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ABSTRACT
Information retrieval metrics that provide uncertainty intervals when
faced with unjudged documents, such as Rank-Biased Precision
(RBP), provide us with an indication of the upper and lower bound
of the system score. Unfortunately, the uncertainty is disregarded
when examining the mean over a set of queries. In this article, we
examine the distribution of the uncertainty per query and averaged
over all queries, under the assumption that each unjudged docu-
ment has the same probability of being relevant. We also derive
equations for the mean, variance, and distribution of Mean RBP
uncertainty. Finally, the impact of our assumption is assessed us-
ing simulation. We find that by removing the assumption of equal
probability of relevance, we obtain a scaled form of the previously
defined mean and standard deviation for the distribution of Mean
RBP uncertainty.

1. INTRODUCTION
When evaluating an Information Retrieval system, we require a

document collection for the given domain, a sample set of queries,
a set of manual relevance judgements for each query over the set of
documents, and an evaluation function to summarise the accuracy
of the system rankings. The documents and queries can be sampled
from the domain in which the retrieval system is intended for, but
since relevance judgements are dependent on the documents and
queries, they must be created by manually assessing the relevance
of each document for each query.

Assessing documents for relevance is a tedious process, there-
fore many resort to a method of importance sampling, where the
top ranked documents supplied by a retrieval system are assessed
for relevance and the rest of the documents are left unjudged for
that query [6].

Information retrieval evaluation metrics have historically treated
unjudged documents as being irrelevant to the given query [1]. Re-
cent metrics, such as Rank-Biased Precision [2], have allowed for
the uncertainty introduced by unjudged documents. Unfortunately,
the uncertainty information is unused when examining the mean
over a set of queries.

In this article, we examine the distribution of uncertainty for
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RBP and derive equations for the mean and variance of the Mean
RBP uncertainty. Our contributions are:

• Derivation of the mean and variance of the distribution of
Mean RBP uncertainty and identification of its distribution,
under the assumption of constant probability of relevance
(Section 2.2),
• A document ranking simulation model based on Wallenius’

non-central hypergeometric distribution (Section 3.1).
• A comparison of the mean and standard deviation of Mean

RBP when removing the assumption of constant probability
of relevance (Section 3.2).

The article proceeds as follows: Section 2 examines the distribution
of RBP and Mean RBP uncertainty, and Section 3 examines the
effect of the assumptions from Section 2.

2. UNCERTAINTY IN RBP
Rank-biased precision [2] is an Information Retrieval evaluation

function that assigns a score contribution based on the position of
each relevant document in a ranking, where the score contribution
decreases based on a geometric sequence:

RBP = (1− p)
D∑
i=1

rip
i−1 (1)

where 0 ≤ p ≤ 1 is the user persistence constant, ri is the set of
relevance judgements, where ri is 1 if the ith ranked document is
relevant, otherwise it is 0.

If the ith ranked document is missing a relevance judgement,
then RBP provides a margin of uncertainty of (1− p)pi−1. If there
are multiple missing relevance judgements then the uncertainty in-
creases by adding the components of uncertainty for each rank. If
we define two sets U and J , where J contains the set of documents
with relevance judgements, and U contains the set of documents
without relevance judgements, we have:

RBP = (1− p)
∑
i∈J

rip
i−1 + (1− p)

∑
i∈U

rip
i−1 (2)

Since we are missing the set of relevance judgements ri for i ∈
U , the second term of equation 2 represents the uncertainty in the
RBP score, which we call υ. To account for the uncertainty, RBP
scores are usually presented as an interval, where the lower bound
is the score where all ri for i ∈ U are assumed 0, and the upper
bound where they are assumed 1. Unfortunately, when computing
the mean over a set of queries, we are unable to use the interval
to obtain a mean uncertainty interval. In the following sections we
will examine the mean and variance of the uncertainty term, which
we will use to identify the distribution of the Mean RBP uncertainty
over a set of queries.



