
MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 1

Description – Pseudo – Real

Copyright (c) 2003-2010, Pete Sanderson

and Kenneth Vollmar

Developed by Pete Sanderson

(psanderson@otterbein.edu) and Kenneth

Vollmar (kenvollmar@missouristate.edu)

Permission is hereby granted, free of

charge, to any person obtaining a copy of

this software and associated

documentation files (the "Software"), to

deal in the Software without restriction,

including without limitation the rights to

use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies

of the Software, and to permit persons to

whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this

permission notice shall be included in all

copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED "AS IS",

WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT

NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND

NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

(MIT license,

http://www.opensource.org/licenses/mit-

license.html)

A

ABSolute value : Set $t1 to absolute value

of $t2 (algorithm from Hacker's Delight)
 abs $t1, $t2

 sra $1, RG2, 31

 xor RG1, $1, RG2

 subu RG1, RG1, $1

ADDition : set $t1 to ($t2 plus 16-bit

immediate)
 add $t1, $t2, -100

 addi RG1, RG2, VL3

ADDition : set $t1 to ($t2 plus 32-bit

immediate)
 add $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 add RG1, RG2, $1

ADDition Immediate : set $t1 to ($t2 plus

32-bit immediate)
 addi $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 add RG1, RG2, $1

ADDition Immediate Unsigned: set $t1 to

($t2 plus 32-bit immediate), no overflow
 addiu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 addu RG1, RG2, $1

ADDition Unsigned : set $t1 to ($t2 plus

32-bit immediate), no overflow
 addu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 addu RG1, RG2, $1

AND : set $t1 to ($t2 bitwise-AND 16-bit

unsigned immediate)
 and $t1, $t2, 100

 andi RG1, RG2, VL3U

AND : set $t1 to ($t1 bitwise-AND 16-bit

unsigned immediate)
 and $t1, 100

 andi RG1, RG1, VL2U

AND Immediate : set $t1 to ($t2 bitwise-

AND 32-bit immediate)
 andi $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 and RG1, RG2, $1

AND Immediate : set $t1 to ($t1 bitwise-

AND 32-bit immediate)
 andi $t1, 100000

 lui $1, VHL2

 ori $1, $1, VL2U

 and RG1, RG1, $1

AND Immediate : set $t1 to ($t1 bitwise-

AND 16-bit unsigned immediate)
 andi $t1, 100

 andi RG1, RG1, VL2U

B

Branch : Branch to statement at label

unconditionally
 b label

 bgez $0, LAB

Branch if EQual : Branch to statement at

label if $t1 is equal to 16-bit immediate
 beq $t1, -100, label

 addi $1, $0, VL2

 beq $1, RG1, LAB

Branch if EQual : Branch to statement at

label if $t1 is equal to 32-bit immediate
 beq $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 beq $1, RG1, LAB

Branch if EQual Zero : Branch to

statement at label if $t1 is equal to zero
 beqz $t1, label

 beq RG1, $0, LAB

Branch if Greater or Equal : Branch to

statement at label if $t1 is greater or

equal to $t2
 bge $t1, $t2, label

 slt $1, RG1, RG2

 beq $1, $0, LAB

Branch if Greater or Equal : Branch to

statement at label if $t1 is greater or

equal to 16-bit immediate
 bge $t1, -100, label

 slti $1, RG1, VL2

 beq $1, $0, LAB

Branch if Greater or Equal : Branch to

statement at label if $t1 is greater or

equal to 32-bit immediate
 bge $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 slt $1, RG1, $1

 beq $1, $0, LAB

Branch if Greater or Equal Unsigned :

Branch to statement at label if $t1 is

greater or equal to $t2 (unsigned

compare)
 bgeu $t1, $t2, label

 sltu $1, RG1, RG2

 beq $1, $0, LAB

Branch if Greater or Equal Unsigned :

Branch to statement at label if $t1 is

greater or equal to 16-bit immediate

(unsigned compare)
 bgeu $t1, -100, label

 sltiu $1, RG1, VL2

 beq $1, $0, LAB

Branch if Greater or Equal Unsigned :

Branch to statement at label if $t1 is

greater or equal to 32-bit immediate

(unsigned compare)
 bgeu $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 sltu $1, RG1, $1

 beq $1, $0, LAB

Branch if Greater Than : Branch to

statement at label if $t1 is greater than

$t2
 bgt $t1, $t2, label

 slt $1, RG2, RG1

 bne $1, $0, LAB

Branch if Greater Than : Branch to

statement at label if $t1 is greater than

16-bit immediate
 bgt $t1, -100, label

 addi $1, $0, VL2

 slt $1, $1, RG1

 bne $1, $0, LAB

Branch if Greater Than : Branch to

statement at label if $t1 is greater than

32-bit immediate
 bgt $t1, 100000, label

 lui $1, VHL2P1

 ori $1, $1, VL2P1U

 slt $1, RG1, $1

 beq $1, $0, LAB

Branch if Greater Than Unsigned: Branch

to statement at label if $t1 is greater than

$t2 (unsigned compare)
 bgtu $t1, $t2, label

 sltu $1, RG2, RG1

 bne $1, $0, LAB

Branch if Greater Than Unsigned: Branch

to statement at label if $t1 is greater than

16-bit immediate (unsigned compare)
 bgtu $t1, -100, label

 addi $1, $0, VL2

 sltu $1, $1, RG1

 bne $1, $0, LAB

Branch if Greater Than Unsigned: Branch

to statement at label if $t1 is greater than

16-bit immediate (unsigned compare)
 bgtu $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 sltu $1, $1, RG1

 bne $1, $0, LAB

Branch if Less or Equal : Branch to

statement at label if $t1 is less than or

equal to $t2
 ble $t1, $t2, label

 slt $1, RG2, RG1

 beq $1, $0, LAB

Branch if Less or Equal : Branch to

statement at label if $t1 is less than or

equal to 16-bit immediate
 ble $t1, -100, label

 addi $1, RG1, -1

 slti $1, $1, VL2

 bne $1, $0, LAB

Branch if Less or Equal : Branch to

statement at label if $t1 is less than or

equal to 32-bit immediate
 ble $t1, 100000, label

 lui $1, VHL2P1

 ori $1, $1, VL2P1U

 slt $1, RG1, $1

 bne $1, $0, LAB

Branch if Less or Equal Unsigned : Branch

to statement at label if $t1 is less than or

equal to $t2 (unsigned compare)
 bleu $t1, $t2, label

 sltu $1, RG2, RG1

 beq $1, $0, LAB

Branch if Less or Equal Unsigned : Branch

to statement at label if $t1 is less than or

equal to 16-bit immediate (unsigned

compare)
 bleu $t1, -100, label

 addi $1, $0, VL2

 sltu $1, $1, RG1

 beq $1, $0, LAB

Branch if Less or Equal Unsigned : Branch

to statement at label if $t1 is less than or

equal to 32-bit immediate (unsigned

compare)
 bleu $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 sltu $1, $1, RG1

