)M
that satisfies the following properties:

(1) x, y ∈ �(�)M and x �= y implies x <W y or y <W x (totality);
(2) x <W y and y <W z implies x <W z (transitivity);
(3) x <W y implies y �<W x (asymmetry);
(4) and last, the SO axiom:

∀S(S �= ∅ → (∃x ∈ S)((∀y ∈ S)(x �= y → x <W y))),

which expresses that every nonempty subset S of �(�)M has a least element.

Note that when �(�)M is finite, any strict total-order of �(�)M is trivially a well-order,
while this is not the case when �(�)M is infinite. In fact, since totality, transitivity,
and asymmetry is what corresponds to a strict total-order, when only considering finite
structures, we can drop the SO axiom corresponding to the least element property of
each nonempty subset.

5.3. Formalizing Progression

Now we propose an SO sentence that will simulate the progression semantics we
defined earlier but without taking preference into account.

4Note that �(�)M differs from �t(�)M in that �(�)M does not represent a progression stage.
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Definition 5.2. Given an FO answer set program �, we define an SO formula
ϕPRO

� (−→<,
−→
S ) as follows (here “PRO” stands for progression)5:∧

r1,r2,r3∈�

∀−→xr1
−→xr2

−→xr3 (<̃r1r2 (
−→xr1 ,

−→xr2 ) ∧ <̃r2r3 (
−→xr2 ,

−→xr3 ) → <̃r1r3 (
−→xr1 ,

−→xr3 )) (6)

∧
∧

r1,r2∈�

∀−→xr1
−→xr2 (<̃r1r2 (

−→xr1 ,
−→xr2 ) → ¬<̃r2r1 (

−→xr2 ,
−→xr1 )) (7)

∧
∧

r1,r2∈�

∀−→xr1
−→xr2

(
<̃r1r2 (

−→xr1 ,
−→xr2 ) → ϕGEN

r1
(−→xr1 ) ∧ ϕGEN

r2
(−→xr2 )

)
(8)

∧
∧
r∈�

∀−→xr
(
ϕGEN

r (−→xr ) → ϕSUP
r (−→<,

−→xr )
)

(9)

∧ ϕWELLOR
� (−→<,

−→
S ), (10)

where:
—for each r1, r2 ∈ �, the symbol <̃r1r2 is a predicate variable of arity |−→xr1 | + |−→xr2 |6;
—−→

< denotes the distinguishable tuple of predicate variables of the set {<̃r1r2 | r1, r2 ∈
�};

—ϕSUP
r (−→<,

−→xr ) denotes the following formula (here “SUP” stands for support):∧
P(−→xP )∈Pos(r),

P∈Pint(�)

∨
r′∈�,

Head(r′)=P(−→yP )

∃−→xr′ (<̃r′r(−→xr′ ,
−→xr ) ∧ −→xP = −→yP) (11)

(where in the case that r′ = r, we simply assume a relabeling of −→xr′ such that −→xr′ will
be disjoint from −→xr );

—ϕWELLOR
� (−→<,

−→
S ) denotes the following formula (here “WELLOR” stands for well-ordered):∧

r∈�

∀−→xr
(
S̃r(−→xr ) → ϕGEN

r (−→xr )
) ∧

(∨
r∈�

∃−→xr S̃r(−→xr )

)
→∨

r′∈�

∃−→xr′ (S̃r′(−→xr′ ) ∧ ∀−→yr′ (S̃r′(−→yr′ ) ∧ −→yr′ �= −→xr′ → <̃r′r′ (−→xr′ ,
−→yr′ ))

∧
∧

r′′∈�,
r′′ �=r′

∀−→xr′′ (S̃r′′ (−→xr′′ ) → <̃r′r′′ (−→xr′ ,
−→xr′′ ))), (12)

where
−→
S denotes the distinguishable tuple of predicate variables of the set

{S̃r | r ∈ �} such that for each r ∈ �, the arity of S̃r is |−→xr |, and −→yr′ (in the con-
sequent above) is a relabeling of the distinct variables of −→xr′ such that −→yr′ is now
disjoint from −→xr′ .

Let us take a closer look at Definition 5.2. Basically, formula ϕPRO
� (−→<,

−→
S ) imposes a

progression-like order on the set of generating rules with respect to a structure M:

�(�)M = {(r, η) | r ∈ �, Pos(r)η ⊆ M and Neg(r)η) ∩ M = ∅ for an
assignment η of M},

5In Formulas (6), (7), and (8), in the case that r1 = r2, r1 = r3, or r2 = r3, we assume a relabeling of −→xr1 , −→xr2 ,
or −→xr3 (however appropriate) such that they will now be disjoint from each other.
6For clarity, we denote a predicate variable P with an accent P̃ to remind the fact that we will be quantifying
over these predicates.
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which eventually establishes a correspondence to the sequence of progression sets
�0(�)M, �1(�)M, . . . , as we defined in Definition 3.1. We should emphasize that at this
stage, no preference is considered.

In particular, Formulas (6) and (7) express the transitive and asymmetric proper-
ties respectively, while Formula (8) expresses the condition that the well-order only
involves those of generating rules. Moreover, Formula (9) expresses that if some rule is
a generating rule (with respect to certain structure and associated assignment), then it
must be supported by rules generated in some earlier stages (i.e., ϕSUP

r (−→<,
−→xr )). Finally

Formula (10) enforces a well-order (i.e., ϕWELLOR
� (−→<,

−→
S )).

Specifically, (10) is fulfilled by Formula (12), which encodes that each nonempty
subset of generating rules has a least element. Indeed, formula

∧
r∈� ∀−→xr (S̃r(−→xr ) →

ϕGEN
r (−→xr )) encodes that the extents of each S̃r for r ∈ � are only those of generating

rules, and
∨

r∈� ∃−→xr S̃r(−→xr ) encodes that at least one of these subsets is nonempty, while
the consequence∨

r′∈�

∃−→xr′ (S̃r′(−→xr′ ) ∧ ∀−→yr′ (S̃r′(−→yr′ ) ∧ −→yr′ �= −→xr′ → <̃r′r′(−→xr′ ,
−→yr′ ))

∧
∧

r′′∈�,
r′′ �=r′

∀−→xr′′ (S̃r′′ (−→xr′′ ) → <̃r′r′′(−→xr′ ,
−→xr′′ ))),

encodes the existence of the least element.

PROPOSITION 5.3. The SO formula ϕPRO
� (−→<,

−→
S ) is of length O(n3 + mn2) where m =

‖ATOMS(�)‖ (i.e., all the atoms occurring in �) and n = ‖�‖.

PROOF. Formula (6) is of length O(n3), (8) is of length O(n2), (9) is of length O(mn2),
and (10) is of length O(n(m+ mn)).

Example 5.4. Consider program �6 that computes the transitive closure of a binary
relation E:

r1 : T (x1, y1) ← E(x1, y1),
r2 : T (x2, z2) ← T (x2, y2), E(y2, z2).

Then:

ϕCOMP
�6

= ∀xy(T (x, y) ↔ ∃x1y1(ϕGEN
r1

(x1, y1) ∧ x = x1 ∧ y = y1)

∨ ∃x2y2z2(ϕGEN
r2

(x2, y2, z2) ∧ x = x2 ∧ y = z2)),

where:

ϕGEN
r1

(x1, y1) = E(x1, y1),

ϕGEN
r2

(x2, y2, z2) = T (x2, y2) ∧ E(y2, z2).

In particular, we also have that:

ϕSUP
r1

(−→<, x1, y1) = �,

ϕSUP
r2

(−→<, x2, y2, z2) = ∃x3y3z3(<̃r2r2 (x3, y3, z3, x2, y2, z2) ∧ x2 = x3 ∧ y2 = z3)

∨ ∃x1y1(<̃r1r2 (x1, y1, x2, y2, z2) ∧ x2 = x1 ∧ y2 = y1),

where the tuple x3y3z3 is a (disjoint) relabeling of x2y2z2 and −→
< is the tuple <̃r1r1 <̃r1r2

<̃r2r1 <̃r2r2 of predicate variables.
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About the formula ϕWELLOR
�6

(−→<,
−→
S ), we further have:

∀x1y1
(
S̃r1 (x1, y1) → ϕGEN

r1
(x1, y1)

) ∧ ∀x2y2z2
(
S̃r2 (x2, y2, z2) → ϕGEN

r1
(x2, y2, z2)

)
∧ (∃x1y1 S̃r1 (x1, y1) ∨ ∃x2y2z2 S̃r2 (x2, y2, z2)) →

(∃x1y1(S̃r1 (x1, y1) ∧ ∀xy(S̃r1 (x, y) ∧ (x1 �= x ∨ y1 �= y) → <̃r1r1 (x1, y1, x, y))

∧ ∀x2y2z2(S̃r2 (x2, y2, z2) → <̃r1r2 (x1, y1, x2, y2, z2)))

∨ ∃x2y2z2(S̃r2 (x2, y2, z2) ∧ ∀xyz(S̃r2 (x, y, z) ∧ (x2 �= x ∨ y2 �= y ∨ z2 �= z) →
<̃r2r2 (x2, y2, z2, x, y, z))

∧ ∀x1y1(S̃r1 (x1, y1) → <̃r2r1 (x2, y2, z2, x1, y1)))),

where
−→
S is the tuple S̃r1 S̃r2 of predicate variables. Then ∀−→

S ϕWELLOR
�6

(−→<,
−→
S ) expresses

that each nonempty subset of �(�)M possesses a least element as induced by the
relations of the predicates <̃r1r1 , <̃r1r2 , <̃r2r1 , and <̃r2r2 . Note that the nonempty subsets
of �(�)M are implicitly encoded via the universally quantified predicate variables S̃r1

and S̃r2 .

THEOREM 5.5. Given an FO answer set program � and a τ (�)-structure M, M is an
answer set of � iff M |= ∃−→

<∀−→
S ϕ�(−→<,

−→
S ), where ϕ�(−→<,

−→
S ) = ϕPRO

� (−→<,
−→
S ) ∧ ϕCOMP

� .

PROOF. To prove this theorem, we will use a result from [Zhang and Zhou 2010] that
M∞(�) = M iff M is an answer set of �. Thus, we prove the equivalent statement:
M∞(�) = M iff M |= ∃−→

<∀−→
S ϕ�(−→<,

−→
S ).