2.1 Distribution of Uncertainty
To obtain an interval for the Mean RBP uncertainty, we require

knowledge of the distribution of RBP uncertainty for a single query.
Identifying the distribution of the RBP uncertainty is difficult, since
it depends on the number of relevant documents for the given query,
that were not judged, and it also depends on the accuracy of the sys-
tem being evaluated. For example, we would expect the variation
of the uncertainty to increase as the number of unjudged documents
increases. We would also expect the mean of the uncertainty to in-
crease as the accuracy of the assessed system increases.

To begin our analysis, we will examine the distribution of ri for
each unjudged document. We make the naïve assumption that:

ri =

{
1 with probability q
0 with probability (1− q) (3)

for all i ∈ U . Using this probability distribution, we obtain a uni-
form distribution over all combinations of judgements for the set
of unjudged documents if q = 0.5. For q greater than 0.5, the
probability increases with the number of relevant documents, and
if q is less than 0.5, the probability increases with the number of
irrelevant documents.

Using the distribution of ri, we can compute the mean and vari-
ance of the RBP uncertainty υ:

E[υ] = E

[
(1− p)

∑
i∈U

rip
i−1

]
= (1− p)

∑
i∈U

E[ri]p
i−1

= (1− p)
∑
i∈U

qpi−1

= (1− p)q
∑
i∈U

pi−1

where the mean of ri is q, and

Var(υ) = Var

(
(1− p)

∑
i∈U

rip
i−1

)
= (1− p)2

∑
i∈U

Var(ri)p
2(i−1)

= (1− p)2
∑
i∈U

q(1− q)p2(i−1)

= (1− p)2q(1− q)
∑
i∈U

p2(i−1)

where the variance of ri is q(1 − q). The distribution of RBP un-
certainty for different values of q is shown in Figure 1.

2.2 Uncertainty in Mean RBP
Evaluation is usually performed over a large sample of queries

and the mean of the evaluation over the set of queries is provided
as the overall evaluation score. When computing the Mean RBP
score over a set of queries, we are faced with the problem of how
to aggregate the uncertainty.

Mean RBP over the set of queries Q is given as:

Mean RBP =
1

|Q|
∑
k∈Q

[
(1− p)

∑
i∈J

rk,ip
i−1 + υ

]
(4)

=
1

|Q|
∑
k∈Q

(1− p)
∑
i∈J

rip
i−1 + Υ (5)

where |Q| is the cardinality of Q, the first term is the Mean RBP
over the judged documents (containing rk,i the relevance judge-
ment for the ith ranked document from query k) and the second
term:

Υ =
1

|Q|
∑
k∈Q

υ (6)

is the contribution to the mean from the unjudged documents. If we
assume that υ is independent of the query and the query size is large
(at least 30 queries), then according to the Central Limit Theorem,
Υ is approximately Normal, with mean equal to E[υ] and variance
equal to:

Var(Υ) =
Var(υ)

|Q| (7)

The distribution of Mean RBP uncertainty (Υ) for different values
of q is shown in Figure 2. Using this distribution of Υ, we can
compute an uncertainty interval for Mean RBP using the quantiles
of Υ:

1− p
|Q|

∑
k∈Q

∑
i∈J

rk,ip
i−1 + (1− p)q

∑
i∈U

pi−1

± z1−α/2

√
(1− p)2q(1− q)

∑
i∈U p

2(i−1)

|Q| (8)

where z1−α/2 is the 1− α/2 quantile of the Standard Normal dis-
tribution, providing a 100(1 − α)% uncertainty interval for Mean
RBP1.

3. IMPACT OF ASSUMPTION
While deriving the distribution of Mean RBP uncertainty, we

made the assumption that each unjudged document has the same
probability q of being relevant. In this section, we will evaluate the
impact of this assumption on the distribution of Mean RBP uncer-
tainty, by using a document ranking model to simulate a set of doc-
ument rankings and comparing the predicted distribution of Mean
RBP uncertainty to the actual distribution of Mean RBP uncertainty
provided by the model.

