
Page 1

Western Sydney University

Computer Organisation COMP2008

Lab Sheet 9 (starts session week 11, due in week 12)

Student Name and Number

Date, Grade and Tutor signature, max mark 5

Keep this cover sheet marked and signed by the tutor.

1. Preparation [Total max. mark: 0.5]

The main goal of today’s lab is to understand the memory mapped I/O, and the assembly language

techniques for manipulating strings of characters. Study section A.8 from the HP_AppA.pdf (available on

the website), the lecture notes, and the appropriate sections from the textbook.

Self study task [0.5 marks]: Describe below in your own words how memory mapped I/O is implemented

in PCSpim/QtSpim (or a simulator you are using). Illustrate with hand drawing where appropriate.

Page 2

Western Sydney University

2. Workshop Task I [Total max. mark: 0.5]

Please answer the lab Questions listed below in writing - print or neatly write your answers.

Get the assembly language files repeat.s and stringlength.s provided for this lab. Invoke the PCSpim

simulator. Make sure that it has memory-mapped I/O enabled (see “Settings”).

1. Open and run repeat.s, analyse what it does. It helps to set breakpoints in appropriate places and

observe the changes in receiver and transmitter registers (note: this program will not single step).

Questions (max. mark 0.3): draw a flow chart diagram to how the program implements reading

character from the keyboard and writing to the console. To reinforce your understanding, insert

breakpoints at 0x0040004c and 0x00400068 (if you have a different memory layout, refer

to the memory image below to set breakpoints in appropriate places), run the program, then record

status/changes observed in relevant registers (for handing memory-mapped I/O) at both breakpoints

(you need to type in characters to let go; if QtSpim is not working, try PCSpim).

2. Open and run the program stringlength.s Experiment with it to understand how it works, specifically

how the procedures are called from the main program.

Question (max. mark 0.2): describe in writing (or drawing) how stringlength.s interfaces with its

internal procedure strlen, and how strlen calculates the length of a string.

3. Workshop Task II [Total max. mark: 1.5]
1. Write a program which reads in characters from the keyboard using memory mapped I/O, and stores

them in a buffer in memory (array of spaces; define any size of the buffer you like, say 6).

2. When the buffer is full, the program displays appropriate message, prints all entered characters in the

buffer using memory mapped I/O, and terminates.

3. You may use the program repeat.s as a starting point, rename it, modify it, add your own code, etc.

4. Note 1: Characters should be read from the keyboard, and displayed at the console window using memory

mapped I/O. Do not use syscalls for this task, using syscalls would make this task trivial and would

receive NO marks for this question. You are allowed to use syscalls only to display the counts of

characters and all text messages.

Note 2: For user friendly operation, when starting your program, it should first print a prompt message

indicating the buffer size.

4. Workshop Task III [Total max. mark: 2.5]

Expand the program which you wrote above to perform the following additional tasks:

1. When the buffer is full, it prints the accumulated string in the buffer on to the console. Don’t

terminate the program, but reuse the buffer for keyboard input (start filling in the buffer from the

beginning);

2. The program maintains count of the total characters entered;

3. When the terminating character is entered (define any character you like, for instance, ‘Enter’ or

capital letter ‘A’), the program displays the leftover characters accumulated in the buffer (to the

current position), reports counted total number of characters entered, and terminates.

Page 3

Western Sydney University

4. Note 1: You are allowed to use syscalls only for displaying the counts of characters. Characters should be

read from the keyboard, and displayed on the console using memory mapped I/O.

Note 2: For user friendly operation, when starting your program, it should first print a prompt message

indicating the buffer size and the terminating character.

Note 3: Task II and Task III should be demonstrated separately; Task III doesn’t automatically cover

Task II.

Be prepared to explain the code. For the marking purpose.

Assessment notice

When you ready, present to the tutor a printed copy of your program source code, with your name and student number

included in the comments (#…), and typed or neatly written answers to questions, if there are any listed in the lab sheet.

Your tutor may decide to keep the source code printout, but you should keep marked and signed cover sheet.

Warning: Any source code duplicated amongst students will result in a zero mark, and possible further action

according to the WSU policy on plagiarism.