(⇒) Assume M∞(�) = M. For t ≥ 0, define the operator (M∗)t(�) : 2
(�)M −→ 2
(�)M

as

(M∗)t(�) = {(r, η) | Pos(r)η ⊆ Mt+1(�) and Neg(r)η ∩ M = ∅}. (13)

Then since M∞(�) = M by assumption, we also have that (M∗)∞(�) = �(�)M. Now,
for t ≥ 0, set �t(�)M : 2
(�)M −→ 2
(�)M to be an operator defined inductively as:

�0(�)M = (M∗)0(�);

�t+1(�)M = (M∗)t+1(�) \ (M∗)t(�).

Then clearly, we also have
⋃

t≥0 �t(�)M = (M∗)∞(�). Moreover, by the definition of
�t

M(�), it is not difficult to see that the sets �0(�)M,�1(�)M, . . . , �∞(�)M7 partitions
(M∗)∞(�). Now we construct a well-ordered relation W = (�(�)M,<W ) on the set
�(�)M as follows:

(1) For each �t
M(�), by the well-ordering theorem (every set can be well-ordered),

there exists a well-ordering on the elements of �t
M(�). Set such a well-ordering as

Wt = (�t
M(�),<Wt ).

(2) Then we define the well-order W = (�(�)M,<W ) on �(�)M by setting
<W= (

⋃
t≥0 <Wt ) ∪ {〈(r1, η1), (r2, η2)〉 | (r1, η1) ∈ �

t1
M(�), (r2, η2) ∈ �

t2
M(�),

with t1 < t2}.
This simply follows from the fact that the sum and products of well-ordered types
are themselves well-ordered [Enderton 1977].

7Here ∞ denotes an arbitrary order-type.
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Now we denote by ∀−→
S ϕ�(

−→
S ) the sentence obtained from ∀−→

S ϕ�(−→<,
−→
S ) by treating the

existentially quantified predicate variables in −→
< as predicate constants. Then to show

M |= ∃−→
<∀−→

S ϕ�(−→<,
−→
S ), we show that there exists an expansion M′ of M such that

M′ |= ∀−→
S ϕ�(

−→
S ). In the following, we denote the treatment of each predicate variable,

<̃r1r2 , as a predicate constant by simply denoting it as <r1r2 (just removing the “˜”
accent). Now set M′ to be an expansion of M such that M′ is of the extended signature
τ (�) ∪ {<r1r2 | r1, r2 ∈ �} of M and where each predicate symbol <r1r2 (for r1, r2 ∈ �) is
interpreted by:

<M′
r1r2

= {〈η1(u1), . . . , η1(uk), η2(v1), . . . , η2(vl)〉 |〈u1, . . . , uk〉 = −→xr1 , 〈v1, . . . , vl〉 = −→xr2 ,

and (r1, η1) <W (r2, η2)
}

with W the well-order on �(�)M as defined earlier. Now, through the following Claims 1
and 2, we show M′ |= ∀−→

S ϕPRO
� (

−→
S ) and M′ |= ϕCOMP

� respectively, so that M′ |= ∀−→
S ϕ�(

−→
S ).

CLAIM 1. M′ |= ∀−→
S ϕPRO

� (
−→
S ).

PROOF OF CLAIM 1. To prove this claim, it is sufficient to show the following:

(1) M′ |=
∧

r1,r2,r3∈�

∀−→xr1
−→xr2

−→xr3 (<r1r2 (−→xr1 ,
−→xr2 )∧ <r2r3 (−→xr2 ,

−→xr3 ) →<r1r3 (−→xr1 ,
−→xr3 ));

(2) M′ |=
∧

r1,r2∈�

∀−→xr1
−→xr2 (<r1r2 (−→xr1 ,

−→xr2 ) → ¬ <r2r1 (−→xr2 ,
−→xr1 ));

(3) M′ |=
∧

r1,r2∈�

∀−→xr1
−→xr2

(
<r1r2 (−→xr1 ,

−→xr2 ) → ϕGEN
r1

(−→xr1 ) ∧ ϕGEN
r2

(−→xr2 )
)
;

(4) M′ |=
∧
r∈�

∀−→xr
(
ϕGEN

r (−→xr ) → ϕSUP
r (−→xr )

)
;

(5) M′ |= ∀−→
S ϕWELLOR

� (
−→
S ).

Now we show each of the given statements.

(1) M′ |= ∧
r1,r2,r3∈� ∀−→xr1

−→xr2
−→xr3 (<r1r2 (−→xr1 ,

−→xr2 )∧ <r2r3 (−→xr2 ,
−→xr3 ) →<r1r3 (−→xr1 ,

−→xr3 )). Suppose for
some assignment α, we have M′ |=<r1r2 (−→ar1 ,

−→ar2 )∧ <r1r2 (−→ar2 ,
−→ar3 ) such that −→ar1 ,

−→ar2 ,
and −→ar3 denotes the tuples obtained from −→xr1 ,

−→xr2 , and −→xr3 respectively by replacing
each of the variable x in −→xr with α(x). We now show M′ |=<r1r3 (−→ar1 ,

−→ar3 ). From the
definition of <M′

r1r2
, we have that there exists (r1, η1) ∈ �(�)M and (r2, η2) ∈ �(�)M

with (r1, η1) <W (r2, η2) such that if 〈u1, . . . , uk〉 = −→xr1 and 〈v1, . . . , vl〉 = −→xr2 , then
〈η1(u1), . . . , η1(uk)〉 = −→ar1 and 〈η2(v1), . . . , η2(vl)〉 = −→ar2 . Similarly, by the definition of
<M′

r2r3
, there exists (r2, η

′
2) ∈ �(�)M and (r3, η3) ∈ �(�)M with (r2, η

′
2) <W (r3, η3) such

that if 〈w1, . . . , wm〉 = −→xr3 then 〈η′
2(v1), . . . , η′

2(vl)〉 = −→ar2 and 〈η3(w1), . . . , η3(wm)〉 = −→ar3 .
Then, since 〈η′

2(v1), . . . , η′
2(vl)〉 = 〈η2(v1), . . . , η2(vl)〉, we must have η′

2 = η2. Then
we have (r1, η1) <W (r3, η3) by transitivity since (r2, η2) = (r2, η

′
2). Then from the

definition of <M′
r1r3

, it follows that 〈−→ar1 ,
−→ar3〉 ∈<M′

r1r3
, and hence, that M′ |=<r1r3 (−→ar1 ,

−→ar3 ).
(2) M′ |= ∧

r1,r2∈� ∀−→xr1
−→xr2 (<r1r2 (−→xr1 ,

−→xr2 ) → ¬ <r2r1 (−→xr2 ,
−→xr1 )) Towards a contradiction,

assume for some assignment α, such that M′ |=<r1r2 (−→ar1 ,
−→ar2 ) ∧ <r2r1 (−→ar2 ,

−→ar1 ).
Then we also have <r1r1 (−→ar1 ,

−→ar1 ) by the transitivity axiom (which was already
shown to be satisfied by M′). Then by the definition of <M′

r1r1
, there exists (r1, η1) ∈

�t1 (�)M and (r1, η2) ∈ �t2 (�)M with t1 < t2 such that if 〈u1, . . . , uk〉 = −→xr1 , we have
〈η1(u1), . . . , η1(uk)〉 = −→ar1 and 〈η2(u1), . . . , η2(uk)〉 = −→ar1 . Then this implies η1 = η2, and
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since there is a unique t for which (r1, η) ∈ �t(�)M for each (r1, η), then it must also
be that t1 = t2. Then this is a contradiction since t1 < t2.

(3) M′ |= ∧
r1,r2∈� ∀−→xr1

−→xr2 (<r1r2 (−→xr1 ,
−→xr2 ) → ϕGEN

r1
(−→xr1 ) ∧ ϕGEN

r2
(−→xr2 )). This follows from the

interpretations, <M′
r1r2

, of the predicates <r1r2 (for r1, r2 ∈ �) and where it is a “rep-
resentation” of the well-order W = (�(�)M,<W ) on �(�)M).

(4) M′ |= ∧
r∈� ∀−→xr (ϕGEN

r (−→xr ) → ϕSUP
r (−→xr )). Suppose for some assignment α, we have

M′ |= ϕGEN
r (−→ar ) such that −→ar is the tuple obtained from −→xr via α as before. Then we

show
M′ |= ∧

P(−→aP )∈Pos(r),
P∈Pint(�)

∨
r′∈�,

Head(r′)=P(−→yP )
∃−→xr′ (<r′r (−→xr′ ,

−→ar ) ∧ −→aP = −→yP).

Now, since M′ |= ϕGEN
r (−→ar ), then by the definition of M′, it also follows that M′ �τ (�)=

M |= ϕGEN
r (−→ar ) (since ϕGEN

r (−→xr ) only involves those symbols occurring in τ (�)). Then
there exists an assignment η such that with 〈u1, . . . , uk〉 = −→xr , we have 〈η(u1), . . . ,
η(uk)〉 = −→ar and where Pos(r)η ⊆ M and Neg(r) ∩ M = ∅. Moreover, there must
be the least stage t for which Pos(r)η ⊆ Mt(�). Now let P(−→aP) ∈ Pos(r)η where
P ∈ Pint(�). Then there must also be some least stage t′ such that for some rule r′
and corresponding assignment η′, we have Head(r′)η′ = P(−→aP), Pos(r′)η′ ⊆ Mt′

(�),
and Neg(r′)η′ ∩ M = ∅ (i.e., the least stage that derives P(−→aP)). Moreover, since
P(−→aP) ∈ Mt(�) (i.e., since P(−→aP) ∈ Pos(r)η ⊆ Mt(�)), then t′ < t for if t = t′, this will
contradict the assumption that P(−→aP) ∈ Mt(�) since this implies P(−→aP) /∈ Mt(�)
(i.e., as t′ is the least stage that derives P(−→aP)). Then by the definitions of �t′+1

M (�)
and �t+1

M (�), we have (r′, η′) ∈ �t′+1
M (�) and (r, η) ∈ �t+1

M (�). Then as t′ + 1 < t + 1,
by the definition of <W , we also have (r′, η′) <W (r, η). Then by the interpretation of
<M′

r′r , if we let −→ar′ = 〈η′(v1), . . . , η′(vl)〉 such that 〈v1, . . . , vl〉 = −→xr′ , then 〈−→ar′ ,
−→ar 〉 ∈<M′

r′r .
Then this implies that M′ |=<r′r (−→ar′ ,

−→ar )∧−→aP = −→aP (where −→aP is the projection under−→yP from the tuple −→ar′ ).
(5) M′ |= ∀−→

