
Topics
 More on ISA

 RISC vs. CISC
 MIPS architecture

summary
 Intel architecture

 Interpret binary patterns
 Final examination

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 13: ISA and Assembly
> You should have learned a lot from this
unit, not only the technical part, but also
logical thinking.
> Understood the low level mechanics of
computer systems. Gained an insight into
SPIM and Computer Organisation.
> Laboratories were very helpful and
effective in assisting learning.
> Assembly programming reinforces
understanding of high-level programming
constructs.
> The unit is difficult to study and the
study load is heavy. You’ve learnt how to
actively work under a pressure in
workplaces.
> Much effort has been put on computer
organisation and design.

The Architecture family

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Architecture Modeling at different levels

RISC CISC
Implementation RISC directly in hardware CISC microprogrammed
Instruction sets Instructions are simple;

Load / Store architecture
Trend towards instruction
set similar to high-level
languages

Speed of execution faster in RISC (simpler
hardware)

Size of executable file smaller in CISC (less
memory used)

 Characteristics
 fixed size of instructions
 few instruction formats
 load/store (or: register-register) – moves data or operates on

data, NOT at the same time
 few addressing modes
 large number of general registers (operands are always in

registers)
 few (if any) hidden register usage

 Reduced
 not necessarily a small number of instruction
 but definitely simpler instructions

Reduced Instruction Set Computer (RISC)

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Complex Instruction Set Computer (CISC)

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Characteristics
 variable size instructions
 many instruction formats (varied no of arguments)
 many addressing formats
 small number of general registers (more related to technology)
 implied usage of special registers

 for example condition codes
 Complex

 a single instruction may execute a complex function
 for example a value of a polynomial function

 there is a large number of instructions

Intel history: ISA evolved since around 1970

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 4004 (released 1971)
 4-bit, US$299 each, 108Khz (developed for calculators, also used in various

controllers)
 8008 (1972)

 200Khz, Radio Electronics magazine describes Mark-8, 1st home computer
 8086 (1978)

 16-bit, all internal registers 16 bits; no general purpose registers, 5-10MHz
 8087 (1980)

 adds 60 FP instructions, adds 80-bit-wide stack, but no registers
 80286 (1982)

 adds elaborate protection model, address extended to 24 bits, 6-12.5MHz
 80386 (1985)

 32-bit; converts 8 16-bit registers into 8 32-bit general purpose registers;
new addressing modes; adds paging, 16-33MHz

Intel history cont.

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 80486(1989)
 + 17 new instructions, FP unit on the same chip, 25-50MHz

 Pentium, Pentium MMX (1993)
 MMX adds 57 instructions for multimedia, up to 233MHz

 P6 family (Pro, II, III) (1995)
 +70 instructions for multimedia, multiprocessing, up to 1.2GHz

 Pentium 4 (2000)
 +76 SIMD (former MMX) instructions, additional FP unit. May 2003: up to 3.06GHz.

Price for 2.8GHz approx. the same as 4004 in 1971.
 2003: Pentium 4 with Hyper-Threading technology

 Centrino mobile technology (2003)
 three components work together: low power consumption Pentium M CPU, wireless

LAN controller, and chipset
 Itanium, Itanium 2 processors family (current)

 64-bit computing platform, back compatible with 32-bit software
 Dual core models, multiple core models … (current)

MIPS vs. 80386 (32-bit)

 MIPS (RISC)
 Address: 32-bit
 Instruction size 32 bits
 Data aligned
 Destination reg: Left

add $rd,$rs1,$rs2
$rd=$rs1+$rs2

 Regs: $0, $1, ..., $31
 Reg = 0: $0
 Return address: $31

 Intel 80386 (CISC)
 32-bit
 Instruction size 1-17 bytes
 Data unaligned
 Right*

add %rs1,%rs2
%rs2=%rs1+%rs2

 %r0 (%eax), %r1, ..., %r7
 all have some special purpose
 implicit use in instructions

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Note that both also offer 64-bit architectures, not covered here.

*The GNU Assembler, gas, uses a different
syntax from what you will likely find in any x86
reference manual, and the two-operand
instructions have the source and destinations
in the opposite order.