 beq $1, $0, LAB

Branch if Less Than : Branch to statement

at label if $t1 is less than $t2
 blt $t1, $t2, label

 slt $1, RG1, RG2

 bne $1, $0, LAB

Branch if Less Than : Branch to statement

at label if $t1 is less than 16-bit immediate
 blt $t1, -100, label

 slti $1, RG1, VL2

 bne $1, $0, LAB

Branch if Less Than : Branch to statement

at label if $t1 is less than 32-bit immediate
 blt $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 slt $1, RG1, $1

 bne $1, $0, LAB

Branch if Less Than Unsigned : Branch to

statement at label if $t1 is less than $t2
 bltu $t1, $t2, label

 sltu $1, RG1, RG2

 bne $1, $0, LAB

Branch if Less Than Unsigned : Branch to

statement at label if $t1 is less than 16-bit

immediate
 bltu $t1, -100, label

 sltiu $1, RG1, VL2

 bne $1, $0, LAB

Branch if Less Than Unsigned : Branch to

statement at label if $t1 is less than 32-bit

immediate
 bltu $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 sltu $1, RG1, $1

 bne $1, $0, LAB

Branch if Not Equal : Branch to statement

at label if $t1 is not equal to 16-bit

immediate
 bne $t1, -100, label

 addi $1, $0, VL2

 bne $1, RG1, LAB

Branch if Not Equal : Branch to statement

at label if $t1 is not equal to 32-bit

immediate
 bne $t1, 100000, label

 lui $1, VHL2

 ori $1, $1, VL2U

 bne $1, RG1, LAB

http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/mit-license.html

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 2

Branch if Not Equal Zero : Branch to

statement at label if $t1 is not equal to

zero
 bnez $t1, label

 bne RG1, $0, LAB

D

DIVision : Set $t1 to ($t2 divided by $t3,

integer division)
 div $t1, $t2, $t3

 bne RG3, $0, BROFF12

 DBNOP

 break

 div RG2, RG3

 mflo RG1

DIVision : Set $t1 to ($t2 divided by 16-bit

immediate, integer division)
 div $t1, $t2, -100

 addi $1, $0, VL3

 div RG2, $1

 mflo RG1

DIVision : Set $t1 to ($t2 divided by 32-bit

immediate, integer division)
 div $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 div RG2, $1

 mflo RG1

DIVision Unsigned : Set $t1 to ($t2 divided

by $t3, unsigned integer division)
 divu $t1, $t2, $t3

 bne RG3, $0, BROFF12

 DBNOP

 break

 divu RG2, RG3

 mflo RG1

DIVision Unsigned : Set $t1 to ($t2 divided

by 16-bit immediate, unsigned integer

division)
 divu $t1, $t2, -100

 addi $1, $0, VL3

 divu RG2, $1

 mflo RG1

DIVision Unsigned : Set $t1 to ($t2 divided

by 32-bit immediate, unsigned integer

division)
 divu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 divu RG2, $1

 mflo RG1

L

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, ($t2)

 ldc1 RG1,0(RG3)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, -100

 ldc1 RG1,VL2($0)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 ldc1 RG1, VL2($1)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, 100000

 lui $1, VH2

 ldc1 RG1,VL2($1)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 ldc1 RG1, LL2($1)

 COMPACT

 ldc1 RG1, LL2(RG4)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 ldc1 RG1, LLP($1)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, label+100000

 lui $1, LHPA

 ldc1 RG1, LLP($1)

Load floating point Double precision : Set

$f2 and $f3 register pair to 64-bit value at

effective memory doubleword address
 l.d $f2, label

 lui $1, LH2

 ldc1 RG1, LL2($1)

 COMPACT

 ldc1 RG1, LL2($0)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, ($t2)

 lwc1 RG1,0(RG3)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, -100

 lwc1 RG1,VL2($0)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lwc1 RG1, VL2($1)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, 100000

 lui $1, VH2

 lwc1 RG1,VL2($1)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lwc1 RG1, LL2($1)

 COMPACT

 lwc1 RG1, LL2(RG4)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lwc1 RG1, LLP($1)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, label+100000

 lui $1, LHPA

 lwc1 RG1, LLP($1)

Load floating point Single precision : Set

$f1 to 32-bit value at effective memory

word address
 l.s $f1, label

 lui $1, LH2

 lwc1 RG1, LL2($1)

 COMPACT

 lwc1 RG1, LL2($0)

Load Address : Set $t1 to contents of $t2
 la $t1, ($t2)

 addi RG1, RG3, 0

Load Address : Set $t1 to 16-bit immediate

(sign-extended)
 la $t1, -100

 addiu RG1, $0, VL2

Load Address : Set $t1 to sum (of $t2 and

16-bit immediate)
 la $t1, 100($t2)

 ori $1, $0, VL2U

 add RG1, RG4, $1

Load Address : Set $t1 to sum (of $t2 and

32-bit immediate)
 la $t1, 100000($t2)

 lui $1, VHL2

 ori $1, $1, VL2U

 add RG1, RG4, $1

Load Address : Set $t1 to 32-bit immediate
 la $t1, 100000

 lui $1, VHL2

 ori RG1, $1, VL2U

Load Address : Set $t1 to 16-bit immediate

(zero-extended)
 la $t1, 100

 ori RG1, $0, VL2U

Load Address : Set $t1 to sum (of $t2 and

label's address)
 la $t1, label($t2)

 lui $1, LHL

 ori $1, $1, LL2U

 add RG1, RG4, $1

 COMPACT

 addi RG1, RG4, LL2

Load Address : Set $t1 to sum (of label's

address, 32-bit immediate, and $t2)
 la $t1, label+100000($t2)

 lui $1, LHPN

 ori $1, $1, LLPU

 add RG1, RG6, $1

Load Address : Set $t1 to sum (of label's

address and 32-bit immediate)
 la $t1, label+100000

 lui $1, LHPN

 ori RG1, $1, LLPU

Load Address : Set $t1 to label's address
 la $t1, label

 lui $1, LHL

 ori RG1, $1, LL2U

 COMPACT

 addi RG1, $0, LL2

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, ($t2)

 lb RG1,0(RG3)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, -100

 lb RG1, VL2($0)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lb RG1, 0($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lb RG1, VL2($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, 100000

 lui $1, VH2

 lb RG1,VL2($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, 100

 ori $1, $0, VL2U

 lb RG1, 0($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lb RG1, LL2($1)