S ϕWELLOR
� (

−→
S ). That is, we show that M′ satisfies

∀−→
S

⎛⎜⎜⎝
(∧

r∈�

∀−→xr (S̃r(−→xr ) → ϕGEN
r (−→xr ))

)
∧

(∨
r∈�

∃−→xr S̃r(−→xr )

)
→

∨
r′∈�

∃−→xr′ (S̃r′ (−→xr′ ) ∧ ∀−→yr′ (S̃r′ (−→yr′ ) ∧ −→yr′ �= −→xr′ →<r′r′ (−→xr′ ,
−→yr′ ))

∧
∧

r′′∈�,
r′′ �=r′

∀−→xr′′ (S̃r′′ (−→xr′′ ) →<r′r′′ (−→xr′ ,
−→xr′′ )))

⎞⎟⎟⎠ :

This simply follows from the assumption that W is a well-ordering on �(�)M since
a well-order implies that each nonempty subset contains a least element. Indeed,∧

r∈� ∀−→xr (S̃r(−→xr ) → ϕGEN
r (−→xr )) encodes the condition that we only consider tuples

corresponding to the generating rules in the well-order,
∨

r∈� ∃−→xr S̃r(−→xr ) encodes the
condition that the subset of �(�)M that we are considering is nonempty, and last,∨

r′∈�

∃−→xr′ (S̃r′ (−→xr′ ) ∧ ∀−→yr′ (S̃r′ (−→yr′ ) ∧ −→yr′ �= −→xr′ →<r′r′ (−→xr′ ,
−→yr′ ))

∧
∧

r′′∈�,
r′′ �=r′

∀−→xr′′ (S̃r′′ (−→xr′′ ) →<r′r′′ (−→xr′ ,
−→xr′′ )))

encodes the condition that for such a (nonempty) subset, a least element exists.
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This ends the proof of Claim 1.
CLAIM 2. M′ |= ϕCOMP

� .
PROOF OF CLAIM 2. From Zhang and Zhou [2010], M∞(�) = M iff M |= ϕ, where ϕ is

the SO sentence as defined in Section 2.3. Moreover, if M |= ϕ, then M |= ϕCOMP
� . This

ends the proof of Claim 2. So we have shown that M |= ∃−→
<∀−→

S ϕ�(−→<,
−→
S ).

(⇐) Now let us assume M |= ∃−→
<∀−→

S ϕ�(−→<,
−→
S ). Then for some expansion M′ of M

of the extended signature τ (�) ∪ {<r1r2 | r1, r2 ∈ �}, we have M′ |= ∀−→
S ϕ�(

−→
S ) where

∀−→
S ϕ�(

−→
S ) is the sentence obtained from ∀−→

S ϕ�(−→<,
−→
S ) by simply treating the predicate

variables in −→
< as predicate constants. To show M∞(�) = M, we show M∞(�) ⊆ M

and M ⊆ M∞(�). First we show M∞(�) ⊆ M by induction.

Basis. Clearly, M0(�) ⊆ M by the definition of M0(�) (i.e., only considering the
interpretations of the external predicates of �).

Step. Assume that for t′ ≤ t, we have Mt′
(�) ⊆ M.

Then let P(−→aP) ∈ Mt+1(�) such that P(−→aP) /∈ Mt(�) (i.e., for if P(−→aP) ∈ Mt(�) then
the result is clear by the inductive hypothesis). We will now show P(−→aP) ∈ M. Indeed,
since P(−→aP) ∈ Mt+1(�) with P(−→aP) /∈ Mt(�), then there exists a rule r ∈ � and an
assignment η such that Head(r)η = P(−→aP), Pos(r)η ⊆ Mt(�), and Neg(r)η ∩ M = ∅.
Then since Mt(�) ⊆ M by assumption, M′ �τ (�)= M and M |= ϕCOMP

� (i.e., since ϕCOMP
�

only involves those symbols in τ (�)), it follows that P(−→aP) ∈ M.

Thus we have shown M∞(�) ⊆ M. Next we show M ⊆ M∞(�). Indeed, since
M′ |= ∀−→

S ϕPRO
� (

−→
S ), set the well-order W = (Dom(W),<W ) such that:

Dom(W) = �(�)M;

<W = {〈(r1, η1), (r2, η2)〉 | r1, r2 ∈ �, η1 and η2 are assignments such that if
−→xr1 = 〈u1, . . . , uk〉 and −→xr2 = 〈v1, . . . , vl〉 then

〈η1(u1), . . . , η1(uk), η2(v1), . . . , η2(vl)〉 ∈<M′
r1r2

}
.

Now, for an element α ∈ Dom(W), we define the operator Wα(�) inductively as follows:

WBOT(W)(�) = {Head(r)η | (r, η) = BOT(W)};
WSUCC(α)(�) = Wα(�) ∪ {Head(r)η | (r, η) = SUCC(α)},

where BOT(W) denotes the least element of Dom(W) under W; SUCC(α) the successor
element of α under W; and ORD(W), the order type of W (that is, ORD(W) is equal to
the size of Dom(W)). As W is a well-order on Dom(W), we use transfinite induction
[Enderton 1977] on the set Dom(W) to show that WORD(W)(�) ⊆ M∞(�).

Basis. Without loss of generality, assume BOT(W) = (r, η). Then since M′ |= ∀−→
S

ϕPRO
� (

−→
S ), there can only be two possibilities:

Case 1. Pred(Pos(r)) ∩ Pint(�) = ∅ (i.e., no intentional predicates).
In this case, since (r, η) ∈ Dom(W) = �(�)M (a generating rule) and M |= ϕCOMP

� (which
implies that M′ �τ (�)= M is logically closed under �), it follows from the definition of
M1(�) that Head(r)η ∈ M1(�) ⊆ M∞(�). Hence, by the definition of WBOT(W)(�), we
have WBOT(W)(�) = {Head(r)η} ⊆ M∞(�).
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Case 2. Pred(Pos(r)) ∩ Pint(�) �= ∅. Then since (r, η) ∈ �(�)M and

M′ |=
∧
r∈�

∀−→xr
(
ϕGEN

r (−→xr ) → ϕSUP
r (−→xr )

)
(which obeys the notion of a support for each intentional predicate instance in the posi-
tive body from a preceding element), this contradicts the assumption (r, η) is the bottom
element of Dom(W) under <W . Therefore, we cannot have Pred(Pos(r)) ∩ Pint(�) �= ∅.

Step. Assume for BOT(W) ≤W β ≤W α, we have Wβ(�) ⊆ M∞(�).
We showWSUCC(α)(�) ⊆ M∞(�). Hence, assume that SUCC(α) = (r, η). In a similar manner
to the base case, there can only be two possibilities:

Case 1. Pred(Pos(r)) ∩ Pint(�) = ∅.
Then in a similar manner to Case 1 of the basis, it follows that Head(r)η ∈ M1(�) ⊆
M∞(�), which implies WSUCC(α)(�) = Wα(�) ∪ {Head(r)η} ⊆ M∞(�).

Case 2. Pred(Pos(r)) ∩ Pint(�) �= ∅.
Then as

M′ |=
∧
r∈�

∀−→xr
(
ϕGEN

r (−→xr ) → ϕSUP
r (−→xr )

)
(each intentional predicate instances in the positive body is supported by a pre-
ceding element), we have Pos(r)η ⊆ Wα(�) by the definition of Wα(�). Hence, as
Wα(�) ⊆ M∞(�) by assumption, then Pos(r)η ⊆ M∞(�). Thus, there must be the
least stage t for which Pos(r)η ⊆ Mt(�). Then by the definition of Mt+1(�) and
as (r, η) ∈ �(�)M (i.e., which implies Neg(r)η ∩ M = ∅ as (r, η) is a generating
rule under M), it follows that Head(r)η ∈ Mt+1(�) ⊆ M∞(�) and hence, that
WSUCC(α)(�) = Wα(�) ∪ {Head(r)η} ⊆ M∞(�).

Thus, to show M ⊆ M∞(�), it will now be sufficient to only show that
M ⊆ WORD(W)(�) ∪ M1(�) holds since WORD(W)(�) ∪ M1(�) ⊆ M∞(�) (note that
we have already verified that WORD(W)(�) ⊆ M∞(�) and where M1(�) ⊆ M∞(�)).
Thus, let P(−→aP) ∈ M where P ∈ Pint(�) (i.e., for if P /∈ Pint(�), then it immediately
follows that P(−→aP) ∈ M0(�) ⊆ M1(�)). As M′ |= ϕCOMP

� implies M |= ϕCOMP
� (since ϕCOMP

�

only involves the symbols occurring in τ (�)), then for some rule r ∈ � and assignment
η, we have Head(r)η = P(−→aP), Pos(r)η ⊆ M and Neg(r)η ∩ M = ∅. Now, about the rule
r, there can only be two possibilities:

Case 1. Pred(Pos(r)) ∩ Pint(�) = ∅. Then by the definition of M1(�), we have
Head(r)η = P(−→aP) ∈ M1(�) ⊆ WORD(W)(�) ∪ M1(�).

Case 2. Pred(Pos(r)) ∩ Pint(�) �= ∅.
Then as (r, η) ∈ �(�)M and since Dom(W) = �(�)M, it is clear that (r, η) ∈ Dom(W).
Hence, by the definition of WORD(W)(�), we have P(−→aP) ∈ WORD(W)(�) ⊆
WORD(W)(�) ∪ M1(�).

Therefore, we have M ⊆ M∞(�). This finally completes the proof of this theorem.

