
Page 1
Western Sydney University

Computer Organisation COMP2008
Lab Sheet 6 (starts session week 7, [Week 8: intra-session break] due in week 9)

Student Name and Number

Date, Grade and Tutor signature, max mark 4

Keep this cover sheet marked and signed by the tutor.

1. Preparation

The main goal of today’s lab is to understand the assembly language techniques for procedure calls, and
stack usage conventions. References: the lecture notes, the textbook paragraphs: 3.6 from Ed2, or 2.7 from
Ed3, or 2.8 from Ed4, 2.8 from Ed5, 2.8 from Ed6, and A.6 from HP_AppA.pdf (a downloadable PDF file
on the website).

Self study task: Use any materials of your choice to study iterative and recursive programming techniques
(HP_AppA.pdf is a good starting point). Illustrate your explanation with a hand drawing. Using any example
explain the difference between iterative and recursive method of solving problems. You can use fragments of
the code provided with this lab, but you can also use any other code or a simple mathematical formula (for
example the Fibonacci string).

Page 2
Western Sydney University

2. Workshop Tasks [Total max. mark: 4]

Get assembly language files leafsample.s , iterativesample.s and simplerecursive.s for this lab. Open and run
in PC SPIM programs leafsample.s and iterativesample.s. Experiment with these programs to understand
how they work, specifically how the procedures are called from the main program. Observe activity on the
stack when single stepping. Be sure that you understand how the stack is used.

TASKS SUMMARY: Write MIPS programs which consist of sub-routine fib to calculate the value of the
n-th member of the Fibonacci series, and a main program which calls fib with the parameter n.

Hint: Fibonacci string of numbers is defined as follows:

• The first element is: F0=0
• The second element is: F1=1
• All other elements are: Fn= Fn-1+Fn-2.

For example: F3= F2+F1= (F1 +F0)+ F1=(1+0)+1=2. The string goes like that: 0,1,1,2,3,5,8,13,…

DETAILED TASKS DESCRIPTION:

1. Task I (1 mark): Write procedure fib based on iterative approach to calculate Fn where value n is
read from the keyboard and stored in your main program that is calling fib.
• The main program reads number ‘n’ -- restrict range of ‘n’ to 2-45, and display an error message

if this condition is not satisfied.
• The main program calls fib with parameter passing. Procedure fib should return the calculated

value of the n-th Fibonacci member to the main program. Note: Data transfer between the main
program and procedure fib should be managed gracefully via procedure calling interface,
namely, via parameter passing ($a registers to be used) and result return ($v registers to be
used). Avoid data sharing via registers globally.

• The main program outputs the calculated value of the n-th member of the Fibonacci string. For
example if ‘n’ read from the keyboard was 7, the output should be:

Element [7] of Fibonacci string is: 13.

Other Fibonacci members for your testing purpose:
Element [8] of Fibonacci string is: 21.
Element [21] of Fibonacci string is: 10946.
Element [35] of Fibonacci string is: 9227465.
Element [41] of Fibonacci string is: 165580141.

• Make sure to follow the conventions for registers usage in your program.

Hint: The best approach is to use iterativesample.s as a base for your new program. Rename it,
remove (or comment out) blocks not required in your program, and add one by one new blocks.
Check proper operation of each added block before you add another one.

2. Task II (1.5 marks): Modify the code from Task I with the following consideration:

• Restrict range of ‘n’ to 2-50, and display an error message if this condition is not satisfied.
• The main program calls fib with parameter passing.
• You would find that, after F47, the Fibonacci numbers will be greater than INT_MAX

(2147483647 or 0x7FFFFFFF) and as a consequence an ‘arithmetic overflow’ occurs.
Fib(49)=7778742049; Fib(50)=12586269025

• Rewrite the code by taking the power of double-precision floating point (FP) calculation so as to
get around the ‘arithmetic overflow’ problem.

• Data transfer between the main program and procedure fib should be managed gracefully via
procedure calling interface, namely, via parameter passing ($a registers to be used) and
result return ($v registers to be used); data sharing via FP registers isn’t considered a graceful
way for this exercise. Work out the most elegant way (parameter passing by ref) for returning
result (double-precision FP format) from the procedure fib via calling interface; otherwise, don’t
expect marks at a distinctive level (or above) for this task.

Page 3
Western Sydney University

• Follow the conventions for registers usage where possible in your program.
• This task is specifically dealing with larger input of value n from 47 to 50, failed to do this is

regarded as a failed implementation and will result in a zero mark.

Note 1: Task I and Task II should be developed and demonstrated separately; Task II doesn’t
automatically cover Task I.

Note 2: To implement this lab task, you need to use fp operations; please refer to Lect. 05
supplement lecture slides. Some fp instructions are attached below:

3. Task III (advanced, 1.5 marks): Analyse the sample program simplerecursive.s It shows example
of recursive programming technique (recursion is a process in which an algorithm calls itself). Write
a recursive version of the procedure fib.

• Restrict range of ‘n’ to 2-45, and display an error message if this condition is not satisfied.
• Unsophisticated/inefficient implementation (e.g. O(2n) time) may not be working with a larger

input (e.g. 45 taking too long time and/or causing stack overflow). If this is the case, don’t
expect marks at a distinctive level (or above) from this part; you really need an improvement on
your implementation of the advanced task.

• For your information: There are a number of extra insights into this exercise. As an intellectual
exercise, clearly you would want to concern yourself with efficiency and accomplish
optimization. When developing Embedded Systems, programmers who have an intimate
understanding of the assembly language will most likely develop the “best” code.

Be sure to document your program following the style of the programs discussed in lectures, and
demonstrated in the lab examples. Insufficient documentation will detract from your mark.

Demonstration: Demonstrate to the tutor the program you wrote. You must be able to explain the code.

3. Assessment notice

When you ready, present to the tutor a printed copy of your program source code, with your name and student number
included in the comments (#…), and typed or neatly written answers to all questions listed in the lab sheet. Your tutor
may decide to keep the source code printout, but you should keep marked and signed cover sheet.

Warning: Any source code duplicated amongst students will result in a zero mark, and possible further action
according to the WSU policy on plagiarism.

	Computer Organisation COMP2008
	Lab Sheet 6 (starts session week 7, [Week 8: intra-session break] due in week 9)

