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Abstract. Outlier detection is an important process for text document
collections, but as the collection grows, the detection process becomes a
computationally expensive task. Random projection has shown to pro-
vide a good fast approximation of sparse data, such as document vectors,
for outlier detection. The random samples of Fourier and cosine spectrum
have shown to provide good approximations of sparse data when perform-
ing document clustering. In this article, we investigate the utility of using
these random Fourier and cosine spectral projections for document out-
lier detection. We show that random samples of the Fourier spectrum for
outlier detection provides better accuracy and requires less storage when
compared with random projection. We also show that random samples
of the cosine spectrum for outlier detection provides similar accuracy
and computational time when compared with random projection, but
requires much less storage.

1 Introduction

To perform outlier detection is to examine a data set for items that are dissimilar
to the majority of the set. Outlier detection has been used for tasks such as
computer network intrusion detection, medical fraud detection and credit card
fraud detection, and novelty detection. It is also useful in finding clusters in
highly imbalanced data sets.

The use of computers to automate tasks and communicate through the In-
ternet, has led to the generation and storage of large amounts of information
that must be processed for each outlier detection task. Therefore, we must be
able to efficiently and effectively perform outlier detection on a large scale. Most
recorded human interaction is in the form of free text (e.g. email, wikis, blogs,
social network posts), therefore identifying outliers in large text document collec-
tions is a relevant problem that is useful for finding interesting items or suspicious
documents that do not belong.

The definition of outlier detection implies that the data must be thoroughly
examined to find the small set of outliers. Therefore, outlier detection is a compu-
tationally expensive task. It has been recently shown [1] that random projection
can be used to project sparse data sets, such as text documents, into a lower
dimensional space and approximately preserve the distances between all of the
data objects. It has also been shown [2] that random samples of the Fourier
and cosine spectrum provide us with a good lower dimensional approximation



of sparse data sets for effectively and efficiently identifying clusters. In this ar-
ticle, we will investigate the utility (in terms of accuracy, efficiency and storage
required) of these random spectral projections for outlier detection on large text
document collections.

The contributions of this article are:

— A description of random spectral projection using the Fourier and cosine
transforms (Section 3).

— A comparison of the speed and accuracy of random spectral projection and
random projection for outlier detection (Section 4.4).

— An examination of the storage, speed and accuracy of random spectral pro-
jection and random projection when performing outlier detection on a large
document set (Section 4.6).

The article will proceed as follows: Section 2 describes the current methods
used for text document outlier detection. Section 3 describes the theory behind
compressive sampling and shows how we will apply this to outlier detection.
Section 4 contains the experimental method, results and discussion.

2 Text Document Outlier Detection

In this section we will examine how to perform outlier detection on a collection of
text documents. Text document sets exist in high dimensional spaces, therefore,
we require a simple method for detecting outliers. We first present the outlier
detection method that we will be using and then describe how we will compute
the similarity of each document during the outlier detection process.

2.1 Outlier Detection

An outlier is an element of a set that has different qualities in some respect to
the majority of the set. Identifying an outlier may be subjective and therefore
requires a clear definition in order for detection to take place. In this article, we
are focusing on text documents, so an outlier document is one that is written on a
different topic to the majority of the document collection. We will be representing
each text document as a vector in a high dimensional space, implying that we
need an efficient and effective outlier detection method that can be used on high
dimensional vector spaces.

A simple outlier detection method examines the similarity of each document
to its neighbours [3]. If a document is similar to many documents then it is
considered an inlier, if a document is similar to only a few other documents,
then it may be an outlier. This simple distance based outlier detection method
has order O(T'N?) where N is the number of documents in the collection and
T is the dimensionality of the document space. The computational complexity
comes from us having to compute the distance of each document from a given
document to obtain its outlier likelihood score. An advancement on the distance
based method is to also examine the density of the document distributions. If a
region in the vector space is densely populated, while another is more spread out,
the simple method may wrongly detect a document in the latter region of the
vector space as an outlier. Local Outlier Factor (LOF) [4] is an outlier detection



method that examines the local data distribution, and computes the outlier
likelihood score based on the density around the point. Unfortunately the LOF
method requires us to store the identity of each of document’s k neighbours and
the distances to these neighbours. The computation of the LOF scores requires
a scan of the complete set of document vectors to compute the neighbours,
having order O(T'N?), then a scan of each point’s neighbours to compute the
document density, having order O(Nk), and a final scan of the density scores
and neighbours, also having order O(Nk), where k is the number of neighbours
chosen.