5.4. Incorporating Preference

We have shown that the SO sentence ∃−→
<∀−→

S ϕ�(−→<,
−→
S ) proposed in Theorem 5.5 pre-

cisely captures the answer set semantics for FO answer set programs. In this section,
we further extend this formula by embedding preferences. We first define the following
formula.
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Definition 5.6. Given an FO preferred answer set (�,<), we define the formula
ϕPREF

(�,<)(
−→
< ) as follows (here “PREF” stands for preference):

∧
r∈�

∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′ ((ϕGEN
r′ (−→xr′ ) → <̃r′r(−→xr′ ,

−→xr )

)
∧ (¬ϕGEN

r′ (−→xr′ ) → (ϕ¬POS
r′ (−→xr′ ) ∨ ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ ))))
)
, (14)

where:

—ϕ¬POS
r′ (−→xr′ ) denotes the following formula (“¬POS” stands for positive body not satisfied):∨

P(−→xP )∈Pos(r′)

¬P(−→xP); (15)

—ϕDEF
rr′ (−→<,

−→xr ,
−→xr′ ) (“DEF” stands for defeated) denotes the formula⎛⎜⎜⎝ ∨

P(−→xP )∈Neg(r′),
P /∈Pint(�)

P(−→xP)

⎞⎟⎟⎠ ∨

⎛⎜⎜⎝ ∨
P(−→xP )∈Neg(r′),

P∈Pint(�)

∨
r′′∈�,

Head(r′′)=P(−→yP )

∃−→xr′′ (<̃r′′r(−→xr′′ ,
−→xr ) ∧ −→xP = −→yP)

⎞⎟⎟⎠ . (16)

Formula (14) encodes that if r is a generating rule (under a structure and associated
assignment), then for each rule r′ that is more preferred than r, where r′ is also a
generating rule (under the structure and associated assignment), we require that r′
should have already been derived earlier than r in the progression stages. On the other
hand, in the case that r′ is not a generating rule, then either the positive body of r′ is not
satisfied, that is, by (15), or it is defeated by some other rule r′′ such that r′′ is already
derived earlier than r in the progression stages, that is, by (16), which indicates that
the head of r′′ occurs in the negative body of r′.

THEOREM 5.7. Let (�,<) be an FO preferred answer set program, and M a τ (�)-
structure. M is a preferred answer set of (�,<) iff M |= ∃−→

<∀−→
S ϕ(�,<)(

−→
<,

−→
S ), where

ϕ(�,<)(
−→
<,

−→
S ) = ϕPREF

(�,<)(
−→
< ) ∧ ϕPRO

� (−→<,
−→
S ) ∧ ϕCOMP

� .

PROOF. (⇒) Assume λM0 (�∞(�)M) = M (i.e., M is a preferred answer set of (�,<)).
We show M |= ∃−→

<∀−→
S ϕ(�,<)(

−→
<,

−→
S ) in two steps:

(1) Given λM0 (�∞(�)M) = M, we show there exists a well-order W = (�(�)M,<W ) on
the set �(�)M called the preference preserving well-order, satisfying the following
conditions. For each (r, η) ∈ �(�)M:
(a) Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) <W (r, η)};
(b) for each rule r′ < r and assignment η′:

i. (r′, η′) ∈ �(�)M implies (r′, η′) <W (r, η);
ii. (r′, η′) /∈ �(�)M implies that either:

A. Pos(r′)η′ �⊆ M, or
B. Neg(r′)η′ ∩ (M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)}) �= ∅.

(2) Based on the well-order W on �(�)M, we construct an expansion M′ of M and
show that M′ |= ∀−→

S ϕ(�,<)(
−→
S ) where ∀−→

S ϕ(�,<)(
−→
S ) is the sentence obtained from

M |= ∀−→
S ϕ(�,<)(

−→
<,

−→
S ) by treating the predicate variables in −→

< as constants.
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Now for the first part, we start with the following claim.

CLAIM 1. �∞(�)M = �(�)M. That is, �∞(�)M contains exactly the generating rules.

PROOF OF CLAIM 1. Since M is a preferred answer set of (�,<), then by Theorem 4.9,
(r, η) ∈ �∞(�)M iff r is a generating rule of M under η. This completes the proof of
Claim 1.

Now, based on �∞(�)M, we show by induction on t for t ≥ 0 that there exists a
well-order W = (�t(�)M,<W ) on �t(�)M with the following properties. For each (r, η) ∈
�t(�)M:

(1) Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) <W (r, η)};
(2) for each rule r′ < r and assignment η′:

(a) (r′, η′) ∈ �t(�)M implies (r′, η′) <W (r, η);
(b) (r′, η′) /∈ �(�)M implies that either:

i. Pos(r′)η′ �⊆ M or
ii. Neg(r′)η′ ∩ (M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)}) �= ∅.

Thus, since �∞(�)M = �(�)M by Claim 1, we would have showed the first part.

Basis. By the well-ordering theorem [Enderton 1977] (which states that every set can be
well-ordered), there exists a well-order W = (�0(�)M,<W ) on �0(�)M. Moreover, due to
the finiteness of �, it should not be too difficult to see that we can make the well-order
W in such a way that for each (r, η), (r′, η′) ∈ �0(�)M, r < r′ implies (r, η) <W (r′, η′). To
see this, note that we can partition �0(�)M into a sequence of sets Sr1 , . . . , Srn where
ri < rj implies i < j and such that (r, η) ∈ Sri implies r = ri. Then, by the well-ordering
theorem, there exists a well-order Wi = (Sri ,<

Wi ) of each of the sets Sri . Thus, we can
just set W = (�0(�)M,<W ) by setting <W= (

⋃
1≤i≤n <Wi ) ∪ {〈(ri, ηi), (rj, η j)〉 | (ri, ηi) ∈

Sri , (rj, η j) ∈ Srj , i < j}. This simply follows from the fact that the sum and products of
well-ordered types are also well-ordered [Enderton 1977]. Hence, assume W to be such
a well-order. We now make the following claims:

CLAIM 2. (r, η) ∈ �0(�)M implies Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) <W (r, η)}.
Clearly by the definition of �0(�)M, (r, η) ∈ �0(�)M implies Pos(r)η ⊆ M0(�), which
indicates that Claim 2 is true.

CLAIM 3. If (r, η) ∈ �0(�)M, then (r′, η′) ∈ �0(�)M, where r′ < r implies (r′, η′) <W (r, η).
This claim directly follows from the description of W.

CLAIM 4. If (r, η) ∈ �0(�)M, then (r′, η′) /∈ �(�)M, where r′ < r implies that either:

(1) Pos(r′)η′ �⊆ M or
(2) Neg(r′)η′ ∩ (M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)}) �= ∅.

PROOF OF CLAIM 4. On the contrary, assume that Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩
(M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)}) = ∅. Then, by the latter, we also have
Neg(r′)η′ ∩ M0(�) = ∅. But this contradicts the assumption (r, η) ∈ �0(�)M since
by the definition of �0(�)M, we have (r′, η′) will be blocking (r, η) from being applied.

Step. Assume for 1 ≤ t′ ≤ t that the hypothesis holds. We will now show it also
holds for t + 1. Indeed, by the inductive hypothesis, there exists a well-order W =
(�t(�)M,<W ) on �t(�)M satisfying the conditions of the preference preserving well-
order. Moreover, by the well-ordering theorem, there also exists a well-order W ′ =
(�t+1(�)M,<W ′

) on �t+1(�)M where �t+1(�)M = �t+1(�)M \�t(�)M. Furthermore, due
to the finiteness of �, it is not difficult to see that we can further define W ′ in such a
way that for each (r, η), (r′, η′) ∈ �t+1(�)M, r < r′ implies (r, η) <W ′

(r′, η′) (i.e., using the
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same argument as before). Now we specify W ′′ = (�t+1(�)M,<W ′′
) to be a well-order on

�t+1(�)M by setting <W ′′= W ∪ W ′ ∪ (�t(�)M × �t+1(�)M).

CLAIM 5. (r, η) ∈ �t+1(�)M implies Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) <W ′′
(r, η)}.

PROOF OF CLAIM 5. We consider all possible cases:
Case 1. (r, η) ∈ �t(�)M.

Then by the inductive hypothesis, we have Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) <W

(r, η)}. Then since <W⊆<W ′′
, it also follows that Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ |

(r′, η′) <W ′′
(r, η)}.

Case 2. (r, η) ∈ �t+1(�)M.
Then by the definition of �t+1(�)M, we have (r, η) ∈ �t+1(�)M and (r, η) /∈ �t(�)M,
which implies (r, η) is derived at stage t + 1. Then by the definition of �t+1(�)M, it
follows that Pos(r)η ⊆ M0(�) ∪ {Head(r′)η′ | (r′, η′) ∈ �t(�)M}. Then as <W⊆<W ′′

(i.e.,
which implies (r′, η′) <W ′′

(r, η) for all (r′, η′) ∈ �t(�)M), it also follows that Pos(r)η ⊆
M0(�) ∪ {Head(r′)η′ | (r′, η′) <W ′′

(r, η)}. This completes the proof of Claim 5.

CLAIM 6. If (r, η) ∈ �t+1(�)M, then (r′, η′) ∈ �t+1(�)M where r′ < r implies (r′, η′) <W ′′

(r, η).

PROOF OF CLAIM 6. Towards a contradiction, assume (r, η), (r′η′) ∈ �t+1(�)M, r′ < r,
where (r, η) <W ′′

(r′, η′). We also consider all possibilities:

Case 1. (r, η), (r′, η′) ∈ �t(�)M.
Then this is a contradiction, since by the inductive hypothesis, we must have that
(r′, η′) <W ′′

(r, η).

Case 2. (r, η) ∈ �t(�)M and (r′, η′) ∈ �t+1(�)M.
Then as (r′, η′) ∈ �t+1(�)M, we have:

(1) Pos(r′)η′ ⊆ λM0 (�t(�)M);
(2) Neg(r′)η′ ∩ M = ∅.

Then, since λM0 (�t(�)M) ⊆ M (i.e., since λM0 (�∞(�)M) = M by assumption), it
follows that (r′, η′) is also a pair such that:

(1) r′ < r (i.e., by the assumption);
(2) Pos(r′)η′ ⊆ M;
(3) Neg(r′)η′ ∩ λM0 (�t′

(�)M) = ∅;
(4) (r′, η′) /∈ �t′

(�)M (i.e., by the definition of �t+1(�)M and as (r′, η′) ∈ �t+1(�)M) for
all 1 ≤ t′ ≤ t.

Then by the definition of �t(�)M, this contradicts the assumption that (r, η) ∈ �t(�)M
because the pair (r′, η′) will always be blocking (r, η) from being applied at all stages
0 ≤ t′ ≤ t.

Case 3. (r′, η′) ∈ �t(�)M and (r, η) ∈ �t+1(�)M.
Then by the construction of W ′′, we have that (r′, η′) <W ′′

(r, η), which contradicts the
assumption (r, η) <W ′′

(r′, η′). Therefore, we cannot have this possibility.

Case 4. (r, η), (r′, η′) ∈ �t+1(�)M.
Then since <W ′⊆<W ′′

and by the construction of the well-order W ′ on �t+1(�)M, then
we must have (r′, η′) <W ′′

(r, η) since r′ < r by assumption. This is contrary to the initial
assumption (r, η) <W ′′

(r′, η′). This ends the proof of Claim 6.
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CLAIM 7. If (r, η) ∈ �t+1(�)M, then (r′, η′) /∈ �(�)M where r′ < r implies that either:

(1) Pos(r′)η′ �⊆ M or
(2) Neg(r′)η′ ∩ (M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W ′′

(r, η)}) �= ∅.