MIPS vs. Intel 80x86

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS Intel 80x86
addu, addiu addl
subu subl
and,or, xor andl, orl, xorl
sll, srl, sra sall, shrl, sarl
lw movl mem, reg
sw movl reg, mem
mov movl reg, reg
li movl imm, reg
lui n.a.

 Instruction examples

Register

Immediate Memory

Operands

MIPS vs. Intel 80x86

 MIPS (also Alpha): “fixed-length instructions”
 All instructions same size, e.g., 4 bytes
 simple hardware performance
 branches can be multiples of 4 bytes

 X86 (also VAX): “variable-length instructions”
 Instructions are multiple of bytes
 small code size (30% smaller?)
 More Recent Performance Benefit: better instruction cache

hit rates
 Instructions can include 8- or 32-bit immediates

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS vs. Intel 80x86

 MIPS: “Three-operand architecture”
 Arithmetic-logic specify all 3 operands

add $s0,$s1,$s2 # s0=s1+s2
 Benefit: fewer instructions performance

 x86: “Two-operand architecture”
 Only 2 operands,
 so the destination is also one of the sources, for example:

add $s1,$s0 # s0=s0+s1; s0+=s1
 Often true in C statements: c += b;
 Benefit: smaller instructions smaller code

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS vs. Intel 80x86

 MIPS: “load-store architecture”
 Only Load/Store access memory; rest operations register-

register; e.g.,
lw $t0, 12($gp)
add $s0,$s0,$t0 # s0=s0+Mem[12+gp]

 Benefit: simpler hardware performance
 X86: “register-memory architecture”

 All operations can have one operand in memory; other
operand is a register; e.g.,

add 12(%gp),%s0 # s0=s0+Mem[12+gp]
 Benefit: fewer instructions smaller code

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

80386 addressing

 General format
base reg + index * scale + displacement

[displacement from 1 to 4 bytes long]
 Examples:

 base reg + offset (like MIPS)
movl -8000044(%ebp),%eax # eax = Mem[ebp - 8000044]

 base reg + index_scaled reg (like VAX)
movl (%eax,%ebx, 4),%edi # edi = Mem[ebx*4 + eax]

 base reg + index_scaled reg + offset
movl 12(%eax,%edx,4),%ebx # ebx = Mem[edx*4 + eax + 12]

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Branch in 80x86

 Rather than compare registers, x86 uses special 1-bit
registers called “condition codes” [flag] that are set as a side-
effect of ALU operations
 S - Sign Bit
 Z - Zero (if result is all 0)
 C - Carry Out
 P - Parity: set to 1 if there are even number of ones in

rightmost 8 bits of operation
 Conditional Branch instructions then use condition flags for all

comparisons: <, <=, >, >=, ==, !=

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

S=0 JNS Jump if positive number i.e. if sign bit is clear
S=1 JS Jump if negative number i.e. if sign bit is set
Z=0 JNE Jump if a-b not equal to 0 i.e. if Zero bit clear (Zero != 1)
Z=1 JE Jump if a-b equal to 0 i.e. if Zero bit is set (Zero == True)
C=0 JNC Jump if carry bit is clear (Jump if no carry)
C=1 JC Jump if carry bit is set

cmpl %ebx, %ecx
jne SkipStmts
incl %eax

SkipStmts:

- Z

Unusual features of 80x86

 Terminology
 16-bits called word (halfword in MIPS)
 32-bits double word or long word (word in MIPS)

 8 32-bit Registers have names - with “e” prefix (for Extended):
 eax (r0), ebx, ecx, edx, esp, ebp, esi, edi

 PC is called eip (instruction pointer)
 leal (load effective address - 32-bit)

 Calculate address like a load, but load address into register,
not data

 Load 32-bit address:
leal -4000000(%ebp),%esi # esi = ebp – 4000000

 Positive constants start with $; regs with %
 cmpl $999999,%edx

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Unusual features of 80x86

 loop is an instruction for programming loops
 it is a conditional jump instruction
 it uses the %ecx register as a count
 decrements %ecx, and jumps if not zero