We are not investigating the accuracy of the outlier detection method itself,
but we are interested in how the choice of random projection type affects the
accuracy of the outlier detection. To simplify our experiments so that they focus
on the effect of the projection, we will use simple distance based outlier detection.

2.2 Comparing Documents

A text document is a sequence of terms, where the terms describe the content
of the document. Each document can be represented as a vector in a vector
space, where the vector space has one dimension for each unique term in the
document collection. Within this 7' dimensional space (where T is the number
of unique terms in the collection), we can construct a document vector by using
the frequency of each term in a document as the corresponding value of each
element in the document vector. Doing this, we have:

d= [fd,to fd,tl fdytT—l]

where fy, is the frequency of term ¢; in document d. There has been many
similarity functions developed to compare document vectors to queries for infor-
mation retrieval (vector space methods [5], probabilistic methods [6], language
models [7]), but when comparing documents to documents, it has been found
that the TF-IDF weighting with cosine similarity is the most appropriate [8].
The TF-IDF weighting we use in this article is of the form:

wq,t = w(fa,) = log (]JZ + 1) fa

where wq ; is the weight of term ¢ in document d, f; is the number of documents
term ¢ appears in, and N is the number of documents in the collection. We
can see that if the term ¢ is common, meaning that f; is large, then % will be

close to 1 and log (% + 1) will be close to log (2) = 0.6931. If term ¢ is rare,

meaning that f; is small, then % will be close to N and log (% + 1) will be close

to log (N + 1). Therefore, the TF-IDF weighting gives less weight to common
terms and more weight to rare terms that define the document. The weighted
document vector is given as:

J = [wd’to Wd,ty - - wd,tT_J



The document similarity function is given as:

8.6,
S(di,d;) = —- I
T aallllag

where 8; is the ith weighted document vector, the inner product §; - 6; =

ZZ:Z- W, 4, Wd; t,, and the vector norm |[|§;| is v/d; - ;. We can see that this doc-
ument similarity function measures the cosine of the angle between the weighted
document vectors. If both vectors are the same, the similarity is 1; as the doc-
uments become more different, the similarity approaches 0. Note that also the
denominator of the similarity function normalises the document lengths, mean-
ing that the weight of a word in a long document will be less than the weight of
the same word in a smaller document.

2.3 Random Projection

Outlier detection is dependent on the vector space dimensionality. As the di-
mensionality of the space increases, so does the time required to compute the
outliers. Methods of dimension reduction (such as PCA, NMF and PLSA [9-11])
can be used to map the vector space into a smaller space, where each vector in
the smaller space is an approximation of the vectors in the original space. Unfor-
tunately, these methods are computationally expensive and therefore many not
be feasible for high dimensional spaces. In this section we will examine a simple
method that has been used for dimension reduction as a preprocessing step for
outlier detection.

Random projection is the act of projecting a vector space to a lower dimen-
sional space using a randomly generated mapping. It has been shown [1] that
a random projection of sparse data that approximately preserves the similarity
between vectors can computed using the mapping where each element is sampled
from a random variable X having the distribution:

x -1 0 1
P(X=z) 1/6 2/3 1/6

To map the document vector space from a T dimensional space to an S di-
mensional space, we generate an S X T matrix Pr containing values randomly
sampled from X. We can then project the weighted document matrix D (con-
taining the weighted document vectors as its columns) using:

Dg = PrD
where Dy is an S x N matrix containing the projected document vectors as

columns.