PROOF OF CLAIM 7. Again we again consider the following possibilities:

Case 1. (r, η) ∈ �t(�)M.

Then it immediately follows by the inductive hypothesis that Claim 7 holds.

Case 2. (r, η) ∈ �t+1(�)M.
For the sake of contradiction, assume Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ (M0(�) ∪
{Head(r′′)η′′ | (r′′, η′′) <W ′′

(r, η)}) = ∅. Then by the construction of W ′′, it also follows
that Neg(r′)η′ ∩ λM0 (�t(�)M) = ∅. Then this implies (r′, η′) is a pair such that:

(1) r′ < r (i.e., by assumption);
(2) Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�t(�)M) = ∅;
(3) (r′, η′) /∈ �t(�)M (i.e., since (r′, η′) /∈ �(�)M by assumption and where �∞(�)M =

�(�)M by Claim 1).

Then this contradicts the assumption (r, η) ∈ �t+1(�)M = �t+1(�)M \ �t(�)M (i.e.,
(r, η) is applied in �t+1(�)M)) since by the definition of �t+1(�)M, we have (r′, η′) is
blocking (r, η) from being applied at stage t + 1. This ends the proof of Claim 7.

Thus, by Claims 5, 6, and 7, we have that the hypothesis also holds for t + 1.

Now we prove the second part by showing M |= ∃−→
<∀−→

S ϕ(�,<)(
−→
<,

−→
S ). As mentioned

in the beginning, based on the result of the first part (i.e., that there exists a pref-
erence preserving well-order W = (�(�)M,<W ) on the set �(�)M), we now construct
an expansion M′ of M based on the well-order W. Thus, set the structure M′ to be
an expansion of M on the signature τ (�) ∪ {<r1r2 | r1, r2 ∈ �} (i.e., where M is of the
signature τ (�)) such that for each (new) predicate symbol <r1r2 (i.e., where r1, r2 ∈ �
and r1 and r2 could be the same), we have

<M′
r1r2

= {〈η1(u1), . . . , η1(uk), η2(v1), . . . , η2(vl)〉 |〈u1, . . . , uk〉 = −→xr1 , 〈v1, . . . , vl〉 = −→xr2 ,

(r1, η1) <W (r2, η2)}.
Then in a similar manner to the proof of Theorem 5.5, it can be shown (although
tedious) that M′ |= ∀−→

S ϕ(�,<)(
−→
S ).

(⇐) Assume M |= ∃−→
<∀−→

S ϕ(�,<)(
−→
<,

−→
S ). We show λM0 (�∞(�)M) = M by showing

λM0 (�∞(�)M) ⊆ M and M ⊆ λM0 (�∞(�)M). Indeed, since M |= ∃−→
< ∀−→

S ϕ(�,<)(
−→
<,

−→
S )

implies M |= ∃−→
<∀−→

S (ϕPRO
� (−→<,

−→
S )∧ϕCOMP

� ), then M is an answer set of � by Theorem 5.5.
Thus, from [Zhang and Zhou 2010], we have M∞(�) = M. Then since λM0 (�∞(�)M) ⊆
M∞(�), it follows that λM0 (�∞(�)M) ⊆ M. Therefore, it is only left for us to show
M ⊆ λM0 (�∞(�)M). Now, since M |= ∃−→

<∀−→
S ϕ(�,<)(

−→
<,

−→
S ), there exists an expansion

M′ of M, on the signature τ (�)∪{<r1r2 | r1, r2 ∈ �}, such that M′ |= ∀−→
S ϕ(�,<)(

−→
S ) where

∀−→
S ϕ(�,<)(

−→
S ) is the sentence obtained from ∀−→

S ϕ(�,<)(
−→
<,

−→
S ) by treating the predicate

variables in −→
< as constants. Then since M′ |= ∀−→

S ϕ(�,<)(
−→
S ) (i.e., which implies a

well-order on �(�)M), we construct a well-order W = (�(�)M,<W ) of �(�)M by setting

<W= {〈(r1, η1), (r2, η2)〉 |r1, r2 ∈ �,
−→xr1 = 〈u1, . . . , uk〉,−→xr2 = 〈v1, . . . , vl〉,

〈η1(u1), . . . , η1(uk), η2(v1), . . . , η2(vl)〉 ∈<M′
r1r2

}
.
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Hence, for an α ∈ �(�)M, define Wα(�) inductively as follows:

WBOT(W)(�) ={BOT(W)};
WSUCC(α)(�) =Wα(�) ∪ {SUCC(α)},

where BOT(W), SUCC(α), and ORD(W) denotes the bottom element, the successor element
of α and the order type of �(�)M under W, respectively. Intuitively, Wα(�) represents
the “gradual” collection of the pairs (r, η) of �(�)M under the well-order W up to and
including α.

CLAIM 1. WORD(W)(�) ⊆ �∞(�)M.

PROOF OF CLAIM 1. We prove by induction on α for α ≥ BOT(W).
Basis. Since W is a preference preserving well-order on �(�)M, then we have that
BOT(W) = (r, η) is such that:

(1) Pred(Pos(r)) ∩ Pint(�) = ∅ (i.e., since (r, η) is the least element under W of �(�)M
and that the well-order W satisfies the notion of support since M′ |= ∧

r∈� ∀−→xr

(ϕGEN
r (−→xr ) → ϕSUP

r (−→xr )));
(2) Any rule r′ < r and assignment η′ implies (r′, η′) /∈ �(�)M. For suppose (r′, η′) ∈

�(�)M, then we must have (r′, η′) <W (r, η) since r′ < r, (r, η) and (r′, η′) are both in
�(�)M, and

M′ |= ∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(
ϕGEN

r′ (−→xr′ ) →<r′r (−→xr′ ,
−→xr )

))
(i.e., since M′ |= ϕPREF

(�,<)), which is absurd since (r, η) is the least most under W;
(3) For each rule r′ < r and assignment η′ with (r′, η′) /∈ �(�)M, we have either:

(a) Pos(r′)η′ �⊆ M or
(b) Neg(r′)η′ ∩ (M0(�) ∪ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)}) �= ∅,
since

M′ |= ∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(¬ϕGEN

r′ (−→xr′ ) → (�¬POS
r′ (−→xr′ ) ∨ �DEF

rr′ (−→xr ,
−→xr′ ))

))
.

Then since (r, η) = BOT(W) (i.e., the least element under W, which means that
{Head(r′′)η′′ | (r′′, η′′) <W (r, η)} = ∅), it must be that Pos(r′)η′ �⊆ M or Neg(r′)η′ ∩
M0(�) �= ∅.

Then by (2) and (3) , we know that there does not exists a rule r′ < r and assignment η′
with Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩M0(�) = ∅ since we will always have Pos(r′)η′ �⊆ M
or Neg(r′)η′ ∩ M0(�) �= ∅. Hence, as (r, η) ∈ �(�)M and where Pos(r)η ⊆ M0(�) by 1
this implies (r, η) ∈ �0(�)M by the definition of �0(�)M. Thus, we have WBOT(W)(�) ⊆
�0(�)M ⊆ �∞(�)M.

Step. Assume for BOT(W) ≤W β ≤W α, we have Wβ(�) ⊆ �∞(�)M.
We will show WSUCC(α)(�) ⊆ �∞(�)M. Thus, assume SUCC(α) = (r, η). Then by the

inductive hypothesis, there exists some t for whichWα(�) ⊆ �t(�)M (i.e., sinceWα(�) ⊆
�∞(�)M). Moreover, since M′ |= ∧

r∈� ∀−→xr (ϕGEN
r (−→xr ) → ϕSUP

r (−→xr )) (i.e., obeys the notion
of “support”), then we also have Pos(r)η ⊆ λM0 (Wα(�)), and hence, that Pos(r)η ⊆
λM0 (�t(�)M), since Wα(�) ⊆ �t(�)M.

SUBCLAIM 1. Here does not exists a rule r′ < r and assignment η′ such that

(1) Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�t(�)M) = ∅;
(2) (r′, η′) /∈ �t(�)M.
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PROOF OF SUBCLAIM 1. On the contrary, assume that there exists such a rule r′ and
assignment η′. Then there can only be two possibilities:
Case 1. (r′, η′) ∈ �(�)M. As

M′ |= ∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(
ϕGEN

r′ (−→xr′ ) →<r′r (−→xr′ ,
−→xr )

))
and since r′ < r, then we must have (r′, η′) <W (r, η) = SUCC(α), or in other words, that
(r′, η′) ∈ Wα(�) (i.e., by the definition of Wα(�)). Then since Wα(�) ⊆ �t(�)M by the
inductive hypothesis, this contradicts the assumption (r′, η′) /∈ �t(�)M.

Case 2. (r′, η′) /∈ �(�)M. Then since

M′ |= ∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(¬ϕGEN

r′ (−→xr′ ) → (�¬POS
r′ (−→xr′ ) ∨ �DEF

rr′ (−→xr ,
−→xr′ ))

))
,

there can be only two further possibilities:

—Subcase 1. Pos(r′)η′ �⊆ M. Then this contradicts the assumption Pos(r′)η′ ⊆ M.
—Subcase 2. Neg(r′)η′ ∩ λM0 (Wα(�)) �= ∅. But this contradicts the assumption

Neg(r′)η′ ∩ λM0 (�t(�)M) = ∅, since Wα(�) ⊆ �t(�)M, by the inductive hypothesis.
This completes the proof of Subclaim 1.

Therefore, using the fact that WORD(W)(�) ⊆ �∞(�)M by Claim 1, it is now suf-
ficient to only show M ⊆ λM0 (WORD(W)(�)) to show M ⊆ λM0 (�∞(�)M). Hence, let
P(−→aP) ∈ M and P(−→aP) /∈ M0(�) (for if P(−→aP) ∈ M0(�), the result is clear). We will
show P(−→aP) ∈ {Head(r)η | (r, η) ∈ WORD(W)(�)}. Indeed, since M∞(�) = M (i.e., since
M |= ∃−→

<∀−→
S (ϕPRO

� (−→<,
−→
S ) ∧ ϕCOMP

� ) and by Theorem 5.5 and [Zhang and Zhou 2010]), we
have for some t > 1, rule r, and corresponding assignment η:

(1) Head(r)η = P(−→aP);
(2) Pos(r)η ⊆ Mt(�) ⊆ M∞(�) = M and Neg(r)η ∩ M = ∅.

