Problem Setup

- Goal. Learn a graph $G=(V, E)$ via edge detecting queries

$$
Y=\bigvee_{(i, j) \in F}\{\text { nodes } \mathrm{i} \text { and } \mathrm{j} \text { included in the test }\}
$$

An illustration:

Potential applications: Learning chemical interactions, wireless connectivity, social networks with privacy constraints, etc.

- Erdős-Rényi model: Each edge appears independently with probability q (in this work, $q \ll 1$)
- Error probability: If the estimated graph is \widehat{G}, then

$$
\operatorname{Pr}[\text { error }]:=\mathbb{P}[\widehat{G} \neq G] .
$$

- Sparsity level
\triangleright Let n denote the number of nodes
\triangleright We consider the sparse regime $q=\Theta\left(n^{-2(1-\theta)}\right)$ with $\theta \in(0,1)$ > Average number of edges: $\bar{k}=\binom{n}{2} q=\Theta\left(n^{2 \theta}\right)$
- Bernoulli random testing: Each node is independently placed in each test with probability $p=\sqrt{\frac{\nu}{\bar{k}}}$ for some $\nu>0$

Contributions

- Existing hardness result [1]: Learning an arbitrary graph with n nodes and k edges requires $\Omega\left(\min \left\{k^{2} \log n, n^{2}\right\}\right)$ tests
- This work: Learning an Erdős-Rényi random graph with an average of \bar{k} edges only requires $O(\bar{k} \log n)$ tests
\triangleright Explicit near-optimal constant factors:

Algorithm-Independent Lower Bound

$$
\begin{aligned}
& \text { Theorem 1. If the number of tests satisfies } \\
& \text { \#Tests } \leq\left(\bar{k} \log _{2} \frac{1}{q}\right)(1-o(1))
\end{aligned}
$$

as $n \rightarrow \infty$, then it is impossible for any algorithm (and test design) to achieve $\operatorname{Pr}[$ error $] \rightarrow 0$.

Algorithmic Upper Bounds

- COMP Algorithm

(i) Initialize \widehat{E} to contain all $\binom{n}{2}$ edges
(ii) For each negative test, remove all edges from \widehat{E} whose nodes are both included in the test
(iii) Output $\widehat{G}=(V, \widehat{E})$

Theorem 2. The COMP algorithm achieves $\operatorname{Pr}[$ error $] \rightarrow 0$ as $n \rightarrow \infty$ as long as
\#Tests $\geq(2 e \cdot \bar{k} \log n)(1+o(1))$

- DD Algorithm:

(i) Initialize $\widehat{E}=\emptyset$, and initialize PE to contain all $\binom{n}{2}$ edges
(ii) For each negative test, remove all edges from PE whose nodes are both included in the test
(iii) For each positive test, if the test covers exactly one edge in PE (the set of possible edges), add that edge to \widehat{E}
(iv) Output $\widehat{G}=(V, \widehat{E})$

Theorem 3. The DD algorithm achieves $\operatorname{Pr}[$ error $] \rightarrow 0$ as $n \rightarrow \infty$ as long as
\#Tests $\geq(2 \max \{\theta, 1-\theta\} e \cdot \bar{k} \log n)(1+o(1))$

SSS Algorithm Lower Bound

SSS Algorithm: Using integer programming, find the graph with the fewest edges that is consistent with the test results
Theorem 4. The (essentially optimal) SSS algorithm yields $\operatorname{Pr}[$ error $] \rightarrow 1$ as $n \rightarrow \infty$ as long as \#Tests $\leq(2 \theta e \cdot \bar{k} \log n)(1-o(1))$.

Sublinear-Time Decoding

Group Testing Quick and Efficient (GROTESQUE):

(i) Form $O(\bar{k} \log \bar{k})$ random bundles of nodes
(ii) Use multiplicity tests to find bundles with exactly one edge
(iii) Use location tests to determine those edges

Theorem 5. The GROTESQUE test design and decoding algorithm achieves $\operatorname{Pr}[$ error $] \rightarrow 0$ with $t=O(\bar{k} \cdot \log k$ $\log ^{2} n$) tests, and has $O\left(\bar{k} \log ^{2} \bar{k}+\bar{k} \log n\right)$ decoding time

Numerical Experiments

(i) $n=50, \bar{k}=5$ and $\nu=1$
(ii) $n=200, \bar{k}=200$ and $\nu=1$

References

[1] H. Abasi and N. H. Bshouty, "On learning graphs with edge-detecting queries," 2018 https://arxiv.org/abs/1803.10639
[2] M. Aldridge, L. Baldassini, and O. Johnson, "Group testing algorithms: Bounds and simulations," IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3671-3687, June 2014
[3] M. Aldridge, "The capacity of Bernoulli nonadaptive group testing," IEEE Trans. Int Theory, vol. 63, no. 11, pp. 7142-7148, 2017
[4] M. Aldridge, O. Johnson, and J. Scarlett, "Group testing: An information theory perspective," 2019, https://arxiv.org/abs/1902.06002.
[5] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi, "Efficient algorithms for noisy group testing," IEEE Trans. Inf. Theory, vol. 63, no. 4, pp. 2113-2136, 2017

```
Full Paper
```

https://arxiv.org/abs/1905.03410

