
Page 1

 Western Sydney University

Computer Organisation COMP2008

Lab Sheet 10 (starts session week 12, due in week 13)

Student Name and Number

Date, Grade and Tutor signature, max mark 5

Keep this cover sheet marked and signed by the tutor.

1. Preparation [Total max. mark: 1]

PCSpim version note: this lab will not run on older PCSpim versions 6.x.

DO NOT ATTEMPT TO DO THIS LAB unless you have studied thoroughly the materials listed below.

The main goal of today’s lab is to explore the exception handling in MIPS architecture. Please study the following

materials: the textbook Ed2, Ed3, chapter 5.6; Ed4, chapters 4.9, 6.6; Ed5, chapter 4.9 (changes in PH5: rather than

isolating I/O into a single chapter, it has been spread throughout the book); Ed6, chapter 4.10; the HP_AppA.pdf:

sections A.5, A.7, and “Exceptions Handling in MIPS32 Architecture” section at the end of this lab sheet; also online

materials if needed.

Question [1 mark] Refer to the Example Interrupt Routine below (this is a slide taken from Lecture 7 notes) and

describe the workings of this Interrupt Routine. Note that, this is only a fragment of larger code to illustrate the general

approach, thus some parts are missing. While you can mention the missing parts where it helps to explain the flow of

code, you do not have to recreate them.

1) To illustrate your explanation, please draw a block diagram (flow-chart like schematic drawing) to show the logical

and functional structure of this Example Interrupt Routine. Hint: the information shown in the Example Interrupt Routine

is about exception handling, where determining the types of exceptions and taking corresponding actions are certainly

required.

2) Explain the role of each individual special register used in this Example Interrupt Routine.

/*Example Interrupt Routine*/

Page 2

 Western Sydney University

2. Workshop Task I [Total max. mark: 1.5]

1. Run program instructions.s It generates six Bad Data/Stack Address Exceptions (Exception 7).

Question 1 (0.6): List all six instructions which cause Exception 7, and explain why they fail (do not fix up

these errors in the program!).

2. Single step the instructions.s program through at least two exceptions. Make sure that you see how the flow of

control is changed by comparing the source code with PCSpim windows, pay particular attention to all registers.

Question 2 (0.4): how do you recognise that the normal program flow has been interrupted?

Question 3 (0.5): how can you find out what exception condition has occurred and what caused it?

3. Workshop Task II [Total max. mark: 1.0]

Use PCSpim menu: Simulator –> Settings, and note the location of default Exception file. Write down the location of

the Exception file (if using QtSpim, the location of the default exception handler isn’t given explicitly, ignore this

step):

_

Question (1 mark): analyse how exceptions.s works (exceptions.s is provided with this lab). Draw a one-page block

diagram (flow-chart like) to show the logical and functional structure of this code. Note that, this program is about

exception handling, where determining the types of exceptions and taking corresponding actions should be

illustrated.

Page 3

 Western Sydney University

4. Workshop Task III [Total max. mark: 1.5]

In PCSpim/QtSpim Settings, change the default exception file exceptions.s to modified_exceptions.s provided with

this lab. At this stage both exceptions files are identical.

Question 1 (1 mark): add code to modified_exceptions.s to change its functionality when it encounters

Exception 7. The modified code should do the following:

a. print out a special message indicating that it is adjusting for Exception 7

b. add value 0x10010000 to contents of register $t1

c. resume the current instruction that caused the Exception

Notes: the code to implement the requirements above can be written in different ways. For instance, you can

do your coding in a couple of steps to address these requirements incrementally and integrate it finally.

Question 2 (0.5): Run the program instructions.s You should now get only two Exception 7 occurrences (note

that PCSpim is now using modified_exceptions.s that you changed as per the instructions above). Which two

instructions are causing two exceptions and why?

Note: After completing Workshop Task III, please restore the original exceptions.s file in PCSpim (in QtSpim,

use default exception handler).

5. Summary of the Lab Task

The lab task is to modify the exception handler so it actually does something in addition to printing the error

message. To protect the original exceptions.s handler you are provided with a copy named

modified_exceptions.s which is initially the same as the original exception handler. Do not modify the original

version of the exception handler, and remember to restore it when you are done. Do all modifications to

modified_exceptions.s only!

Your modified exception handler should print a special console message, adjust for exception 7 by shifting

data request from address zero up to address 0x 1001 0000, and restart instruction which failed (do not bump

EPC). For detailed instructions see the lab sheet.

Hint: somewhere in the modified_exceptions.s code you need to check for “exception 7”, and if it occurs,

jump to new block of code which you have to write. If there was no “exception 7” the exception handler

continues executing unmodified code.

6. Assessment notice

When you ready, present to the tutor a printed copy of your program source code, with your name and student number

included in the comments (#…), and typed or neatly written answers to questions, if there are any listed in the lab sheet.

Your tutor may decide to keep the source code printout, but you should keep marked and signed cover sheet.

Warning: Any source code duplicated amongst students will result in a zero mark, and possible further action according

to the WSU policy on plagiarism.