Then we have (r, η) ∈ �(�)M, which further implies (r, η) ∈ WORD(W)(�) (i.e., since
Dom(W) = �(�)M). Therefore, we have P(−→aP) ∈ {Head(r)η | (r, η) ∈ WORD(W)(�)} ⊆
λM0 (WORD(W)(�)). Hence, we have shown that M ⊆ λM0 (�∞(�)M).

This completes the proof of the theorem.

PROPOSITION 5.8. On finite structures, every FO preferred answer set program is pre-
cisely captured by an existential SO formula (i.e., ∃SO).

PROOF. We obtain an ∃SO formula ∃−→
<ψ(�,<)(

−→
< ) from ∃−→

<∀−→
S ϕ(�,<)(

−→
<,

−→
S ) by substi-

tuting the SO formula ϕTOTALOR
� (−→< )8 for ϕWELLOR

� (−→<,
−→
S ) in ϕ(�,<)(

−→
<,

−→
S ) where

ϕTOTALOR
� (−→< ) is given by:∧

r∈�

∀−→xr
−→yr

(
ϕGEN

r (−→xr ) ∧ ϕGEN
r (−→yr ) ∧ −→xr �= −→yr → (<̃rr(−→xr ,

−→yr ) ∨ <̃rr(−→yr ,
−→xr ))

)
∧

∧
r1,r2∈�,

r1 �=r2

∀−→xr1
−→xr2

(
ϕGEN

r1
(−→xr1 ) ∧ ϕGEN

r2
(−→xr2 ) → (<̃r1r2 (

−→xr1 ,
−→xr2 ) ∨ <̃r2r1 (

−→xr2 ,
−→xr1 ))

)
,

8Where “TOTALOR” stands for total-order.
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which, in conjunction with Formulas (6), (7), and (8), expresses a strict total-order on
�(�)M. Then, since well-orders are strict total-orders on finite structures, the result
follows.

Proposition 5.8 actually indicates that under finite structures, FO preferred answer
set programs can be captured by classical first-order logic, though the underlying
vocabulary may be larger than that of the original preferred program in general. This
is stated as the following corollary.

COROLLARY 5.9. Let (�,<) be an FO preferred answer set program, and A is a
finite structure on τ (�). Then there exists a first-order sentence �(�,<) where τ (�) ⊆
τ (�(�,< )), such that A is a preferred answer set of (�,<) iff there is a model M of
�(�,<) and A is a restriction of M on τ (�).

PROOF. For each predicate variable in the ∃SO formula mentioned in the proof of
Proposition 5.8, we simply introduce a new predicate constant to replace that predicate
variable, then such ∃SO formula reduces to a first-order sentence whose vocabulary is
τ (�) plus those new predicate constants.

Similarly to the ordered completion for FO normal logic programs [Asuncion et al.
2012a], by Corollary 5.9, we can develop a SAT based FO preferred normal logic pro-
gramming solver as follows: for a given FO preferred normal logic program, we first
translate it to a first-order sentence under a larger vocabulary, perform grounding for
this first-order sentence by taking extensional database as input, and finally call an
SAT solver to compute the models.

Example 5.10. On finite structures, let us consider once again the preferred program
(�2,<2) of Example 4.19:

r1 : P(x1) ← Q(x1),
r2 : Q(x2) ←,

r1 <2 r2.

We will now use Theorem 5.7 and Proposition 5.8 to show that �2 does not have a
preferred answer set. Thus, given �2, we have ϕPREF

�2
(−→< ) to be:

∀x1
(
ϕGEN

r1
(x1) → �)

∧ ∀x2
(
ϕGEN

r2
(x2) → ∀x1

(
(ϕGEN

r1
(x1) → <̃r1r2 (x1, x2))

∧ (¬ϕGEN
r1

(x1) → (
ϕ¬POS

r1
(x1) ∨ ϕDEF

r2r1
(−→<, x2, x1)

))))
. (17)

Then, from ϕPRO
�2

(−→< ), we further have:

∀x1
(
ϕGEN

r1
(x1) → ∃x2(<̃r2r1 (x2, x1) ∧ x1 = x2)

)
, (18)

that is, the support for r1. Then, since we also have

∀x1x2
(
<̃r1r2 (x1, x2) → ϕGEN

r1
(x1) ∧ ϕGEN

r2
(x2)

)
(19)

by ϕPRO
�2

(−→< ) (i.e., via (8)), then (18) is equivalent to:

∀x1
(
ϕGEN

r1
(x1) → ∃x2(<̃r2r1 (x2, x1) ∧ ϕGEN

r2
(x2) ∧ x1 = x2)

)
. (20)

Then, from (17), we further get that (20) is equivalent to:

∀x1
(
ϕGEN

r1
(x1) → ∃x2(<̃r2r1 (x2, x1) ∧ ϕGEN

r2
(x2) ∧ <̃r1r2 (x1, x2) ∧ x1 = x2)

)
, (21)

9Note that for our purpose here, we relabel the variables in rules r1 and r2 to make them disjoint.
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that is, simply adding the atom, <̃r1r2 (x1, x2), to the consequent. Then by (6), that is, the
transitive property, we further have that (21) is equivalent to

∀x1
(
ϕGEN

r1
(x1) → ∃x2(<̃r2r1 (x2, x1) ∧ ϕGEN

r2
(x2) ∧ <̃r1r2 (x1, x2)

∧ <̃r2r2 (x2, x2) ∧ x1 = x2)
)
, (22)

that is, adding the atom, <̃r2r2 (x2, x2), to the consequent. Then, by the asymmetry as
expressed by Formula (7) (i.e., which implies we cannot have <̃r2r2 (x2, x2)), we further
have that

∀x1
(
ϕGEN

r1
(x1) → ⊥) ≡ ∀x1¬ϕGEN

r1
(x1). (23)

Hence, since ϕGEN
r1

(x1) = Q(x1), then this implies that:

∀x1¬Q(x1).

Therefore, since we also have ∀x1 Q(x1) by ϕCOMP
�2

, the sentence ∃−→
<ψ(�2,<2)(

−→
< ) is unsat-

isfiable, which corresponds to the preferred program (�2,<2) not having a preferred
answer set as mentioned in Example 4.1.

PROPOSITION 5.11. For an FO preferred program (�,<) where <= ∅ and a τ (�)-
structure M, M |= ∃−→

<∀−→
S ϕ(�,<)(

−→
<,

−→
S ) iff M is an answer set of �.

PROOF. When <= ∅, ∃−→
<∀−→

S ϕ(�,<)(
−→
<,

−→
S ) reduces to ∃−→

<∀−→
S ϕ�(−→<,

−→
S ), since

ϕPREF
(�,<)(

−→
< ) as given by:∧

r∈�

∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(
(ϕGEN

r′ (−→xr′ ) → <̃r′r(−→xr′ ,
−→xr )

)
∧ (¬ϕGEN

r′ (−→xr′ ) → (
ϕ¬POS

r′ (−→xr′ ) ∨ ϕDEF
rr′ (−→<,

−→xr ,
−→xr′ )

))))
,

becomes ∧
r∈�

∀−→xr
(
ϕGEN

r (−→xr ) → �) ≡ �.

6. COMPARISONS WITH OTHER PREFERRED LOGIC PROGRAMMING FRAMEWORKS

Handling preferences through propositional ASP has been studied by many re-
searchers. Among the different proposals, the general fixpoint-type framework of han-
dling preferences in logic programs proposed by Schaub and Wang [2003]; that we refer
to SW framework whenever no confusion is caused, and the preferred logic program-
ming approach Brewka and Eiter [1999] were considered to be most influential. In
this section, we compare our approach developed in this article with these two typical
preferred answer set programming frameworks in some detail.

6.1. Review of D-Preference Under Schaub and Wang’s Fixpoint-Type Characterization

We will first show that our FO preferred semantics is a proper uplifting of Schaub
and Wang’s prescriptive type framework for propositional programs to the FO case. As
illustrated in Schaub and Wang [2003], Schaub and Wang’s framework is able to capture
several preferred logic programming approaches. In this subsection, we consider the
preferred logic programming framework proposed by Delgrande et al. [2003] under
Schaub and Wang’s characterization, which we will refer to D-preference.

First, we briefly review D-preference framework as reformalized in Schaub and Wang
[2003]. With the same basic principle as that of the progression-based FO semantics,
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the main idea in [Schaub and Wang 2003] is to characterize preferred answer sets by
means of an inductive development (i.e., fixpoint-type) that respects (in some way) the
given rule preference relations.

To formally define this inductive characterization, we first introduce the following
notions. For a given propositional program � of signature τ (�), let X ⊆ τ (�) and
Y ⊆ τ (�). Then we define the immediate consequence operator T�,Y X as follows:

T�,Y X = {Head(r) | r ∈ �, Pos(r) ⊆ X and Neg(r) ∩ Y = ∅}. (24)

Now in terms of a preferred program (�,<), the immediate consequence operator
T�,Y X is extended in the SW framework by considering the preference relations among
the rules so that T(�,<),Y X (i.e., with the preference relations) is now defined as follows:

T(�,<),Y X = {Head(r) | (1) Pos(r) ⊆ X and Neg(r) ∩ Y = ∅;
(2) there does not exist a rule r′ ∈ � where r′ < r,

r′ /∈ Rule(Head(X)), and Pos(r′) ⊆ Y and
Neg(r′) ∩ X = ∅}, (25)

where (as mentioned in [Schaub and Wang 2003]), Rule(.) is a bijective mapping among
rule head and rules. That is, we have that Rule(Head(r)) = r and Rule({Head(r) | r ∈
R}) = R (such mappings are defined by distinguishing different occurrences of head
atoms). Note that the preference relations among the rules are considered in (25) by
requiring that more preferred rules, that is, r′ in (25), have effectively been applied.

Then to obtain the underlying inductive characterization, iterated applications of
T(�,<),Y X are written as T i

(�,<),Y X for i ≥ 0, where T 0
(�,<),Y X = X and

T i+1
(�,<),Y X = T(�,<),Y

(
T i

(�,<),Y X
)
.

Also note that in the case of preference free programs, a set X of atoms is an answer
set of � iff T ∞

�,X∅ = X, that is, we start from the empty set then gradually collect the
heads of the reduced program �X until a fixpoint is achieved. Then, a set X of atoms is
said to be a preferred answer set of the preferred program (�,<) iff T ∞

(�,<),X∅ = X.