3.1 Document ranking model
To examine the accuracy of our uncertainty interval for Mean

RBP, we require a large sample of document rankings with com-
plete relevance judgements (giving no uncertainty). Using this sam-
ple, we can remove relevance judgements to examine the effect of
them being missing on the uncertainly interval. To have control of
this experiment, we will simulate a set of document rankings with
relevance judgements. Simulating the rankings allows us to con-
trol the parameters of the ranking and have full knowledge of the
distribution of relevant documents in each ranking.

A document ranking is the ordered set of documents provided by
a retrieval system for a given query, where the top ranked document
is predicted by the system, as the most relevant to the query. Dur-
ing evaluation, we are only concerned with the relevance at each
rank. Therefore, we consider a document ranking to be an ordered
set of relevance judgements, where the judgements are binary (ei-
ther relevant or irrelevant), and they are conditioned on the docu-
ment retrieval system. The top ranked document is considered the
most likely to be relevant by the retrieval system, but may or may
not be relevant. A more accurate retrieval system is more likely to
rank relevant documents before ranking irrelevant documents. We
1If α = 0.05, z1−α/2 = 1.96, giving a 95% interval.
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Figure 1: The distribution of RBP uncertainty υ, for p = 0.8 and q = 0.05, 0.2, 0.35 and 0.5, where documents ranked 11 to 100 are
unjudged. Due to the symmetrical nature of the uncertainty υ, the distributions for q = 0.95, 0.8, 0.65 and 0.5 can be obtained by
reflecting the distributions about their vertical centre line.
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Figure 2: The distribution of Mean RBP uncertainty Υ, for p = 0.8 and q = 0.05, 0.2, 0.35 and 0.5, where documents ranked 11 to
100 are unjudged over 50 queries.

can model this process using random draws from an urn containing
black and white balls.

Given a set of N documents, where M are relevant to a given
query, we can simulate an imperfect retrieval system’s ranking us-
ingN balls in an urn, whereM are black andN−M are white. The
ranking produced by the system is generated by sampling from the
urn without replacement and recording the colour. The colour of
the first ball drawn represents the relevance of the first ranked doc-
ument, the colour of the second ball drawn represents the relevance
of the second ranked document, and so on. The position of the rele-
vant documents in the ranking is mainly effected by two properties,
the accuracy of the retrieval system and the difficulty of the query.
We parameterise the urn model by introducing weights for the set
of black and white balls. The weight associated to a ball is propor-
tional to its probability of being drawn. If the weight of each black
ball is greater then the weight of each white ball, then the resulting
ranking is likely to have more relevant documents ranked ahead
of irrelevant documents. Therefore the weight of each black and
white ball is a function of the accuracy of the retrieval system and
the difficulty of the query. To simplify the model, we assume that
all back balls have the same weight wb and all white balls have the
same weight ww. This model is related to Wallenius’ non-central
hypergeometric distribution [4], but instead of obtaining the count
of black balls after k balls are drawn, we are interested in the order
in which the balls are drawn.

Given an urn containingN balls, whereM are black andN−M
are white, and the probability of drawing a given black ball is wb,
while the probability of drawing a given white ball isww; the prob-
ability of drawing any black ball (or equivalently, the probability of

the first ranked document being relevant to the given query) is:

P (D = b) =
wbM

wbM + ww(N −M)
(9)

and the probability drawing a white ball (the probability of the first
ranked document being irrelevant to the query) is 1 − P (D = b),
where wb > 0 and ww > 0. The probability of drawing a black
ball, given that cb black balls have been drawn and cw white balls
have been drawn (the probability of having a relevant document at
rank cb + cw + 1, given that cb relevant documents have been seen
and cw irrelevant documents have been seen in earlier ranks) is:

P (D = b|cb, cw) =
wb(M − cb)

wb(M − cb) + ww(N −M − cw)
(10)

where 0 ≤ cb ≤ M and 0 ≤ cw ≤ (N − M), and P (D =
w|cb, cw) = 1 − P (D = b|cb, cw). Note that the probability of a
given draw is dependent on the number of each colour drawn, but
independent of the previous sequence of draws. Dividing the top
and bottom of the fraction by wb allows us to combine the weights
into one weight.