3 Random spectral projection

Compressive sampling [12, 13] is a sampling and reconstruction theory that has
popularity in the image processing field [14] but has found its way into machine
learning [2]. The idea is that if we are able to represent our data in a sparse



vector space though the linear transformation ¥ ~!, then we are able to spread
the information in our data set throughout the dimensions of the vector space
using an linear transformation @ that is maximally incoherent to ¥. Using this
knowledge, we are able to sample at a rate less than given by the Nyquist theorem
and still be able to perfectly reconstruct the original signal from the sample. In
our case, we have:

x =min|z||,, s.t. £ = Pz

where d = Wz is our document vector, x is sparse, @ is the sampling function,
& is the sample of d, and || - ||, is the [; norm. The coherence of a pair of basis
vectors is a measure of how similar they are. Coherence is given as:

W@, ) = VN max |[(di,1);)]

1<4,j<N

where ¢; and 1), are basis vectors of the linear functions ¢ and ¥ respectively,

and (P, ¥) € [1,v/N]. Therefore if two isometric transformations are maximally
incoherent, pu(®,¥) = 1.

For outlier detection, we do not need to reconstruct the document vectors, but
we do require a method of projecting most of the information in the document
collection into a smaller vector space. By performing the projection, we are able
to reduce the computation time required, and by preserving most of the data,
we will be able to maintain the accuracy of the outlier detection method.

In this article, our data consists of document vectors, which are sparse, there-
fore, the transformation ¥~! required to map our document vectors to a sparse
set of vectors is simply the identity matrix; we choose ¥ = I. Our choice of @
must be maximally incoherent to ¥ = I, therefore, we use & = X Pppr, where
Pprr is the discrete Fourier transform projection, and the matrix X selects a
sample of s rows from Pppr.

In this section, we will examine the discrete Fourier transform and the dis-
crete cosine transform (a real approximation to the discrete Fourier transform)
and how sampling is performed.

3.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an isometric transformation that de-
composes a vector into its various frequency components. The DFT used in this
article has the form:

T-1 .
—mft
= 5 o (222

t=0

where i = v/—1 and Wy s is the fth Fourier coefficient of document d. The DFT
can also be given as a matrix multiplication:

Dprr = PorrD

where Pppr contains the elements exp (—2iw ft/T) and D is the matrix con-
taining the set of weighted document vectors as columns. To sample from the



transformed vector, we randomly take s coefficients of the DFT. This can be
accomplished by randomly selecting s rows of Pppr and the applying the trans-
formation. The sample vectors (the columns of Dppr) now become our repre-
sentation of the document d to compute outliers from.

The sample vector contains complex elements, therefore we must ensure that
the document similarity function S(d;,d;) is modified to reflect this. We must
ensure that the we take the complex conjugate of one of the document vectors
being compared (for use in the inner product), and that we take the real portion
of the inner product.

3.2 Discrete Cosine Transform

Use of the Fourier transform requires us to work in the complex domain, in
which tools may not be readily available to many readers. Therefore, we will also
examine the discrete cosine transform (DCT), which is a close approximation to
the DF'T, but its coefficients are real. The DCT used in this article has the form:

T—1 .
%Et:o wagcos [(t+3) %] ifc=0
- T—1 .
VESL wapcos [(t+ ) 5] e £0
where Wy . is the cth cosine coeflicient, The DCT can be represented as a matrix
multiplication, in the same fashion as the DFT. We also randomly sample s

coefficients from the DCT spectrum to use as our document vector representation
in the s dimensional space.

Wdc

)

4 Experiments

We will now compare the effects, in terms of accuracy, time and storage required,
for outlier detection when using random projection and the DFT and DCT
random projections.

4.1 Experimental Environment

Our initial experimental environment consisted of a document set with ten artifi-
cially inserted documents from another document collection. For this we used two
document sets from the SMART collection!. The first document set we used con-
tained all documents from the CRAN document set (aerodynamics documents)
and the first ten documents from the MED document set (medical abstracts),
giving us 1408 documents and 4589 unique terms. We called this document set
CRAN+10MED. The second document set we used contained all of the docu-
ments from the CISI document set (information science abstracts) and the first
ten documents from the CRAN document set, giving us 1470 documents con-
taining 5676 unique terms. We called this collection CISI+10CRAN. Note that
each of the documents sets were parsed and converted into matrices using the

! Available from: ftp://ftp.cs.cornell.edu/pub/smart



textIR indexing software?. This software removes a predefined set of stopwords
and performs stemming using the Lovins stemmer.