 Memory Stack is part of instruction set
 call places return address onto stack, increments esp

(Mem[esp]=eip+6; esp+=4)
 push places value onto stack, increments esp
 pop gets value from stack, decrements esp

 inc[l], dec[l] (increment, decrement)
 incl %edx #edx = edx + 1
 Benefit: smaller instructions smaller code

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Unusual features of 80x86

 Floating point uses a separate stack (fpstack*)
load/push operands; perform operation (e.g. sub); store/pop result

flds -8000048(%ebp)
push M[ebp-8000048]

fildl (%esp)
fpstack = M[esp],
convert integer to FP

fsubp %st,%st(1)
subtract top 2 elements

fstps -8000048(%ebp)
M[ebp-8000048] := difference

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

*Intel has actually created three separate
generations of floating-point hardware for
the x86.
1) they started with a stack-oriented FPU
modeled after a pocket calculator in the
early 1980's;
2) started over again with a register-based
version called SSE in the 1990's; and
3) have just recently created a three-input
extension of SSE called AVX.

And in Conclusion ...

 Once you’ve learned one RISC instruction set, easy to pick up
the rest
 ARM, Compaq/Digital Alpha, Hitachi SuperH, HP PA,

IBM/Motorola PowerPC (Apple Mac), Sun SPARC, ...
 Intel 80x86 is a different thing all together ...
 RISC emphasis: performance, HW simplicity
 CISC emphasis: code size
 Intel x86:

 very long lived
 many additions not necessarily well fitting with the original

design
 BUT: distinction between “RISC” and “CISC” is often blurred,

both architectures often use similar solutions

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Interpretation of binary patterns

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 What does this bit pattern mean:
 878,003,010?
 “4UCB”?
 2.034*10-4?
 ori $s5, $v0, 17218?

0 0 1 00 1 0 00 0 1 10 1 0 00 1 0 10 1 0 10 1 0 00 0 1 1

0x34554342

 If a memory location contains
this pattern, can its meaning
be determined?
 In other words: What is

the type of data?

 Side-effect of stored program concept: instructions stored as
numbers

 Power/danger of unrestricted addresses/pointers:
 Use ASCII as FP, instructions as data, integers as instructions,

... (Leads to security holes in programs, errors, etc.)

 Operation on instruction that accesses operand determines its type!

Data types in MIPS

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 The interpretation depends on the context
 unsigned binary number
 signed binary number
 floating point number
 a half of a double precision FP number
 collection of 4 bytes
 collection of 2 halfwords
 collection of 32 bits
 an instruction

 An unsigned integer
 Addu

 A signed integer
 add

 FP number
 add.s

 FP double precision
 add.d

 An 8 bit field
 lb, sb

 A 16 bit field
 lh, sh

 32 bits
 xor

When is it an integer number

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 If it is used in integer calculations
 we are talking about values here not representation

 the integer numbers in MIPS are always represented as
binary numbers
 MIPS has no instructions to handle integer values represented in

any other way

When is it a string of characters

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 From “raw” hardware point of view NEVER
 there are no instructions in the MIPS instruction set which are

specifically provided for handling characters
 there are instructions which can handle single bytes
 a single byte may be an ASCII character, but it may also be an

EBCID character (IBM standard), a pixel or anything else which
fits into 8 bits

 From the OS point of view
 there are OS services specifically provided for handling

characters and character strings
 a single byte is a character if it is handled as a character

 From an application program point of view
 other interpretations are possible

When is it an instruction

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 From “raw” hardware point of view
 if its address is loaded into PC

 With memory allocation conventions
 if it is in the text segment of memory

 MIPS only knows it is an instruction if it is used as an
instruction
 there is nothing inherent in the bit pattern which makes it an

instruction, or anything else

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 17 18 8 0 32

Encode instruction

 Three instruction format: R, I, J

Lecture 03 23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Instruction assembling that converts mnemonic format to machine
code

R-type instruction: add $t0, $s1, $s2
rtrsrd

18178

op rs rt rd shamt funct

[mnemonic]

