
Topics

 More on ISA

 RISC vs. CISC

 MIPS architecture
summary

 Intel architecture

 Interpret binary patterns

 Final examination

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 13: ISA and Assembly

> You should have learned a lot from this
unit, not only the technical part, but also
logical thinking.
> Understood the low level mechanics of
computer systems. Gained an insight into
SPIM and Computer Organisation.
> Laboratories were very helpful and
effective in assisting learning.
> Assembly programming reinforces
understanding of high-level programming
constructs.
> The unit is difficult to study and the
study load is heavy. You’ve learnt how to
actively work under a pressure in
workplaces.
> Much effort has been put on computer
organisation and design.

mailto:j.yang@uws.edu.au

The Architecture family

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Architecture Modeling at different levels

RISC CISC

Implementation RISC directly in hardware CISC microprogrammed

Instruction sets Instructions are simple;
Load / Store architecture

Trend towards instruction
set similar to high-level
languages

Speed of execution faster in RISC (simpler
hardware)

Size of executable file smaller in CISC (less
memory used)

mailto:j.yang@uws.edu.au

 Characteristics

 fixed size of instructions

 few instruction formats

 load/store (or: register-register) – moves data or operates on
data, NOT at the same time

 few addressing modes

 large number of general registers (operands are always in
registers)

 few (if any) hidden register usage

 Reduced

 not necessarily a small number of instruction

 but definitely simpler instructions

Reduced Instruction Set Computer (RISC)

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Complex Instruction Set Computer (CISC)

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Characteristics

 variable size instructions

 many instruction formats (varied no of arguments)

 many addressing formats

 small number of general registers (more related to technology)

 implied usage of special registers

 for example condition codes

 Complex

 a single instruction may execute a complex function

 for example a value of a polynomial function

 there is a large number of instructions

mailto:j.yang@uws.edu.au

Intel history: ISA evolved since around 1970

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 4004 (released 1971)

 4-bit, US$299 each, 108Khz (developed for calculators, also used in various
controllers)

 8008 (1972)

 200Khz, Radio Electronics magazine describes Mark-8, 1st home computer

 8086 (1978)

 16-bit, all internal registers 16 bits; no general purpose registers, 5-10MHz

 8087 (1980)

 adds 60 FP instructions, adds 80-bit-wide stack, but no registers

 80286 (1982)

 adds elaborate protection model, address extended to 24 bits, 6-12.5MHz

 80386 (1985)

 32-bit; converts 8 16-bit registers into 8 32-bit general purpose registers;
new addressing modes; adds paging, 16-33MHz

mailto:j.yang@uws.edu.au

Intel history cont.

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 80486(1989)

 + 17 new instructions, FP unit on the same chip, 25-50MHz

 Pentium, Pentium MMX (1993)

 MMX adds 57 instructions for multimedia, up to 233MHz

 P6 family (Pro, II, III) (1995)

 +70 instructions for multimedia, multiprocessing, up to 1.2GHz

 Pentium 4 (2000)
 +76 SIMD (former MMX) instructions, additional FP unit. May 2003: up to 3.06GHz.

Price for 2.8GHz approx. the same as 4004 in 1971.

 2003: Pentium 4 with Hyper-Threading technology

 Centrino mobile technology (2003)
 three components work together: low power consumption Pentium M CPU, wireless

LAN controller, and chipset

 Itanium, Itanium 2 processors family (current)

 64-bit computing platform, back compatible with 32-bit software

 Dual core models, multiple core models … (current)

mailto:j.yang@uws.edu.au

MIPS vs. 80386 (32-bit)

 MIPS (RISC)

 Address: 32-bit

 Instruction size 32 bits

 Data aligned

 Destination reg: Left

add $rd,$rs1,$rs2

$rd=$rs1+$rs2

 Regs: $0, $1, ..., $31

 Reg = 0: $0

 Return address: $31

 Intel 80386 (CISC)

 32-bit

 Instruction size 1-17 bytes

 Data unaligned

 Right*

add %rs1,%rs2

%rs2=%rs1+%rs2

 %r0 (%eax), %r1, ..., %r7

 all have some special purpose

 implicit use in instructions

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Note that both also offer 64-bit architectures, not covered here.