 COMPACT

 lb RG1, LL2(RG4)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lb RG1, LLP($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, label+100000

 lui $1, LHPA

 lb RG1, LLP($1)

Load Byte : Set $t1 to sign-extended 8-bit

value from effective memory byte address
 lb $t1, label

 lui $1, LH2

 lb RG1, LL2($1)

 COMPACT

 lb RG1, LL2($0)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, ($t2)

 lbu RG1,0(RG3)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, -100

 lbu RG1,VL2($0)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lbu RG1, 0($1)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lbu RG1, VL2($1)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, 100000

 lui $1, VH2

 lbu RG1,VL2($1)

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 3

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, 100

 ori $1, $0, VL2U

 lbu RG1, 0($1)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lbu RG1, LL2($1)

 COMPACT

 lbu RG1, LL2(RG4)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lbu RG1, LLP($1)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, label+100000

 lui $1, LHPA

 lbu RG1, LLP($1)

Load Byte Unsigned : Set $t1 to zero-

extended 8-bit value from effective

memory byte address
 lbu $t1, label

 lui $1, LH2

 lbu RG1, LL2($1)

 COMPACT

 lbu RG1, LL2($0)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, ($t2)

 lw RG1, 0(RG3)

 lw NR1, 4(RG3)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory byte address
 ld $t1, -100($t2)

 lw RG1, VL2(RG4)

 lui $1, VH2P4

 addu $1, $1, RG4

 lw NR1, VL2P4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lw RG1, VL2($1)

 lui $1, VH2P4

 addu $1, $1, RG4

 lw NR1, VL2P4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, 100000

 lui $1, VH2

 lw RG1, VL2($1)

 lui $1, VH2P4

 lw NR1, VL2P4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lw RG1, LL2($1)

 lui $1, LH2P4

 addu $1, $1, RG4

 lw NR1, LL2P4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lw RG1, LLP($1)

 lui $1, LHPAP4

 addu $1, $1, RG6

 lw NR1, LLPP4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, label+100000

 lui $1, LHPA

 lw RG1, LLP($1)

 lui $1, LHPAP4

 lw NR1, LLPP4($1)

Load Doubleword : Set $t1 and the next

register to the 64 bits starting at effective

memory word address
 ld $t1, label

 lui $1, LH2

 lw RG1, LL2($1)

 lui $1, LH2P4

 lw NR1, LL2P4($1)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, ($t2)

 ldc1 RG1,0(RG3)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, -100

 ldc1 RG1,VL2($0)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 ldc1 RG1, VL2($1)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, 100000

 lui $1, VH2

 ldc1 RG1,VL2($1)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 ldc1 RG1, LL2($1)

 COMPACT

 ldc1 RG1, LL2(RG4)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2,

label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 ldc1 RG1, LLP($1)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, label+100000

 lui $1, LHPA

 ldc1 RG1, LLP($1)

Load Doubleword Coprocessor 1 : Set $f2

and $f3 register pair to 64-bit value at

effective memory doubleword address
 ldc1 $f2, label

 lui $1, LH2

 ldc1 RG1, LL2($1)

 COMPACT

 ldc1 RG1, LL2($0)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, ($t2)

 lh RG1,0(RG3)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, -100

 lh RG1, VL2($0)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lh RG1, 0($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lh RG1, VL2($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, 100000

 lui $1, VH2

 lh RG1,VL2($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, 100

 ori $1, $0, VL2U

 lh RG1, 0($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lh RG1, LL2($1)

 COMPACT

 lh RG1, LL2(RG4)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lh RG1, LLP($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, label+100000

 lui $1, LHPA

 lh RG1, LLP($1)

Load Halfword : Set $t1 to sign-extended

16-bit value from effective memory

halfword address
 lh $t1, label

 lui $1, LH2

 lh RG1, LL2($1)

 COMPACT

 lh RG1, LL2($0)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, ($t2)

 lhu RG1,0(RG3)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, -100

 lhu RG1,VL2($0)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lhu RG1, 0($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lhu RG1, VL2($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, 100000

 lui $1, VH2

 lhu RG1,VL2($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, 100

 ori $1, $0, VL2U

 lhu RG1, 0($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lhu RG1, LL2($1)

 COMPACT

 lhu RG1, LL2(RG4)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lhu RG1, LLP($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, label+100000

 lui $1, LHPA

 lhu RG1, LLP($1)

Load Halfword Unsigned : Set $t1 to zero-

extended 16-bit value from effective

memory halfword address
 lhu $t1, label

 lui $1, LH2

 lhu RG1, LL2($1)

 COMPACT

 lhu RG1, LL2($0)

Load Immediate : Set $t1 to 16-bit

immediate (sign-extended)
 li $t1, -100

 addiu RG1, $0, VL2

Load Immediate : Set $t1 to 32-bit

immediate
 li $t1, 100000

 lui $1, VHL2

 ori RG1, $1, VL2U

Load Immediate : Set $t1 to unsigned 16-

bit immediate (zero-extended)
 li $t1, 100

 ori RG1, $0, VL2U

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, ($t2)

 ll RG1,0(RG3)

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 4

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, -100

 ll RG1,VL2($0)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 ll RG1, 0($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 ll RG1, VL2($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, 100000

 lui $1, VH2

 ll RG1,VL2($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, 100

 ori $1, $0, VL2U

 ll RG1, 0($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 ll RG1, LL2($1)

 COMPACT

 ll RG1, LL2(RG4)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 ll RG1, LLP($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, label+100000

 lui $1, LHPA

 ll RG1, LLP($1)

Load Linked : Paired with Store

Conditional (sc) to perform atomic read-

modify-write. Treated as equivalent to

Load Word (lw) because MARS does not

simulate multiple processors.
 ll $t1, label

 lui $1, LH2

 ll RG1, LL2($1)

 COMPACT

 ll RG1, LL2($0)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, ($t2)

 lw RG1,0(RG3)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, -100

 lw RG1, VL2($0)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lw RG1, 0($1)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lw RG1, VL2($1)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, 100000

 lui $1, VH2

 lw RG1,VL2($1)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, 100

 ori $1, $0, VL2U

 lw RG1, 0($1)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lw RG1, LL2($1)