6.2. The FO Preferred Progression Semantics on Propositional Programs

Now we consider the FO preferred progression semantics defined in Definition 3.1
under propositional case. As we discussed earlier, by grounding a FO preferred an-
swer set program, we obtain a grounded preferred answer set program as defined in
Definition 4.3. Then we have showed that there is a correspondence between the an-
swer sets of the grounded preferred answer set program and the answer sets of the
original FO preferred program, that is, Definition 4.5 and Theorem 4.7.

The following proposition shows that by applying our grounded preferred answer
set definition to finite propositional preferred answer set programs, our semantics
coincides to D-preference under Schaub and Wang’s fixpoint-type characterization.

PROPOSITION 6.1. Let (�,<) be a propositional preferred program and X ⊆ τ (�).
Then T ∞

(�,<),X∅ = X iff Head(�∞(�)X) = X.

PROOF. The result will be easily proved by induction that T i
(�,<),X∅ = Head(�i(�)X)

for all i ≥ 0.

6.3. Weak Preference Preserving Answer Sets

Now we will show that, similarly to SW framework which captures other important
preferred approaches via a slight modification of the immediate consequence operator
T(�,<),Y X, our FO progression semantics also posses such features.
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With respect to the term “groundedness” as used in Schaub and Wang [2003] and
[Delgrande et al. 2003], a weak form of the preferred answer set is also proposed
[Schaub and Wang 2003]. This so-called weak form has the property that in the ap-
plication of a rule at any stage, it is enough for the head of a more preferred rule to
have already appeared in the “earlier” collection of heads rather than the effective
application of the (more preferred) rule itself. This is best illustrated in the following
formal elaboration. Let WT(�,<),Y X (i.e., with a W left-superscript for “weak”) denote the
consequence operator defined as follows:

WT(�,<),Y X = {Head(r) | (1) Pos(r) ⊆ X and Neg(r) ∩ Y = ∅;
(2) there does not exist a rule r′ ∈ � where r′ < r,

Head(r′) /∈ X, and Pos(r′) ⊆ Y and
Neg(r′) ∩ X = ∅}. (26)

Then, compared to the T(�,<),Y X operator, the application of rules in (26) is considered if
it is enough for the head of an “active” (i.e., feasible for application in the current stage)
more preferred rule to have been derived in the earlier stages. As shown in Delgrande
et al. [2003], this corresponds to the weak notion of “groundedness”. Similarly to that of
SW preferred answer sets, a set of propositional atoms X is an answer set of a program
� iff WT ∞

(�,<),X∅ = X (with the iterative applications of WT(�,<),Y X defined as before).
At the FO level, this notion can be uplifted to our progression-based semantics.

Definition 6.2. Let (�,<) be a preferred FO answer set program and M a corre-
sponding τ (�)-structure. We define

�0
W (�)M ={(r, η) | (1) Pos(r)η ⊆ M0(�) and Neg(r)η ∩ M = ∅;

(2) there does not exist a rule r′ ∈ � and an assignment η′ such

that r′ < r, Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ M0(�) = ∅};
and for t ≥ 0,

�t+1
W (�)M =�t

W (�)M ∪ {(r, η) | (1) Pos(r)η ⊆ λM0 (�t
W (�)M) and Neg(r)η ∩ M = ∅;

(3) there does not exist a rule r′ ∈ � and an assignment η′

such that r′ < r, Head(r′)η′ �∈ λM0 (�t
W (�)M), and

Pos(r′)η′ ⊆ M and Neg(r′)η′ ∩ λM0 (�t
W (�)M) = ∅}. (27)

Let �∞
W (�)M = ⋃∞

t=0 �t
W (�)M.

Definition 6.3. Let (�,<) be a preferred FO program and M a τ (�)-structure. M
is called a weak preferred answer set of (�,<) iff λM0 (�∞

W (�)M) = M.

Similarly to the original progression characterization of FO preferred answer sets,
this also posses the following important property.

PROPOSITION 6.4. Let (�,<) be a preferred program. If a τ (�)-structure M is a weak
preferred answer set of (�,<), then M is an answer set of �.

The proof of this proposition is in a similar manner of the proof Proposition 3.5. Due
to its tediousness, we ommit it here.

As in the original definition of the FO preferred answer sets introduced in Section 3,
this new weak notion of FO preferred answer sets can also be expressed in SO logic.
More precisely, like the way we expressed the original definition of the FO preferred
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answer set by the following SO formula in Section 5:

∃−→
<∀−→

S ϕ(�,<)(
−→
<,

−→
S ) = ϕPREF

(�,<)(
−→
< ) ∧ ϕPRO

� (−→<,
−→
S ) ∧ ϕCOMP

� ,

we can also capture this FO counterpart of the weak preferred answer sets via a slight
modification of its ϕPREF

(�,<)(
−→
< ) and ϕSUP

r (−→<,
−→xr ) (which is in ϕPRO

� (−→<,
−→
S )) subformulas, that

is, the ones that explicitly deal with the rules’ preference relations and groundedness,
respectively.

For this purpose, let us now define ϕW-SUP
r (−→<,

−→xr ) (here, “W-SUP” stands for weak
support) to be a variant of ϕSUP

r (−→<,
−→xr ) as the following formula:

ϕSUP
r (−→<,

−→xr ) ∨
∨

r′∈�,

Head(r′)=P(−→y )

∃−→xr′ (<̃r′r(−→xr′ ,
−→xr ) ∧ −→x = −→y ), (28)

where we assume that Head(r) is of the form P(−→x ).
Generally speaking, ϕW-SUP

r (−→<,
−→xr ) as defined in (28) expresses the weak form of

groundedness by also allowing the sufficient condition that it is enough for the head
of a generating rule to have been mentioned in the earlier stages, rather than strictly
having its positive body derived. Then, by ϕW-PRO

� (−→<,
−→
S ) (here “W-PRO” for weak pro-

gression), we now denote the formula obtained from ϕPRO
� (−→<,

−→
S ) (see Definition 5.2) by

replacing ϕSUP
r (−→<,

−→xr ) with ϕW-SUP
r (−→<,

−→xr ).
In the following definition, we further provide the weak counterpart of the ϕPREF

(�,<)(
−→
< )

formula that explicitly deals with the preference relations.

Definition 6.5. For an FO preferred program (�,<), define the formula ϕW-PREF
(�,<) (−→< )

as follows (here “W-PREF” stands for weak preference):∧
r∈�

∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
((

ϕGEN
r′ (−→xr′ ) → <̃r′r(−→xr′ ,

−→xr
))

∧ (¬ϕGEN
r′ (−→xr′ ) → (

ϕ¬POS
r′ (−→xr′ ) ∨ ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ ) ∨ ϕHEAD
rr′ (−→<,

−→xr ,
−→xr′ )

))))
, (29)

where ϕ¬POS
r′ (−→xr′ ) and ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ ) are defined as in Definition 5.6, and ϕHEAD
rr′ (−→< , −→xr ,−→xr′ ) stands for the formula ∨

r′′∈�,

Head(r′′)=P(−→y )

∃−→xr′′ (<̃r′′r(−→xr′′ ,
−→xr ) ∧ −→x = −→y ), (30)

where we assume here that Head(r′) is of the form P(−→x ).

Intuitively, ϕW-PREF
(�,<) (−→< ) differs from ϕPREF

(�,<)(
−→
< ) in the sense that it is enough for a more

preferred nongenerating rule to have its head already derived by some generating rule
from the previous stages, that is, as enforced by ϕHEAD

rr′ (−→<,
−→xr ,

−→xr′ ) where r′ is a non-
generating rule. This is in contrast with ϕPREF

(�,<)(
−→
< ) since it requires all nongenerating

rule to be either explicitly nonderivable as its positive body cannot be derived (i.e.,
via the ϕ¬POS

r′ (−→xr′ )), or is already defeated by some rule derived from the earlier stages
(i.e., via the ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ ) formula). Thus, it is not difficult to see that the only real
difference between ϕW-PREF

(�,<) (−→< ) and ϕPREF
(�,<)(

−→
< ) is the addition of the other choice for the

nongenerating rules (i.e., via ϕHEAD
rr′ (−→<,

−→xr ,
−→xr′ )).

ACM Transactions on Computational Logic, Vol. 15, No. 2, Article 11, Publication date: April 2014.



TOCL1502-11 ACM-TRANSACTION April 4, 2014 17:35

11:38 V. Asuncion et al.

As in the original definition of the FO preferred answer sets, in a similar way of
the proof of Theorem 5.7, we can prove the following important property of the weak
preferred answer sets.

THEOREM 6.6. For an FO preferred program (�,<) and a τ (�)-structure M, we have
that

M |= ∃−→
<∀−→

S
(
ϕW-PREF

(�,<) (−→< ) ∧ ϕW-PRO
� (−→<,

−→
S ) ∧ ϕCOMP

�

)
iff M is a weak preferred answer set of (�,<).

The following proposition shows that the FO weak preferred answer sets can be
captured by an ∃SO sentence on finite structures.

PROPOSITION 6.7. On finite structures, every FO weak preferred answer set program
is precisely captured by an ∃SO sentence.

PROOF. Similarly to the proof of Proposition 5.8, we obtain an ∃SO formula from
∃−→

<∀−→
S ( ϕW-PREF

(�,<) (−→< ) ∧ ϕW-PRO
� (−→<,

−→
S ) ∧ ϕCOMP

� ) by substituting the SO formula ϕTOTALOR
� (−→< )

for ϕWELLOR
� (−→<,

−→
S ) in ϕW-PRO

� (−→<,
−→
S ). Then since total-orders are well-orders on finite sets,

the result follows.

6.4. Brewka and Eiter’s Framework

There is another important framework for propositional preferred logic programs pro-
posed by Brewka and Eiter [1999]. This preference semantics was also captured in
Schaub and Wang [2003] by means of a fixpoint-style characterization. Differently
from both Delgrande et al.’s and Schaub and Wang’s approaches, this fixpoint charac-
terization requires that the “answer set property” has to be verified separately, and
hence, it seems not feasible to define a direct progression-style preference semantics
for its first-order case. To get over this unpleasant situation, we bypass the fixpoint
characterization and instead go directly to a logical characterization.