*The GNU Assembler, gas, uses a different
syntax from what you will likely find in any x86
reference manual, and the two-operand
instructions have the source and destinations
in the opposite order.

mailto:j.yang@uws.edu.au

MIPS vs. Intel 80x86

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS Intel 80x86

addu, addiu addl

subu subl

and,or, xor andl, orl, xorl

sll, srl, sra sall, shrl, sarl

lw movl mem, reg

sw movl reg, mem

mov movl reg, reg

li movl imm, reg

lui n.a.

 Instruction examples

Register

Immediate Memory

Operands

mailto:j.yang@uws.edu.au

MIPS vs. Intel 80x86

 MIPS (also Alpha): “fixed-length instructions”

 All instructions same size, e.g., 4 bytes

 simple hardware ⇒ performance

 branches can be multiples of 4 bytes

 X86 (also VAX): “variable-length instructions”

 Instructions are multiple of bytes

 small code size (30% smaller?)

 More Recent Performance Benefit: better instruction cache
hit rates

 Instructions can include 8- or 32-bit immediates

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS vs. Intel 80x86

 MIPS: “Three-operand architecture”

 Arithmetic-logic specify all 3 operands

add $s0,$s1,$s2 # s0=s1+s2

 Benefit: fewer instructions ⇒ performance

 x86: “Two-operand architecture”

 Only 2 operands,

 so the destination is also one of the sources, for example:

add $s1,$s0 # s0=s0+s1; s0+=s1

 Often true in C statements: c += b;

 Benefit: smaller instructions ⇒ smaller code

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS vs. Intel 80x86

 MIPS: “load-store architecture”

 Only Load/Store access memory; rest operations register-
register; e.g.,

lw $t0, 12($gp)

add $s0,$s0,$t0 # s0=s0+Mem[12+gp]

 Benefit: simpler hardware ⇒ performance

 X86: “register-memory architecture”

 All operations can have one operand in memory; other
operand is a register; e.g.,

add 12(%gp),%s0 # s0=s0+Mem[12+gp]

 Benefit: fewer instructions ⇒ smaller code

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

80386 addressing

 General format

base reg + index * scale + displacement

[displacement from 1 to 4 bytes long]

 Examples:

 base reg + offset (like MIPS)

movl -8000044(%ebp),%eax # eax = Mem[ebp - 8000044]

 base reg + index_scaled reg (like VAX)

movl (%eax,%ebx, 4),%edi # edi = Mem[ebx*4 + eax]

 base reg + index_scaled reg + offset

movl 12(%eax,%edx,4),%ebx # ebx = Mem[edx*4 + eax + 12]

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Branch in 80x86

 Rather than compare registers, x86 uses special 1-bit
registers called “condition codes” [flag] that are set as a side-
effect of ALU operations

 S - Sign Bit

 Z - Zero (if result is all 0)

 C - Carry Out

 P - Parity: set to 1 if there are even number of ones in
rightmost 8 bits of operation

 Conditional Branch instructions then use condition flags for all
comparisons: <, <=, >, >=, ==, !=

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

S=0 JNS Jump if positive number i.e. if sign bit is clear

S=1 JS Jump if negative number i.e. if sign bit is set

Z=0 JNE Jump if a-b not equal to 0 i.e. if Zero bit clear (Zero != 1)

Z=1 JE Jump if a-b equal to 0 i.e. if Zero bit is set (Zero == True)

C=0 JNC Jump if carry bit is clear (Jump if no carry)

C=1 JC Jump if carry bit is set

cmpl %ebx, %ecx
jne SkipStmts
incl %eax

SkipStmts:

- Z

mailto:j.yang@uws.edu.au

Unusual features of 80x86

 Terminology

 16-bits called word (halfword in MIPS)

 32-bits double word or long word (word in MIPS)

 8 32-bit Registers have names - with “e” prefix (for Extended):

 eax (r0), ebx, ecx, edx, esp, ebp, esi, edi

 PC is called eip (instruction pointer)

 leal (load effective address - 32-bit)