 COMPACT

 lw RG1, LL2(RG4)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lw RG1, LLP($1)

Load Word : Set $t1 to contents of

effective memory word address
 lw $t1, label+100000

 lui $1, LHPA

 lw RG1, LLP($1)

Load Word : Set $t1 to contents of

memory word at label's address
 lw $t1, label

 lui $1, LH2

 lw RG1, LL2($1)

 COMPACT

 lw RG1, LL2($0)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, ($t2)

 lwc1 RG1,0(RG3)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, -100

 lwc1 RG1,VL2($0)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lwc1 RG1, VL2($1)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, 100000

 lui $1, VH2

 lwc1 RG1,VL2($1)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lwc1 RG1, LL2($1)

 COMPACT

 lwc1 RG1, LL2(RG4)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1,label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lwc1 RG1, LLP($1)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, label+100000

 lui $1, LHPA

 lwc1 RG1, LLP($1)

Load Word Coprocessor 1 : Set $f1 to 32-

bit value from effective memory word

address
 lwc1 $f1, label

 lui $1, LH2

 lwc1 RG1, LL2($1)

 COMPACT

 lwc1 RG1, LL2($0)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, ($t2)

 lwl RG1,0(RG3)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, -100

 lwl RG1,VL2($0)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lwl RG1, 0($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lwl RG1, VL2($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, 100000

 lui $1, VH2

 lwl RG1,VL2($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, 100

 ori $1, $0, VL2U

 lwl RG1, 0($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lwl RG1, LL2($1)

 COMPACT

 lwl RG1, LL2(RG4)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lwl RG1, LLP($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, label+100000

 lui $1, LHPA

 lwl RG1, LLP($1)

Load Word Left : Load from 1 to 4 bytes

left-justified into $t1, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 lwl $t1, label

 lui $1, LH2

 lwl RG1, LL2($1)

 COMPACT

 lwl RG1, LL2($0)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, ($t2)

 lwr RG1,0(RG3)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, -100

 lwr RG1,VL2($0)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 lwr RG1, 0($1)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 lwr RG1, VL2($1)

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 5

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, 100000

 lui $1, VH2

 lwr RG1,VL2($1)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, 100

 ori $1, $0, VL2U

 lwr RG1, 0($1)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 lwr RG1, LL2($1)

 COMPACT

 lwr RG1, LL2(RG4)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 lwr RG1, LLP($1)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, label+100000

 lui $1, LHPA

 lwr RG1, LLP($1)

Load Word Right : Load from 1 to 4 bytes

right-justified into $t1, starting with

effective memory byte address and

continuing through the high-order byte of

its word
 lwr $t1, label

 lui $1, LH2

 lwr RG1, LL2($1)

 COMPACT

 lwr RG1, LL2($0)

M

Move From Coprocessor 1 Double : Set

$t1 to contents of $f2, set next higher

register from $t1 to contents of next

higher register from $f2
 mfc1.d $t1, $f2

 mfc1 RG1, RG2

 mfc1 NR1, NR2

MOVE : Set $t1 to contents of $t2
 move $t1, $t2

 addu RG1, $0, RG2

Move To Coprocessor 1 Double : Set $f2 to

contents of $t1, set next higher register

from $f2 to contents of next higher

register from $t1
 mtc1.d $t1, $f2

 mtc1 RG1, RG2

 mtc1 NR1, NR2

MULtiplication : Set HI to high-order 32

bits, LO and $t1 to low-order 32 bits of the

product of $t2 and 16-bit signed

immediate (use mfhi to access HI, mflo to

access LO)
 mul $t1, $t2, -100

 addi $1, $0, VL3

 mul RG1, RG2, $1

MULtiplication : Set HI to high-order 32

bits, LO and $t1 to low-order 32 bits of the

product of $t2 and 32-bit immediate (use

mfhi to access HI, mflo to access LO)
 mul $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 mul RG1, RG2, $1

MULtiplication with Overflow : Set $t1 to

low-order 32 bits of the product of $t2

and $t3
 mulo $t1, $t2, $t3

 mult RG2, RG3

 mfhi $1

 mflo RG1

 sra RG1, RG1, 31

 beq $1, RG1, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication with Overflow : Set $t1 to

low-order 32 bits of the product of $t2

and signed 16-bit immediate
 mulo $t1, $t2, -100

 addi $1, $0, VL3

 mult RG2, $1

 mfhi $1

 mflo RG1

 sra RG1, RG1, 31

 beq $1, RG1, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication with Overflow : Set $t1 to

low-order 32 bits of the product of $t2

and 32-bit immediate
 mulo $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 mult RG2, $1

 mfhi $1

 mflo RG1

 sra RG1, RG1, 31

 beq $1, RG1, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication with Overflow Unsigned :

Set $t1 to low-order 32 bits of the product

of $t2 and $t3
 mulou $t1, $t2, $t3

 multu RG2, RG3

 mfhi $1

 beq $1,$0, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication with Overflow Unsigned :

Set $t1 to low-order 32 bits of the product

of $t2 and signed 16-bit immediate
 mulou $t1, $t2, -100

 addi $1, $0, VL3

 multu RG2, $1

 mfhi $1

 beq $1,$0, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication with Overflow Unsigned :

Set $t1 to low-order 32 bits of the product

of $t2 and 32-bit immediate
 mulou $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 multu RG2, $1

 mfhi $1

 beq $1,$0, BROFF12

 DBNOP

 break

 mflo RG1

MULtiplication Unsigned : Set HI to high-

order 32 bits, LO and $t1 to low-order 32

bits of ($t2 multiplied by $t3, unsigned

multiplication)
 mulu $t1, $t2, $t3

 multu RG2, RG3

 mflo RG1

MULtiplication Unsigned : Set HI to high-

order 32 bits, LO and $t1 to low-order 32

bits of ($t2 multiplied by 16-bit

immediate, unsigned multiplication)
 mulu $t1, $t2, -100

 addi $1, $0, VL3

 multu RG2, $1

 mflo RG1

MULtiplication Unsigned : Set HI to high-

order 32 bits, LO and $t1 to low-order 32

bits of ($t2 multiplied by 32-bit

immediate, unsigned multiplication)
 mulu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 multu RG2, $1

 mflo RG1

N

NEGate : Set $t1 to negation of $t2
 neg $t1, $t2

 sub RG1, $0, RG2

NEGate Unsigned : Set $t1 to negation of

$t2, no overflow
 negu $t1, $t2

 subu RG1, $0, RG2

Bitwise NOT (bit inversion)
 not $t1, $t2

 nor RG1, RG2, $0

O

OR : set $t1 to ($t2 bitwise-OR 16-bit

unsigned immediate)
 or $t1, $t2, 100

 ori RG1, RG2, VL3U

OR : set $t1 to ($t1 bitwise-OR 16-bit

unsigned immediate)
 or $t1, 100

 ori RG1, RG1, VL2U

OR Immediate : set $t1 to ($t2 bitwise-OR

32-bit immediate)
 ori $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 or RG1, RG2, $1