To achieve this, we go by appealing to the preference preserving formulation as first
proposed in Delgrande et al. [2003]. At the propositional case, it is given as follows. Let
(�,<) be a propositional preferred program and A an answer set of �. Then A is also
called a BE preference preserving answer set of (�,<) iff there exists an enumeration
〈ri〉i∈I of �(�)M satisfying the following properties. For every i, j ∈ I:10

(1) ri < rj implies i < j;
(2) r′ /∈ �(�)M and r′ < ri implies that:

(a) Pos(r′) �⊆ A, or
(b) Neg(r′) ∩ {Head(rj) | j < i} �= ∅, or
(c) Head(r′) ∈ A.

We now extend this notion to the FO case and under arbitrary structures as follows.

Definition 6.8. Assume (�,<) to be a preferred FO program and M an answer set
of �. Then we say that M is also a BE preferred answer set of � iff there exists a BE
preference preserving well-order W = (�(�)M,<W ) of �(�)M defined as follows:

(1) (r1, η1), (r2, η2) ∈ �(�)M and r1 < r2 implies (r1, η1) <W (r2, η2);
(2) (r, η) ∈ �(�)M, (r′, η′) /∈ �(�)M, and r′ < r implies that either:

10Note that the original definition as it was discussed by Delgrande et al. [2003] only concerned finite
propositional programs.
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(a) Pos(r′)η′ �⊆ M or
(b) Neg(r′)η′ ∩ {Head(r′′)η′′ | (r′′, η′′) <W (r, η)} �= ∅ or
(c) Head(r′)η′ ∈ M.

Now, to capture this in SO logic, we first define the following formula.

Definition 6.9. For an FO preferred program (�,<), define the formula ϕBE-PREF
(�,<)

(−→<,
−→
S ) as follows (here “BE-PREF” stands for Brewka-Eiter preference):∧

r∈�

∀−→xr

(
ϕGEN

r (−→xr ) →
∧
r′<r

∀−→xr′
(
(ϕGEN

r′ (−→xr′ ) → <̃r′r(−→xr′ ,
−→xr )

)
∧ (¬ϕGEN

r′ (−→xr′ ) → (
ϕ¬POS

r′ (−→xr′ ) ∨ ϕDEF
rr′ (−→<,

−→xr ,
−→xr′ ) ∨ ϕBE-HEAD

r′ (−→xr′ )
))))

(31)

∧
∧

r1,r2,r3∈�

∀−→xr1
−→xr2

−→xr3 (<̃r1r2 (
−→xr1 ,

−→xr2 ) ∧ <̃r2r3 (
−→xr2 ,

−→xr3 ) → <̃r1r3 (
−→xr1 ,

−→xr3 )) (32)

∧
∧

r1,r2∈�

∀−→xr1
−→xr2 (<̃r1r2 (

−→xr1 ,
−→xr2 ) → ¬<̃r2r1 (

−→xr2 ,
−→xr1 )) (33)

∧
∧

r1,r2∈�

∀−→xr1
−→xr2

(
<̃r1r2 (

−→xr1 ,
−→xr2 ) → ϕGEN

r1
(−→xr1 ) ∧ ϕGEN

r2
(−→xr2 )

)
(34)

∧ ϕWELLOR
� (−→<,

−→
S ), (35)

such that ϕ¬POS
r′ (−→xr′ ) and ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ ) are defined as in Definition 5.6, ϕWELLOR
� (−→<,

−→
S )

is defined as in Definition 5.2, and ϕBE-HEAD
r′ (−→xr′ ) stands for the formula

P(−→x ), (36)

where we assume here that Head(r′) is of the form P(−→x ).

Let us take a closer look at Definition 6.9. In a nutshell, about Formula (31), for each
generating rule (r, η) ∈ �(�)M, we have that each other rule (r′, η′) (can be nongener-
ating) for which r′ < r is considered into two possible cases. The first case is where
(r′, η′) is also a generating rule itself. In this case, we require that (r′, η′) must have to
be placed earlier than (r, η) in the well-order, that is, as enforced by <̃r′r(−→xr′ ,

−→xr ). On the
other hand, in the case that (r′, η′) is a nongenerating rule, we must have that either:
(r′, η′) cannot possibly be derived (since Pos(r′)η′ �⊆ M as encoded by ϕ¬POS

r′ (−→xr′ )), as it
is already defeated in the well-order (via ϕDEF

rr′ (−→<,
−→xr ,

−→xr′ )), or that Head(r′)η′ ∈ M (as
enforced by the formula ϕBE-HEAD

r′ (−→xr′ ) = P(−→x ) where we assume that Head(r′) = P(−→x )).
Finally, Formulas (32), (33), (34), and (35) enforces the well-order (where ϕWELLOR

� (−→<,
−→
S )

is defined as in Definition 5.2).

THEOREM 6.10. Let (�,<) be an FO preferred and M be a τ (�)-structures. Then we
have that

M |= ∃−→
<1

−→
<2∀−→

S1
−→
S2

(
ϕBE-PREF

(�,<) (−→<1,
−→
S1) ∧ ϕPRO

� (−→<2,
−→
S2) ∧ ϕCOMP

�

)
iff M is a BE preferred answer set of (�,<).

Note that since the answer sets of the BE preferred framework have to be verified
separately, the “ordering predicates” of ϕBE-PREF

(�,<) (−→<1,
−→
S1) are independent from that of

ϕPRO
� (−→<2,

−→
S2). This is in contrast with both the SW and the “weak” SW since they do not

dispose of the groundedness requirement.
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PROOF.

M |= ∃−→
<1

−→
<2∀−→

S1
−→
S2

(
ϕBE-PREF

(�,<) (−→<1,
−→
S1) ∧ ϕPRO

� (−→<2,
−→
S2) ∧ ϕCOMP

�

)
iff M |= ∃−→

<2∀−→
S2(ϕPRO

� (−→<2,
−→
S2)∧ϕCOMP

� ) and M |= ∃−→
<1∀−→

S1ϕ
BE-PREF
(�,<) (−→<1,

−→
S1) iff M is an answer

set of � (by Theorem 5.5) and there exists a BE preference preserving well-order of
�(�)M (by Definitions 6.8 and 6.9) iff M is a BE preferred answer set of (�,<).

PROPOSITION 6.11. On finite structures, the BE preferred answer set framework can
also be captured by an ∃SO sentence.

PROOF. As in the proofs of Propositions 5.8 and 6.7, simply replace the occurrences
of ϕWELLOR

� (−→<,
−→
S ) by ϕTOTALOR

� (−→< ). Then since total-orders are well-orders on finite sets,
the result follows.

6.5. Why Preferred First-Order ASP Further Discussions

In previous subsections, we have shown that by restricting our approach to the propo-
sitional case, our progression-based semantics for preferred answer set programming
is reduced to Delgrande et al.’s preference approach under Schaub and Wang’s fixpoint-
style characterization [Delgrande et al. 2003]. We also showed how both Schaub and
Wang’s and Brewka and Eiter’s frameworks [Schaub and Wang 2003; Brewka and Eiter
1999] can be extended to the first-order cases respectively.

Like the case of first-order ASP, in preferred first-order ASP, arbitrary domains are
considered, while both finite and infinite domains are allowed. However, in practice we
usually only work on finite domains. Then, a key question is: from a practical viewpoint,
can we just consider propositional preferred ASP, while grounding is used to handle
variables occurring in the underlying programs?

In our view, preferred first-order ASP not only offers a more succinct method to
formalize complex problem domains involving preference reasoning, but also provides
an alternative to implement effective preferred ASP solvers on finite domains. Note
that Corollary 5.9 shows that in our framework, every preferred first-order program
can be represented by a first-order sentence on finite structures. With this result,
we can possibly develop a preferred first-order ASP solver as follows: (1) for a given
preferred program, we can translate it into the corresponding first-order sentence;
(2) do necessary formula simplifications; (3) by taking the extensional instances, ground
the simplified first-order sentence; and finally (4) call an SAT solver to compute the
models, from which the preferred answer sets of the original program are extracted.

As we have demonstrated in our recent work on ordered completion of first-order
normal logic programs [Asuncion et al. 2012a], such SAT based first-order ASP solver
avoids the grounding of the underlying program directly, instead, it grounds the corre-
sponding first-order formula where many useful optimization techniques can be used.
It has noticeable better performance on very large problem instances compared to cur-
rent existing ASP solvers. We believe that by extending this technology to preferred
first-order normal logic programs, we can eventually develop an effective preferred
first-order ASP solver with practical applications.

7. CONCLUDING REMARKS

Our framework of preferred first-order ASP generalizes the progression semantics for
FO ASP by Zhang and Zhou [2010] by incorporating preference, while it also extends
Delgrande et al.’s semantics [Delgrande et al. 2003] for preferred propositional ASP
to the FO case. On the other hand, the logical characterization of our preferred first-
order ASP further reveals the expressive power of our framework from a classical logic
viewpoint, and also generalizes Schub and Wang’s and Brewka and Eiter’s preference
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semantics [Schaub and Wang 2003; Brewka and Eiter 1999] to the corresponding first-
order cases.

Several related issues are left for our future work. First, it is our current task
to develop a preferred first-order ASP solver under the progression-based preference
semantics. As discussed in Section 6.5, our approach will be based on the logical char-
acterization result proved in Section 5.

Second, as an application of preferred ASP, there have been some works on updates
through preferred logic programs, for instance, Zhang [2006]. It would be an interesting
topic to study this problem on the first-order level via preferred FO ASP. Currently,
we are considering to use the proposed framework to specify finite structure updates,
where the entire update process may be represented by a preferred FO answer set
program.

Another interesting work is to extend the preferred FO normal answer set programs
to preferred FO disjunctive answer set programs. The recent work of Zhou and Zhang
[2011] extends the progression-based semantics of FO normal logic programs to FO
disjunctive logic programs. This new semantics may provide a possibility to develop a
similar progression-based preference semantics for FO disjunctive programs.

Finally, it is also an important work to investigate the relationships between our
preferred FO ASP with other preferred first-order nonmonotonic reasoning formalisms
such as prioritized circumscription. Prioritized circumscription [Lifschitz 1985;
McCarthy 1986] is an alternative way of introducing circumscription by means of an
ordering on tuples of predicates satisfying an axiom (can be any arbitrary first-order
sentence). Hence, prioritized circumscription differs from ours in that we do not relate
to any ordering of the tuples of predicates, but rather, we relate directly to the so-called
“ordering on formulas”, that is, as represented by the universal closures of rules. Thus,
our approach is more of a prescriptive analog on an FO level. However, it would be in-
teresting to know whether these two FO preference formulations have certain in-depth
connections under some circumstances.
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