P (D = b|cb, cw) =
(M − cb)

(M − cb) + ww/wb(N −M − cw)
(11)

=
(M − cb)

(M − cb) + w(N −M − cw)
(12)

where w > 0. If we set w = 1 for this model, then each ball
(document) has the same chance of being selected at each draw,
providing a poor ranking. If we set w � 1 for this model, then
the sequence of draws is likely to have black balls ranked ahead
of white balls (relevant documents ranked ahead of irrelevant doc-
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Figure 3: Contour plots of the mean and standard deviation of the uncertainty distribution of Mean RBP using simulated rankings
from Section 3.1. Each plot shows the effect of the Relevance Ratio w and Expected Relevant Proportion q on the mean and standard
deviation of the distribution of Mean RBP uncertainty.

uments), therefore w represents the system inaccuracy and query
difficulty.

3.2 Experiment
We want to examine the effect of our assumption of constant

probability of relevance (equation 3), on the mean and variance
of the Mean RBP uncertainty distribution. To do this, we use
the proposed document ranking model from Section 3.1. For this
model, we set the number of documentsN = 100, RBP persistence
p = 0.8 (similar to Web user persistence [3, 5]), and randomly
assign the number of relevant documents M ∼ Binomial(N, q).
By setting the model relevance ratio w to 1, we simulate the case
where all documents have an equal probability of relevance, allow-
ing us to obtain the same uncertainty distribution of the Mean RBP
from Section 2.2. As we decrease w, we observe the effect that in-
creasing the probability of ranking relevant documents higher than
irrelevant documents has on the uncertainty distribution.

We ran the simulation using w = 0.05, 0.1, 0.2, 0.5, 0.7 and
1, and q = 0.05, 0.1, 0.2, 0.3 and 0.5. We assumed the top ten
documents were manually judged and so recorded the contribution
to RBP made by the remaining (considered unjudged) documents
ranked 11 to 100. The Mean RBP was computed over 50 generated
ranked lists to simulate 50 queries. This process was replicated
10000 times to obtain an uncertainty distribution for Mean RBP
for each (w, q) pair. The distributions for Mean RBP uncertainty
is Normal, so we computed the mean and standard deviation of the
distribution, and presented them using a contour plot in Figure 3.
The results forw = 1 are the same as those computed by our model
in Section 2.2. As the relevance ratiow decreases, we find that both
the mean and the standard deviation of the uncertainty distribution
decrease in an almost linear fashion, implying that we can scale
the mean and standard deviation of Υ to remove the effect of our
assumptions.

4. CONCLUSION
Information retrieval metrics that provide uncertainty intervals

due to the uncertainty of relevance of unjudged documents, provide
us with an indication of the upper and lower bound of the retrieval
system’s score. Unfortunately, the uncertainty is disregarded when
examining the mean over a set of queries, and the mean over the
lower bound is presented as the mean retrieval system score.

In this article, we examined the uncertainty distribution for Rank-
Biased Precision (RBP) under the assumption that all unjudged
documents have the same probability of relevance q. We found that
the distribution of Mean RBP uncertainty is Normal when comput-
ing the mean over at least 30 queries, and we also found closed form
equations for the mean and variance of the distribution of Mean
RBP uncertainty.

To examine the impact of our assumption that unjudged doc-
uments have equal probability of relevance, we ran a simulation,
controlling the number of relevant documents and their position in
the ranked list. We found that removing our assumption leads to a
scaled form of our derived mean and variance.

This initial work on examining the distribution of Mean RBP
uncertainty has provided us insight into the distribution, but more
work is needed on determining the distribution parameters (such as
Expected Relevant Proportion and Relevance Ratio) in practice.
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