OR Immediate : set $t1 to ($t1 bitwise-OR

32-bit immediate)
 ori $t1, 100000

 lui $1, VHL2

 ori $1, $1, VL2U

 or RG1, RG1, $1

OR Immediate : set $t1 to ($t1 bitwise-OR

16-bit unsigned immediate)
 ori $t1, 100

 ori RG1, RG1, VL2U

R

REMainder : Set $t1 to (remainder of $t2

divided by $t3)
 rem $t1, $t2, $t3

 bne RG3, $0, BROFF12

 DBNOP

 break

 div RG2, RG3

 mfhi RG1

REMainder : Set $t1 to (remainder of $t2

divided by 16-bit immediate)
 rem $t1, $t2, -100

 addi $1, $0, VL3

 div RG2, $1

 mfhi RG1

REMainder : Set $t1 to (remainder of $t2

divided by 32-bit immediate)
 rem $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 div RG2, $1

 mfhi RG1

REMainder : Set $t1 to (remainder of $t2

divided by $t3, unsigned division)
 remu $t1, $t2, $t3

 bne RG3, $0, BROFF12

 DBNOP

 break

 divu RG2, RG3

 mfhi RG1

REMainder : Set $t1 to (remainder of $t2

divided by 16-bit immediate, unsigned

division)
 remu $t1, $t2, -100

 addi $1, $0, VL3

 divu RG2, $1

 mfhi RG1

REMainder : Set $t1 to (remainder of $t2

divided by 32-bit immediate, unsigned

division)
 remu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 divu RG2, $1

 mfhi RG1

ROtate Left : Set $t1 to ($t2 rotated left by

number of bit positions specified in $t3)
 rol $t1, $t2, $t3

 subu $1, $0, RG3

 srlv $1, RG2, $1

 sllv RG1, RG2, RG3

 or RG1, RG1, $1

ROtate Left : Set $t1 to ($t2 rotated left by

number of bit positions specified in 5-bit

immediate)
 rol $t1, $t2, 10

 srl $1, RG2, S32

 sll RG1, RG2, OP3

 or RG1, RG1, $1

ROtate Right : Set $t1 to ($t2 rotated right

by number of bit positions specified in

$t3)
 ror $t1, $t2, $t3

 subu $1, $0, RG3

 sllv $1, RG2, $1

 srlv RG1, RG2, RG3

 or RG1, RG1, $1

ROtate Right : Set $t1 to ($t2 rotated right

by number of bit positions specified in 5-

bit immediate)
 ror $t1, $t2, 10

 sll $1, RG2, S32

 srl RG1, RG2, OP3

 or RG1, RG1, $1

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 6

S

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, ($t2)

 sdc1 RG1,0(RG3)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, -100

 sdc1 RG1,VL2($0)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sdc1 RG1, VL2($1)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, 100000

 lui $1, VH2

 sdc1 RG1,VL2($1)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sdc1 RG1, LL2($1)

 COMPACT

 sdc1 RG1, LL2(RG4)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, label+100000

 lui $1, LHPA

 sdc1 RG1, LLP($1)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sdc1 RG1, LLP($1)

Store floating point Double precision :

Store 64 bits from $f2 and $f3 register pair

to effective memory doubleword address
 s.d $f2, label

 lui $1, LH2

 sdc1 RG1, LL2($1)

 COMPACT

 sdc1 RG1, LL2($0)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, ($t2)

 swc1 RG1,0(RG3)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, -100

 swc1 RG1,VL2($0)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 swc1 RG1, VL2($1)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, 100000

 lui $1, VH2

 swc1 RG1,VL2($1)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 swc1 RG1, LL2($1)

 COMPACT

 swc1 RG1, LL2(RG4)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 swc1 RG1, LLP($1)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, label+100000

 lui $1, LHPA

 swc1 RG1, LLP($1)

Store floating point Single precision : Store

32-bit value from $f1 to effective memory

word address
 s.s $f1, label

 lui $1, LH2

 swc1 RG1, LL2($1)

 COMPACT

 swc1 RG1, LL2($0)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, ($t2)

 sb RG1,0(RG3)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, -100

 sb RG1, VL2($0)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 sb RG1, 0($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sb RG1, VL2($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, 100000

 lui $1, VH2

 sb RG1,VL2($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, 100

 ori $1, $0, VL2U

 sb RG1, 0($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sb RG1, LL2($1)

 COMPACT

 sb RG1, LL2(RG4)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sb RG1, LLP($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, label+100000

 lui $1, LHPA

 sb RG1, LLP($1)

Store Byte : Store the low-order 8 bits of

$t1 into the effective memory byte

address
 sb $t1, label

 lui $1, LH2

 sb RG1, LL2($1)

 COMPACT

 sb RG1, LL2($0)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, ($t2)

 sc RG1,0(RG3)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, -100

 sc RG1,VL2($0)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 sc RG1, 0($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sc RG1, VL2($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, 100000

 lui $1, VH2

 sc RG1,VL2($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, 100

 ori $1, $0, VL2U

 sc RG1, 0($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sc RG1, LL2($1)

 COMPACT

 sc RG1, LL2(RG4)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sc RG1, LLP($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, label+100000

 lui $1, LHPA

 sc RG1, LLP($1)

Store Conditional : Paired with Load

Linked (ll) to perform atomic read-modify-

write. Treated as equivalent to Store

Word (sw) because MARS does not

simulate multiple processors.
 sc $t1, label

 lui $1, LH2

 sc RG1, LL2($1)

 COMPACT

 sc RG1, LL2($0)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, ($t2)

 sw RG1, 0(RG3)

 sw NR1, 4(RG3)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory byte address
 sd $t1, -100($t2)

 sw RG1, VL2(RG4)

 lui $1, VH2P4

 addu $1, $1, RG4

 sw NR1, VL2P4($1)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sw RG1, VL2($1)

 lui $1, VH2P4

 addu $1, $1, RG4

 sw NR1, VL2P4($1)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, 100000

 lui $1, VH2

 sw RG1, VL2($1)

 lui $1, VH2P4

 sw NR1, VL2P4($1)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sw RG1, LL2($1)

 lui $1, LH2P4

 addu $1, $1, RG4

 sw NR1, LL2P4($1)