 Calculate address like a load, but load address into register,
not data

 Load 32-bit address:

leal -4000000(%ebp),%esi # esi = ebp – 4000000

 Positive constants start with $; regs with %

 cmpl $999999,%edx

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Unusual features of 80x86

 loop is an instruction for programming loops

 it is a conditional jump instruction

 it uses the %ecx register as a count

 decrements %ecx, and jumps if not zero

 Memory Stack is part of instruction set

 call places return address onto stack, increments esp
(Mem[esp]=eip+6; esp+=4)

 push places value onto stack, increments esp

 pop gets value from stack, decrements esp

 inc[l], dec[l] (increment, decrement)

 incl %edx #edx = edx + 1

 Benefit: smaller instructions ⇒ smaller code

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Unusual features of 80x86

 Floating point uses a separate stack (fpstack*)

load/push operands; perform operation (e.g. sub); store/pop result

flds -8000048(%ebp)

push M[ebp-8000048]

fildl (%esp)

fpstack = M[esp],

convert integer to FP

fsubp %st,%st(1)

subtract top 2 elements

fstps -8000048(%ebp)

M[ebp-8000048] := difference

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

*Intel has actually created three separate

generations of floating-point hardware for

the x86.

1) they started with a stack-oriented FPU

modeled after a pocket calculator in the

early 1980's;

2) started over again with a register-based

version called SSE in the 1990's; and

3) have just recently created a three-input

extension of SSE called AVX.

mailto:j.yang@uws.edu.au

And in Conclusion ...

 Once you’ve learned one RISC instruction set, easy to pick up
the rest

 ARM, Compaq/Digital Alpha, Hitachi SuperH, HP PA,
IBM/Motorola PowerPC (Apple Mac), Sun SPARC, ...

 Intel 80x86 is a different thing all together ...

 RISC emphasis: performance, HW simplicity

 CISC emphasis: code size

 Intel x86:

 very long lived

 many additions not necessarily well fitting with the original
design

 BUT: distinction between “RISC” and “CISC” is often blurred,
both architectures often use similar solutions

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Interpretation of binary patterns

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 What does this bit pattern mean:

 878,003,010?

 “4UCB”?

 2.034*10-4?

 ori $s5, $v0, 17218?

0 0 1 00 1 0 00 0 1 10 1 0 00 1 0 10 1 0 10 1 0 00 0 1 1

0x34554342

 If a memory location contains
this pattern, can its meaning
be determined?

 In other words: What is
the type of data?

 Side-effect of stored program concept: instructions stored as
numbers

 Power/danger of unrestricted addresses/pointers:

 Use ASCII as FP, instructions as data, integers as instructions,
... (Leads to security holes in programs, errors, etc.)

 Operation on instruction that accesses operand determines its type!

mailto:j.yang@uws.edu.au

Data types in MIPS

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 The interpretation depends on the context

 unsigned binary number

 signed binary number

 floating point number

 a half of a double precision FP number

 collection of 4 bytes

 collection of 2 halfwords

 collection of 32 bits

 an instruction

 An unsigned integer

 Addu

 A signed integer

 add

 FP number

 add.s

 FP double precision

 add.d

 An 8 bit field

 lb, sb

 A 16 bit field

 lh, sh

 32 bits

 xor

mailto:j.yang@uws.edu.au

When is it an integer number

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 If it is used in integer calculations

 we are talking about values here not representation

 the integer numbers in MIPS are always represented as
binary numbers

 MIPS has no instructions to handle integer values represented in
any other way

mailto:j.yang@uws.edu.au

When is it a string of characters

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 From “raw” hardware point of view NEVER

 there are no instructions in the MIPS instruction set which are
specifically provided for handling characters

 there are instructions which can handle single bytes

 a single byte may be an ASCII character, but it may also be an
EBCID character (IBM standard), a pixel or anything else which
fits into 8 bits

 From the OS point of view

 there are OS services specifically provided for handling
characters and character strings

 a single byte is a character if it is handled as a character

 From an application program point of view

 other interpretations are possible

mailto:j.yang@uws.edu.au

When is it an instruction

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 From “raw” hardware point of view

 if its address is loaded into PC

 With memory allocation conventions

 if it is in the text segment of memory

 MIPS only knows it is an instruction if it is used as an
instruction

 there is nothing inherent in the bit pattern which makes it an
instruction, or anything else

mailto:j.yang@uws.edu.au

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 17 18 8 0 32

Encode instruction

 Three instruction format: R, I, J

Lecture 03 23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Instruction assembling that converts mnemonic format to machine
code

R-type instruction: add $t0, $s1, $s2
rtrsrd

18178

op rs rt rd shamt funct

[mnemonic]