4.2 Evaluation

Rather than examine the number of outliers predicted correctly, we instead ex-
amined the likelihood of a document being an outlier, allowing us to obtain
a finer scale for accuracy measurement. Our experiments involved ranking all
points in terms of their distance based outlier likelihood score. The ranked lists
were then examined and the ranks of the true outliers were found. A method
that provides all of the outliers higher in the ranked list is evaluated as being
more accurate than a method where the outliers are found in the lower ranks of
the ranked list.

To evaluate each outlier detection method’s outlier ranked list, we used Av-
erage Precision. Average precision uses r, the rank of each true outlier in the
outlier ranked list, where r; is the rank of the ith outlier provided by the method
under evaluation, and r; is ordered from highest rank to lowest rank. For exam-
ple, if r3 = 10, it means that the outlier detection method ranked an outlier as
the 10th most likely outlier, and two other outliers were ranked somewhere from
rank 1 to 9. Average precision is defined as:

1
i=1 "

where O is the number of outliers. If there were three outliers and an outlier
detection method ranked the outliers in positions r = {1,3,6}, the Average
Precision would be (1/1 + 2/3 + 3/6)/3 = 0.72. We can see that if all of the
outliers were ranked above all non-outliers, the Average Precision would be 1.

4.3 Procedure

The outlier likelihood score computation requires the parameter k (the number
of neighbours to consider). We computed outlier likelihood scores using neigh-
bour distance of k = 10, 20, 50, 100, 200 and 500. Each of the sampling methods
requires the parameter s (the number of coefficients to sample). We computed
outlier likelihood scores using sample sizes s = 32,64, 128,256,512,1024 and
2048. Each trial of the experiment involves random sampling, therefore we re-
peated each trial ten times to take into account the variability. The mean speed
and average precision of the ten trials is reported as the expected value.

4.4 Results

Analysis of the results showed us that similar trends were displayed for each
value of k, therefore we will only present the results for £ = 100 but use the
entire set of results in later significance tests. Figures 1 and 2 present the mean
AP versus computation time plots for the CISI+10CRAN and CRAN+10MED

2 Available from: http://staff.scm.uws.edu.au/~lapark/textIR/
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Fig. 1. The mean AP and computation time for outlier detection in the original space
(Raw), and for random projection (RP), DFT projection (DFTP), and DCT projection
(DCTP) for k = 100 on the CISI+10CRAN data set. The results for each projection
method have been recorded for projections into 32, 64, 128, 256, 512, 1024 and 2048
dimensions. Note that the time axis is presented in a log scale.

document sets respectively. It should be noted that the plots show that as s
increases, so does the computation time. For the majority of the cases, we see
that the mean AP increases as s increases. The Raw result, is the AP obtained
when no projection is used. If we examine the vertical alignment of each of the
plots, we see that the RP and DCTP times closely match, meaning that for a
given s, we expect them to complete in the same time. If we examine the times
for each DFTP point, we see that they almost match the times of the RP and
DCTP methods for the previous s values. Therefore the DFTP method is slower
than the DCT and RP; this is likely to be due to the DFTP method producing
complex values.

We can compare the mean AP for a given s by examining the horizontal
alignment of the points, It can be seen that the DCTP mean AP is greater than
RP for Figure 1, but less for Figure 2. We can also see that the mean AP of
DFTP for a given s is greater than RP for both plots.

4.5 Significance of results

We have generated 10 results for each s,k pair for each method. To test the hy-
pothesis that the DFT and DCT spectral random projection provides a greater
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Fig. 2. The mean AP and computation time for outlier detection in the original space
(Raw), and for random projection (RP), DFT projection (DFTP), and DCT projection
(DCTP) for k = 100 on the CRAN+10MED data set. The results for each projection
method have been recorded for projections into 32, 64, 128, 256, 512, 1024 and 2048
dimensions. Note that the time axis is presented in a log scale.