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 7

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sw RG1, LLP($1)

 lui $1, LHPAP4

 addu $1, $1, RG6

 sw NR1, LLPP4($1)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, label+100000

 lui $1, LHPA

 sw RG1, LLP($1)

 lui $1, LHPAP4

 sw NR1, LLPP4($1)

Store Doubleword : Store contents of $t1

and the next register to the 64 bits

starting at effective memory word address
 sd $t1, label

 lui $1, LH2

 sw RG1, LL2($1)

 lui $1, LH2P4

 sw NR1, LL2P4($1)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, ($t2)

 sdc1 RG1,0(RG3)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, -100

 sdc1 RG1,VL2($0)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sdc1 RG1, VL2($1)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, 100000

 lui $1, VH2

 sdc1 RG1,VL2($1)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sdc1 RG1, LL2($1)

 COMPACT

 sdc1 RG1, LL2(RG4)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2,

label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sdc1 RG1, LLP($1)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, label+100000

 lui $1, LHPA

 sdc1 RG1, LLP($1)

Store Doubleword Coprocessor 1 : Store

64 bits from $f2 and $f3 register pair to

effective memory doubleword address
 sdc1 $f2, label

 lui $1, LH2

 sdc1 RG1, LL2($1)

 COMPACT

 sdc1 RG1, LL2($0)

Set EQual : if $t2 equal to $t3 then set $t1

to 1 else 0
 seq $t1, $t2, $t3

 subu RG1, RG2, RG3

 ori $1, $0, 1

 sltu RG1, RG1, $1

Set EQual : if $t2 equal to 16-bit

immediate then set $t1 to 1 else 0
 seq $t1, $t2, -100

 addi $1, $0, VL3

 subu RG1, RG2, $1

 ori $1, $0, 1

 sltu RG1, RG1, $1

Set EQual : if $t2 equal to 32-bit

immediate then set $t1 to 1 else 0
 seq $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 subu RG1, RG2, $1

 ori $1, $0, 1

 sltu RG1, RG1, $1

Set Greater or Equal : if $t2 greater or

equal to $t3 then set $t1 to 1 else 0
 sge $t1, $t2, $t3

 slt RG1, RG2, RG3

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater or Equal : if $t2 greater or

equal to 16-bit immediate then set $t1 to

1 else 0
 sge $t1, $t2, -100

 addi $1, $0, VL3

 slt RG1, RG2, $1

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater or Equal : if $t2 greater or

equal to 32-bit immediate then set $t1 to

1 else 0
 sge $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 slt RG1, RG2, $1

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater or Equal Unsigned : if $t2

greater or equal to $t3 (unsigned

compare) then set $t1 to 1 else 0
 sgeu $t1, $t2, $t3

 sltu RG1, RG2, RG3

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater or Equal Unsigned : if $t2

greater or equal to 16-bit immediate

(unsigned compare) then set $t1 to 1 else

0
 sgeu $t1, $t2, -100

 addi $1, $0, VL3

 sltu RG1, RG2, $1

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater or Equal Unsigned : if $t2

greater or equal to 32-bit immediate

(unsigned compare) then set $t1 to 1 else

0
 sgeu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 sltu RG1, RG2, $1

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Greater Than : if $t2 greater than $t3

then set $t1 to 1 else 0
 sgt $t1, $t2, $t3

 slt RG1, RG3, RG2

Set Greater Than : if $t2 greater than 16-

bit immediate then set $t1 to 1 else 0
 sgt $t1, $t2, -100

 addi $1, $0, VL3

 slt RG1, $1, RG2

Set Greater Than : if $t2 greater than 32-

bit immediate then set $t1 to 1 else 0
 sgt $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 slt RG1, $1, RG2

Set Greater Than Unsigned : if $t2 greater

than $t3 (unsigned compare) then set $t1

to 1 else 0
 sgtu $t1, $t2, $t3

 sltu RG1, RG3, RG2

Set Greater Than Unsigned : if $t2 greater

than 16-bit immediate (unsigned

compare) then set $t1 to 1 else 0
 sgtu $t1, $t2, -100

 addi $1, $0, VL3

 sltu RG1, $1, RG2

Set Greater Than Unsigned : if $t2 greater

than 32-bit immediate (unsigned

compare) then set $t1 to 1 else 0
 sgtu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 sltu RG1, $1, RG2

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, ($t2)

 sh RG1,0(RG3)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, -100

 sh RG1, VL2($0)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 sh RG1, 0($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sh RG1, VL2($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, 100000

 lui $1, VH2

 sh RG1,VL2($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, 100

 ori $1, $0, VL2U

 sh RG1, 0($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sh RG1, LL2($1)

 COMPACT

 sh RG1, LL2(RG4)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sh RG1, LLP($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, label+100000

 lui $1, LHPA

 sh RG1, LLP($1)

Store Halfword : Store the low-order 16

bits of $t1 into the effective memory

halfword address
 sh $t1, label

 lui $1, LH2

 sh RG1, LL2($1)

 COMPACT

 sh RG1, LL2($0)

Set Less or Equal : if $t2 less or equal to

$t3 then set $t1 to 1 else 0
 sle $t1, $t2, $t3

 slt RG1, RG3, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Less or Equal : if $t2 less or equal to

16-bit immediate then set $t1 to 1 else 0
 sle $t1, $t2, -100

 addi $1, $0, VL3

 slt RG1, $1, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Less or Equal : if $t2 less or equal to

32-bit immediate then set $t1 to 1 else 0
 sle $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 slt RG1, $1, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Less or Equal Unsigned: if $t2 less or

equal to $t3 (unsigned compare) then set

$t1 to 1 else 0
 sleu $t1, $t2, $t3

 sltu RG1, RG3, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Less or Equal Unsigned: if $t2 less or

equal to 16-bit immediate (unsigned

compare) then set $t1 to 1 else 0
 sleu $t1, $t2, -100

 addi $1, $0, VL3

 sltu RG1, $1, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Less or Equal Unsigned: if $t2 less or

equal to 32-bit immediate (unsigned

compare) then set $t1 to 1 else 0
 sleu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 sltu RG1, $1, RG2

 ori $1, $0, 1

 subu RG1, $1, RG1

Set Not Equal : if $t2 not equal to $t3 then

set $t1 to 1 else 0
 sne $t1, $t2, $t3

 subu RG1, RG2, RG3

 sltu RG1, $0, RG1

Set Not Equal : if $t2 not equal to 16-bit

immediate then set $t1 to 1 else 0
 sne $t1, $t2, -100

 addi $1, $0, VL3

 subu RG1, RG2, $1

 sltu RG1, $0, RG1

Set Not Equal : if $t2 not equal to 32-bit

immediate then set $t1 to 1 else 0
 sne $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 subu RG1, RG2, $1

 sltu RG1, $0, RG1

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 8

SUBtraction : set $t1 to ($t2 minus 16-bit

immediate)
 sub $t1, $t2, -100

 addi $1, $0, VL3U

 sub RG1, RG2, $1

SUBtraction : set $t1 to ($t2 minus 32-bit

immediate)
 sub $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 sub RG1, RG2, $1