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

[assembled]add

0 2 3 2 4 0 2 00x

bin

dec

see HP4, P134; instruction decoding.pdf

Name ID Value

$zero $0 0 unchangeable

$t0 $8 can be 8; but changeable

mailto:j.yang@uws.edu.au

Decode instructions

Lecture 03 24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0x02324020 0x34020005

see HP4, P134; instruction decoding.pdf

A50

mailto:j.yang@uws.edu.au

Assembly language vs HLL

 Assembly language

 very simple instructions

 one instruction per line

 programs difficult to
understand

 registers and memory
locations

 cannot enforce data types,
depends on instruction

 total control of register
usage

 unrestricted use of
instructions (hardware
specific features)

 High level language

 statements

 statements expand to many
instructions

 programs easier to
understand

 simple variables, arrays,
structures

 can enforce data types (if no
pointers)

 register usage determined by
the compiler

 only what is allowed to
compiler

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Big issues - cost / performance

 Programming in assembly language takes more time

 productivity (constant no of lines per day)

 more errors (programs longer, more cryptic, no type
enforcement)

 Maintaining assembly language program is harder

 same reasons as above

 few skilled programmers

 Higher run-time performance

 was true before optimising compilers available

 still possible for short sections

 requires great skill

 improvements in algorithm more important

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

So why use it at all?

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Embedded systems

 If no compiler is available

 Operating systems

 require direct access to all available resources (physical
memory and I/O devices, privileged registers and
instructions)

 commonly only small parts of OS in assembly language

 Maintenance of existing programs

 so called legacy software

 may be preferable to rewriting in a high level language

 … …

mailto:j.yang@uws.edu.au

FINAL EXAM

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 OPEN BOOK exam; Max. total mark is 50 (and
counts for 50% of total mark)

 All printed materials, books, handwritten or
printed notes are allowed. Laptops and
Calculators are NOT allowed.

 Similar in nature to written submissions for the
workshops and exercises from lectures

 Requires understanding of concepts, not
memorizing facts

 Each question may have a number of sub-
questions

 May require simple arithmetic

 but: arithmetic mistakes are not deadly

 it is more important to show how you arrived
at the numerical answer, then to give final
numerical answer.

The Thinker
Rodin 1840-1917

mailto:j.yang@uws.edu.au

DO

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 BEFORE the exam: try to solve sample exam questions placed on
vUWS; exam questions are always somewhat similar.

 During final exam, attempt to answer all questions

 Answer questions from the easiest to the hardest

 the exam questions are not printed in any particular order

 number your answers (e.g. Q1.(b).ii.), so I know which
question you are answering

 Bring only printed materials you are familiar with

 your own notes, and annotated lecture notes

 your own written workshop submissions

 the textbook you used for studying

 no calculators are needed, laptops (with or without wireless
LAN) are NOT allowed, miniature radio transmitters/receivers
are also not allowed.

mailto:j.yang@uws.edu.au

DON’T

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Supervisors running the exam contact me only if there is an unexpected
situation, for example: obvious misprint in the exam paper, a page is
missing, a page is unreadable because of photocopying error, etc.
However they will NOT contact me with queries along the lines: “how do I
start answering this one?”, “what this question means?”, “what is the
meaning of life?” etc.

 DON’T fragment the answers to a single question

 I may not find all bits and pieces in your paper if they are written on
separate pages

 DON’T answer the questions in the paper order

 this order is NOT “from the easiest to the hardest”!

 Answering order: Q. 1, 2, 3… etc. is most likely not the best for you

 DON’T spend time on hard questions

 you may get bogged down on a single question

 and run out of time for other questions which could earn you marks

 DON’T copy parts from your materials hoping that it ‘may be close’ and
you have nothing to lose (this approach = mark 0)

mailto:j.yang@uws.edu.au

Deferred (Supplementary) Exam

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Only for students who had a genuine reason not to sit the final
exam (administration decides that, I do not)

 If you feel sick on the day (or have urgent matter/misadventure that
will really affect you in the exam), don’t sit/attempt the exam. Get
a doctor’s certificate (or consult student central) for a deferred exam.

 Special consideration will NOT be given to students who sit the exam
and then go to the doctor afterwards.

 It does not count if you suddenly start feeling sick after reading the
exam paper, because you realised you can’t answer any question.

 In the past deferred/supplementary was not harder than the final,
but:

 the failure rate was several times that of the final…

 The University admin is very strict with the deferred exam permissions
(again: it is not my decision who should be allowed to do the
supplementary exam).

GOOD LUCK!!!

mailto:j.yang@uws.edu.au

Recommended readings

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