mean AP for a given s,k pair when compared to random projection, we used
bootstrap sampling to generate the distribution of the increase in the mean AP
of the DFTP and DCTP outlier detection over RP outlier detection. We can
test for a significant increase in mean AP for each of the methods, using the
bootstrap distribution. The resulting distributions were approximately Normal
for each method on each document set. We obtain p values of 0.060 and 0.0001
for the DFT projection on the CISI+10CRAN and CRAN+10MED collections
respectively. This shows that the DFT random spectral projection provides a sig-
nificant increase in mean AP over random projection. For DCT projection, we
obtained p values of 0.398 and 0.995 on the CISI+10CRAN and CRAN+10MED
collections respectively. This implies that we have no evidence of the DCT pro-
jection providing a significant increase in mean AP over random projection.
From these results, we can see that using DFTP produced more accurate re-
sults than when using RP for both document sets. But we must ask what caused
the change in accuracy of the DCTP method across document sets? If we exam-
ine the Raw scores for each document set, we see 0.48 for the CISI+10CRAN set
and 0.92 for the CRAN+10MED set, meaning that the outliers had more sepa-
ration in the CRAN+10MED set, but were harder to find in the CISI+10CRAN
set. From this, we can make the hypothesis that the separation of the RP and



Memory Time

Method

Function Projection Projection Outlier
Raw NA NA NA 3.4 years
RP 321.4 MiB 222.3 MiB 16.6 sec 2.6 days
DCTP NA 222.3 MiB 38.2 min 2.4 days
DFTP NA 444.7 MiB 38.6 min 4.4 days

Table 1. The memory used for the projection function (Function) and the projected
matrix (Projection), and the time taken to perform the projection (Projection) and
compute the outliers (Outlier) when using no projection (Raw), random projection
(RP), DCT projection (DCTP), and DFT projection (DFTP) on the ZIFF+10FR
document collection. Note that the Raw completion time of 3.4 years was extrapolated.

DCTP methods grow as the difficulty in detecting the outliers increases. Testing
this hypothesis will be left for future work.

4.6 Large Document Collection

To examine the benefit of using the DFTP and DCTP methods on large doc-
uments sets, we combined the 56920 articles from the TREC? Disk 2 Ziff Pub-
lishing collection (computing articles) and the first 10 newspaper articles from
the TREC Disk 2 Financial Review collection (finance articles). This formed a
document collection with 56930 documents and 82295 unique terms; we call this
document set ZIFF+10FR. Using a sparse matrix format, we were able to store
the term frequency matrix in 83.93 megabytes.

We then ran the outlier detection method on the weighted term frequency
matrix, and on random projections of the matrix using RP, DFTP and DCTP.
Each method projected the matrix to s = 512 sample features and we computed
the k = 5, 10, 20, 50, 100, 200 and 500 neighbour distances. The memory con-
sumption and timing results are presented in Table 1, while the accuracy results
are in Table 2.

We can see that even though the random projection and both spectral ran-
dom projections required more storage than the sparse raw data, the computa-
tion time for the projected data was much faster, allowing us to obtain results.
DCTP required the least storage and computation time, while RP required the
most storage (due to it needing storage for its projection matrix), and DFTP
required the most time (due to it using complex numbers). The accuracy re-
sults show us that the outlier detection task was difficult (shown by the low AP
scores). We can see that for each k the DFTP AP is the greatest (for some values
of k it is at least 10 times greater than the RP and DCTP AP). We can also see
that the DCTP AP is either greater than or equal to the RP AP.

% http://trec.nist.gov/



AP
5 10 20 50 100 200 500

RP 0.0001  0.0016 0.0029 0.0027 0.0022 0.0017 0.0011
DCTP 0.0001 0.0016 0.0036 0.0034 0.0025 0.0019 0.0013
DFTP 0.0001 0.0021 0.0107 0.0209 0.0303 0.0290 0.0196

Method

Table 2. Accuracy results for outlier detection on each projection method using the
ZIFF+10FR document collection. The average precision (AP) for k = 5, 10, 20, 50,
100, 200 and 500 is shown.

4.7 Discussion

This work shows the potential of the DFT and DCT projections when compared
to random projection, but is only one component in high dimensional outlier
detection. There have been other methods proposed in the literature to increase
the speed of distance based outlier detection, but they were not used in this
analysis. We kept this analysis as simple as possible, to examine the effect of the
sample projection only.