SUBtraction Immediate : set $t1 to ($t2

minus 16-bit immediate)
 subi $t1, $t2, -100

 addi $1, $0, VL3

 sub RG1, RG2, $1

SUBtraction Immediate : set $t1 to ($t2

minus 32-bit immediate)
 subi $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 sub RG1, RG2, $1

SUBtraction Immediate Unsigned : set $t1

to ($t2 minus 32-bit immediate), no

overflow
 subiu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 subu RG1, RG2, $1

SUBtraction Unsigned : set $t1 to ($t2

minus 32-bit immediate), no overflow
 subu $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 subu RG1, RG2, $1

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, ($t2)

 sw RG1,0(RG3)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, -100

 sw RG1, VL2($0)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 sw RG1, 0($1)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sw RG1, VL2($1)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, 100000

 lui $1, VH2

 sw RG1,VL2($1)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, 100

 ori $1, $0, VL2U

 sw RG1, 0($1)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sw RG1, LL2($1)

 COMPACT

 sw RG1, LL2(RG4)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sw RG1, LLP($1)

Store Word : Store $t1 contents into

effective memory word address
 sw $t1, label+100000

 lui $1, LHPA

 sw RG1, LLP($1)

Store Word : Store $t1 contents into

memory word at label's address
 sw $t1, label

 lui $1, LH2

 sw RG1, LL2($1)

 COMPACT

 sw RG1, LL2($0)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, ($t2)

 swc1 RG1,0(RG3)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, -100

 swc1 RG1,VL2($0)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 swc1 RG1, VL2($1)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, 100000

 lui $1, VH2

 swc1 RG1,VL2($1)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 swc1 RG1, LL2($1)

 COMPACT

 swc1 RG1, LL2(RG4)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1,label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 swc1 RG1, LLP($1)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, label+100000

 lui $1, LHPA

 swc1 RG1, LLP($1)

Store Word Coprocessor 1 : Store 32-bit

value from $f1 to effective memory word

address
 swc1 $f1, label

 lui $1, LH2

 swc1 RG1, LL2($1)

 COMPACT

 swc1 RG1, LL2($0)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, ($t2)

 swl RG1,0(RG3)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, -100

 swl RG1,VL2($0)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 swl RG1, 0($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 swl RG1, VL2($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, 100000

 lui $1, VH2

 swl RG1,VL2($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, 100

 ori $1, $0, VL2U

 swl RG1, 0($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 swl RG1, LL2($1)

 COMPACT

 swl RG1, LL2(RG4)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 swl RG1, LLP($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, label+100000

 lui $1, LHPA

 swl RG1, LLP($1)

Store Word Left : Store high-order 1 to 4

bytes of $t1 into memory, starting with

effective memory byte address and

continuing through the low-order byte of

its word
 swl $t1, label

 lui $1, LH2

 swl RG1, LL2($1)

 COMPACT

 swl RG1, LL2($0)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, ($t2)

 swr RG1,0(RG3)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, -100

 swr RG1,VL2($0)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, 100($t2)

 ori $1, $0, VL2U

 addu $1, $1, RG4

 swr RG1, 0($1)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 swr RG1, VL2($1)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, 100000

 lui $1, VH2

 swr RG1,VL2($1)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, 100

 ori $1, $0, VL2U

 swr RG1, 0

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 swr RG1, LL2($1)

 COMPACT

 swr RG1, LL2(RG4)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 swr RG1, LLP($1)

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, label+100000

 lui $1, LHPA

 swr RG1, LLP($1)

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 9

Store Word Right : Store low-order 1 to 4

bytes of $t1 into memory, starting with

high-order byte of word containing

effective memory byte address and

continuing through that byte address
 swr $t1, label

 lui $1, LH2

 swr RG1, LL2($1)

 COMPACT

 swr RG1, LL2($0)

U

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, ($t2)

 lb RG1, 1(RG3)

 lbu $1, 0(RG3)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, -100($t2)

 lui $1, VH2P1

 addu $1, $1, RG4

 lb RG1, VL2P1($1)

 lbu $1, VL2(RG4)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, 100000($t2)

 lui $1, VH2P1

 addu $1, $1, RG4

 lb RG1, VL2P1($1)

 lui $1, VH2

 addu $1, $1, RG4

 lbu $1, VL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, 100000

 lui $1, VH2P1

 lb RG1, VL2P1($1)

 lui $1, VH2

 lbu $1, VL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, label($t2)

 lui $1, LH2P1

 addu $1, $1, RG4

 lb RG1, LL2P1($1)

 lui $1, LH2

 addu $1, $1, RG4

 lbu $1, LL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, label+100000($t2)

 lui $1, LHPAP1

 addu $1, $1, RG6

 lb RG1, LLPP1($1)

 lui $1, LHPA

 addu $1, $1, RG6

 lbu $1, LLP($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, label+100000

 lui $1, LHPAP1

 lb RG1, LLPP1($1)

 lui $1, LHPA

 lbu $1, LLP($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, sign-extended, starting at effective

memory byte address
 ulh $t1, label

 lui $1, LH2P1

 lb RG1, LL2P1($1)

 lui $1, LH2

 lbu $1, LL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, ($t2)

 lbu RG1, 1(RG3)

 lbu $1, 0(RG3)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, -100($t2)

 lui $1, VH2P1

 addu $1, $1, RG4

 lbu RG1, VL2P1($1)

 lbu $1, VL2(RG4)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, 100000($t2)

 lui $1, VH2P1

 addu $1, $1, RG4

 lbu RG1, VL2P1($1)

 lui $1, VH2

 addu $1, $1, RG4

 lbu $1, VL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, 100000

 lui $1, VH2P1

 lbu RG1, VL2P1($1)

 lui $1, VH2

 lbu $1, VL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, label($t2)

 lui $1, LH2P1

 addu $1, $1, RG4

 lbu RG1, LL2P1($1)

 lui $1, LH2

 addu $1, $1, RG4

 lbu $1, LL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1,label+100000($t2)

 lui $1, LHPAP1

 addu $1, $1, RG6

 lbu RG1, LLPP1($1)

 lui $1, LHPA

 addu $1, $1, RG6

 lbu $1, LLP($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, label+100000

 lui $1, LHPAP1

 lbu RG1, LLPP1($1)

 lui $1, LHPA

 lbu $1, LLP($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Halfword : Set $t1 to the