Page 4

 Western Sydney University

Exceptions Handling in MIPS32 Architecture

This lab requires little coding, but you need to have a very good understanding of exceptions and interrupts

handling, and understand the role of PCSPIM control program exceptions.s. Specifically you have to

understand what mechanism is triggered when you run provided program instructions.s, understand why it

fails, and how Bad Data/Stack Address Exceptions messages are generated by exceptions.s

The textbook edition differences: the second edition of the textbook refers to the older MIPS-1 architecture,

while the third edition (and this note) refers to more current MIPS32 architecture. If you have the second

edition, please use Appendix from the third addition which is provided in PDF format. This note quotes

Appendix page references from Ed.3.

1. Kernel / User mode

Generally all programs can run in one of two modes: user mode (in user address space in memory) or

kernel mode (in kernel address space in memory). Controlling the mechanism of switching between

both modes is challenging, it varies between different architectures, and moreover terminology is not

always the same in different implementations. Terminology used here complies with MIPS

convention.

Kernel mode is used by different routines serving different purpose, but the principle remains the

same: when an exception, interrupt or system call occurs (see terms explanation below), the processor

stops processing instructions, saves sufficient state to later resume the interrupted instruction stream,

enters Kernel mode, and starts a piece of software which handles the exception (exception handler).

What to save, and what memory address to go to depends on both the type of exception and the

current state of the processor, and is described in more details below.

2. Exceptions, Interrupts and Exception Handler Defined

Exceptions

Synchronous exception (implicit transfer to operating system or unprogrammed trap) occurs

always at the same place when a program is executed. Examples are: arithmetic overflow, using

an undefined instruction (see the textbook chapter 5.6).

System calls (explicit transfers to operating system, or programmed traps) are also

implemented using synchronous exception mechanism (not covered here).

Asynchronous exceptions may happen any time during a program execution. Examples are: I/O

requests, memory errors, and hardware errors.

Interrupts

Interrupts refer to externally caused asynchronous exceptions. Interrupts are used by I/O devices

to communicate with the processor.

Exception Handler

Exception Handler (sometimes also referred to as trap handler) is a piece of software which runs

in kernel address space and handles the above conditions (details follow). You will see examples

of synchronous exceptions when running program instructions.s in the lab, and you will also be

modifying PCSpim handler exceptions.s

Page 5

 Western Sydney University

3. How MIPS Handles Exceptions

In MIPS architecture coprocessor 0 records all information the software needs to handle exceptions. SPIM

implements only some registers from full MIPS architecture, specifically registers numbered: 8,12,13,14 and

named: BadVAddr, Status, Cause and EPC – you can see them in the top area of PCSPIM window (the

textbook also explains role of registers Count, Compare and Config, but this is beyond the scope of this paper).

These registers can be accessed by load, store and move type of instructions: lwc0, mfc0, mtc0 and swc0, which

are described in more details in the textbook Appendix A section A.7 and below. Note part ‘c0’ which indicates

that the instructions are used by coprocessor 0.

Changing normal program flow when an exception occurs: the hardware automatically copies PC into EPC,

puts correct code into Cause register, and PC is set automatically to 0x80000180. As a result the user program

execution is suspended: the address of the instruction which was executed when the exception occurred can be

found in the register EPC. The control is transferred to a different program, which is located in the kernel

memory address space starting from the address 0x80000180. It is named exceptions.s.

How to handle different exceptions? Refer to exceptions.s code line 87, instruction mfc0:

exception handler checks Cause register bits 2 to 6 (see the Appendix A Fig A.7.2), prints appropriate messages,

and jumps to the part of the code which handles the current exception.

What is the role of exceptions.s when you run user code instructions.s ? It only prints messages on the screen

informing about errors, but it does not fix or change any conditions. Why? Because the purpose of exceptions.s

is mainly to demonstrate how the mechanism works, it does not do any “real work”. Its role is to simulate a part

of operating system by providing an empty frame, which could be filled in with additional functionality (as for

example in the lab task).

When the exception handling is completed exceptions.s has the task of restoring any registers it may have

modified, and returning control to the original (user) program, which then continues. This is done as follows:

exceptions.s copies the value from EPC to the PC, which returns the process to user mode, and resets state to the

way it was before the interrupt: see exceptions.s code line 158, instruction eret (exception return). To skip the

instruction which caused the exception EPC value is bumped by one word (exceptions.s code line 138).

Because the registers convention usage allocates registers $k0 and $k1 for the use of interrupt handler (see the

Appendix A Fig A.6.1: “reserved for OS kernel”), the interrupt handler can use them without having to save

them first, because by convention user programs are not supposed to use these registers. Note that register using

conventions are not enforced, and ignoring them while coding causes insidious bugs.

4. Some Instructions Used in exceptions.s

Instruction Explanation

eret exception return (or return from exception)

mfc0 rt, rd

example:
mfc0 $s1, $epc

(rtrd) – “move from coprocessor 0”: move the contents of

coprocessor’s 0 register rd to general purpose register rt, example:

$s1 gets contents of $epc

mtc0 rt,rd

example:
mtc0 $0, $13

(rtrd) – “move to coprocessor 0”: moves the data from general

purpose register rt to coprocessor’s 0 register rd, example:

Copies value 0 to $13, or: resets $13 to 0

lwc0 C0dest, address load word from address in register C0dest

swc0 C0src, address store the content of register C0src at address in memory