The findings from this work can be combined with existing methods of ap-
proximation to increase speed. For example, neighbour distances can be com-
puted on a random sample of documents rather than the whole set [15]. This
approximation can also be applied to increase the speed of a DFT or DCT projec-
tion. LOF [4] can be used in place of the distance based outlier detection method.
Methods of increasing the speed of distance based outlier detection method are
given in [3]. These may be directly applied to the projected document space to
further reduce the computation time of the DFTP and DCTP methods.

Rather than using random projection to compute the distances, it can be
used to select a candidate set of neighbours [16]. The distances to all candidates
may then be computed in the original space. The analysis in this article has
shown that the DCT or DFT can also be used in place of random projection in
this case.

5 Conclusion

Outlier detection is an important process that allows us to automatically iden-
tify objects that are different from the majority of the data. When examining
text, we can use outlier detection to identify documents that are interesting or
out of place. Random projection is used in outlier detection to obtain a lower
dimensional approximation of the data, in order to speed up the detection pro-
cess.

In this article, we presented the concept of spectral random projection, using
the discrete Fourier transform (DFT) and the discrete cosine transform (DCT),
and we examined its utility for outlier detection on a text document collection.

We showed that using the DFT projection provides significantly greater accu-
racy than when using random projection and requires less storage, but requires



additional time. We also showed that the DCT projection provides similar ac-
curacy and computation time as random projection, but it requires much less
storage (60% less for the large document set).

References

10.

11.

12.

13.

14.

15.

16.

Deegalla, S., Bostrom, H.: Reducing high-dimensional data by principal component
analysis vs. random projection for nearest neighbor classification. In: Proceedings
of the 5th International Conference on Machine Learning and Applications. ICMLA
’06, Washington, DC, USA, IEEE Computer Society (2006) 245-250

Park, L.A.F.: Fast approximate text document clustering using compressive sam-
pling. In Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M., eds.: Machine
Learning and Knowledge Discovery in Databases. Volume 6912 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg (2011) 565-580

Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and ap-
plications. The VLDB Journal 8(3-4) (February 2000) 237-253

Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. SIGMOD ’00, New York, NY, USA, ACM (2000) 93-104
Zobel, J., Moffat, A.: Exploring the similarity space. ACM SIGIR Forum 32(1)
(Spring 1998) 18-34

Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information re-
trieval: development and comparative experiments, part 2. Information Processing
and Management 36(6) (2000) 809—840

Song, F., Croft, W.B.: A general language model for information retrieval. In:
CIKM ’99: Proceedings of the eighth international conference on Information and
knowledge management, ACM Press (1999) 316-321

Park, L.A.F., Ramamohanarao, K., Leckie, C.A., Bezdek, J.C.: Adapting spectral
co-clustering to documents and words using latent semantic analysis. In: AT 2009:
Advances in Artificial Intelligence. Volume 5866 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (December 2009) 301-311

Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factor-
ization and spectral clustering. In: Proc. SIAM Int’l Conf. Data Mining (SDM’05).
(April 2005) 606 — 610

Park, L.A.F., Ramamohanarao, K.: An analysis of latent semantic term self-
correlation. ACM Transactions on Information Systems 27(2) (2009) 1-35

Park, L.A.F., Ramamohanarao, K.: Efficient storage and retrieval of probabilistic
latent semantic information for information retrieval. The International Journal
on Very Large Data Bases 18(1) (January 2009) 141-156

Candes, E., Wakin, M.: An introduction to compressive sampling. Signal Process-
ing Magazine, IEEE 25(2) (3 2008) 21-30

Candes, E.J.: Compressive sampling. In: Proceedings of the International Congress
of Mathematicians, Madrid, Spain, European Mathematical Society (2006)
Goyal, V., Fletcher, A., Rangan, S.: Compressive sampling and lossy compression.
Signal Processing Magazine, IEEE 25(2) (3 2008) 48-56

Wu, M., Jermaine, C.: Outlier detection by sampling with accuracy guarantees.
In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’06, New York, NY, USA, ACM (2006) 767772
de Vries, T., Chawla, S., Houle, M.: Density-preserving projections for large-scale
local anomaly detection. Knowledge and Information Systems 32 (2012) 25-52
10.1007/s10115-011-0430-4.