16 bits, zero-extended, starting at

effective memory byte address
 ulhu $t1, label

 lui $1, LH2P1

 lbu RG1, LL2P1($1)

 lui $1, LH2

 lbu $1, LL2($1)

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, ($t2)

 lwl RG1, 3(RG3)

 lwr RG1, 0(RG3)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, -100($t2)

 lui $1, VH2P3

 addu $1, $1, RG4

 lwl RG1, VL2P3($1)

 lwr RG1, VL2(RG4)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, 100000($t2)

 lui $1, VH2P3

 addu $1, $1, RG4

 lwl RG1, VL2P3($1)

 lui $1, VH2

 addu $1, $1, RG4

 lwr RG1, VL2($1)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, 100000

 lui $1, VH2P3

 lwl RG1, VL2P3($1)

 lui $1, VH2

 lwr RG1, VL2($1)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, label($t2)

 lui $1, LH2P3

 addu $1, $1, RG4

 lwl RG1, LL2P3($1)

 lui $1, LH2

 addu $1, $1, RG4

 lwr RG1, LL2($1)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, label+100000($t2)

 lui $1, LHPAP3

 addu $1, $1, RG6

 lwl RG1, LLPP3($1)

 lui $1, LHPA

 addu $1, $1, RG6

 lwr RG1, LLP($1)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, label+100000

 lui $1, LHPAP3

 lwl RG1, LLPP3($1)

 lui $1, LHPA

 lwr RG1, LLP($1)

Unaligned Load Word : Set $t1 to the 32

bits starting at effective memory byte

address
 ulw $t1, label

 lui $1, LH2P3

 lwl RG1, LL2P3($1)

 lui $1, LH2

 lwr RG1, LL2($1)

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, ($t2)

 sb RG1, 0(RG3)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 sb RG1, 1(RG3)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, -100($t2)

 sb RG1, VL2(RG4)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, VH2P1

 addu $1, $1, RG4

 sb RG1, VL2P1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, 100000($t2)

 lui $1, VH2

 addu $1, $1, RG4

 sb RG1, VL2($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, VH2P1

 addu $1, $1, RG4

 sb RG1, VL2P1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, 100000

 lui $1, VH2

 sb RG1, VL2($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, VH2P1

 sb RG1, VL2P1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, label($t2)

 lui $1, LH2

 addu $1, $1, RG4

 sb RG1, LL2($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, LH2P1

 addu $1, $1, RG4

 sb RG1, LL2P1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

MIPS Pseudo-Instructions – Listed in alphabetical order – Courtesy of MARS 4.5

Page | 10

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, label+100000($t2)

 lui $1, LHPA

 addu $1, $1, RG6

 sb RG1, LLP($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, LHPAP1

 addu $1, $1, RG6

 sb RG1, LLPP1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, label+100000

 lui $1, LHPA

 sb RG1, LLP($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, LHPAP1

 sb RG1, LLPP1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Halfword: Store low-

order halfword $t1 contents into the 16

bits starting at effective memory byte

address
 ush $t1, label

 lui $1, LH2

 sb RG1, LL2($1)

 sll $1, RG1, 24

 srl RG1, RG1, 8

 or RG1, RG1, $1

 lui $1, LH2P1

 sb RG1, LL2P1($1)

 srl $1, RG1, 24

 sll RG1, RG1, 8

 or RG1, RG1, $1

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, ($t2)

 swl RG1, 3(RG3)

 swr RG1, 0(RG3)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, -100($t2)

 lui $1, VH2P3

 addu $1, $1, RG4

 swl RG1, VL2P3($1)

 swr RG1, VL2(RG4)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, 100000($t2)

 lui $1, VH2P3

 addu $1, $1, RG4

 swl RG1, VL2P3($1)

 lui $1, VH2

 addu $1, $1, RG4

 swr RG1, VL2($1)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, 100000

 lui $1, VH2P3

 swl RG1, VL2P3($1)

 lui $1, VH2

 swr RG1, VL2($1)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, label($t2)

 lui $1, LH2P3

 addu $1, $1, RG4

 swl RG1, LL2P3($1)

 lui $1, LH2

 addu $1, $1, RG4

 swr RG1, LL2($1)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, label+100000($t2)

 lui $1, LHPAP3

 addu $1, $1, RG6

 swl RG1, LLPP3($1)

 lui $1, LHPA

 addu $1, $1, RG6

 swr RG1, LLP($1)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, label+100000

 lui $1, LHPAP3

 swl RG1, LLPP3($1)

 lui $1, LHPA

 swr RG1, LLP($1)

Unaligned Store Word : Store $t1 contents

into the 32 bits starting at effective

memory byte address
 usw $t1, label

 lui $1, LH2P3

 swl RG1, LL2P3($1)

 lui $1, LH2

 swr RG1, LL2($1)

X

XOR : set $t1 to ($t2 bitwise-exclusive-OR

16-bit unsigned immediate)
 xor $t1, $t2, 100

 xori RG1, RG2, VL3U

XOR : set $t1 to ($t1 bitwise-exclusive-OR

16-bit unsigned immediate)
 xor $t1, 100

 xori RG1, RG1, VL2U

XOR Immediate : set $t1 to ($t2 bitwise-

exclusive-OR 32-bit immediate)
 xori $t1, $t2, 100000

 lui $1, VHL3

 ori $1, $1, VL3U

 xor RG1, RG2, $1

XOR Immediate : set $t1 to ($t1 bitwise-

exclusive-OR 32-bit immediate)
 xori $t1, 100000

 lui $1, VHL2

 ori $1, $1, VL2U

 xor RG1, RG1, $1

XOR Immediate : set $t1 to ($t1 bitwise-

exclusive-OR 16-bit unsigned immediate)
 xori $t1, 100

 xori RG1, RG1, VL2U

The information in this document has been extracted from

the source code of the MARS 4.5 simulator.