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

[assembled]add

0 2 3 2 4 0 2 00x
bin
dec

see HP4, P134; instruction decoding.pdf













Name ID Value
$zero $0 0 unchangeable
$t0 $8 can be 8; but changeable

Decode instructions

Lecture 03 24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0x02324020 0x34020005

see HP4, P134; instruction decoding.pdf

A50

Assembly language vs HLL

 Assembly language
 very simple instructions
 one instruction per line
 programs difficult to

understand
 registers and memory

locations
 cannot enforce data types,

depends on instruction
 total control of register

usage
 unrestricted use of

instructions (hardware
specific features)

 High level language
 statements
 statements expand to many

instructions
 programs easier to

understand
 simple variables, arrays,

structures
 can enforce data types (if no

pointers)
 register usage determined by

the compiler
 only what is allowed to

compiler

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Big issues - cost / performance

 Programming in assembly language takes more time
 productivity (constant no of lines per day)
 more errors (programs longer, more cryptic, no type

enforcement)
 Maintaining assembly language program is harder

 same reasons as above
 few skilled programmers

 Higher run-time performance
 was true before optimising compilers available
 still possible for short sections
 requires great skill
 improvements in algorithm more important

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

So why use it at all?

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Embedded systems
 If no compiler is available
 Operating systems

 require direct access to all available resources (physical
memory and I/O devices, privileged registers and
instructions)

 commonly only small parts of OS in assembly language
 Maintenance of existing programs

 so called legacy software
 may be preferable to rewriting in a high level language

 … …

FINAL EXAM

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 OPEN BOOK exam; Max. total mark is 50 (and
counts for 50% of total mark)
 All printed materials, books, handwritten or

printed notes are allowed. Laptops and
Calculators are NOT allowed.

 Similar in nature to written submissions for the
workshops and exercises from lectures
 Requires understanding of concepts, not

memorizing facts
 Each question may have a number of sub-

questions
 May require simple arithmetic

 but: arithmetic mistakes are not deadly
 it is more important to show how you arrived

at the numerical answer, then to give final
numerical answer.

The Thinker
Rodin 1840-1917

DO

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 BEFORE the exam: try to solve sample exam questions placed on
vUWS; exam questions are always somewhat similar.

 During final exam, attempt to answer all questions
 Answer questions from the easiest to the hardest

 the exam questions are not printed in any particular order
 number your answers (e.g. Q1.(b).ii.), so I know which

question you are answering
 Bring only printed materials you are familiar with

 your own notes, and annotated lecture notes
 your own written workshop submissions
 the textbook you used for studying
 no calculators are needed, laptops (with or without wireless

LAN) are NOT allowed, miniature radio transmitters/receivers
are also not allowed.

DON’T

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Supervisors running the exam contact me only if there is an unexpected
situation, for example: obvious misprint in the exam paper, a page is
missing, a page is unreadable because of photocopying error, etc.
However they will NOT contact me with queries along the lines: “how do I
start answering this one?”, “what this question means?”, “what is the
meaning of life?” etc.

 DON’T fragment the answers to a single question
 I may not find all bits and pieces in your paper if they are written on

separate pages
 DON’T answer the questions in the paper order

 this order is NOT “from the easiest to the hardest”!
 Answering order: Q. 1, 2, 3… etc. is most likely not the best for you

 DON’T spend time on hard questions
 you may get bogged down on a single question
 and run out of time for other questions which could earn you marks

 DON’T copy parts from your materials hoping that it ‘may be close’ and
you have nothing to lose (this approach = mark 0)

Deferred (Supplementary) Exam

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Only for students who had a genuine reason not to sit the final
exam (administration decides that, I do not)
 If you feel sick on the day (or have urgent matter/misadventure that

will really affect you in the exam), don’t sit/attempt the exam. Get
a doctor’s certificate (or consult student central) for a deferred exam.

 Special consideration will NOT be given to students who sit the exam
and then go to the doctor afterwards.

 It does not count if you suddenly start feeling sick after reading the
exam paper, because you realised you can’t answer any question.

 In the past deferred/supplementary was not harder than the final,
but:
 the failure rate was several times that of the final…

 The University admin is very strict with the deferred exam permissions
(again: it is not my decision who should be allowed to do the
supplementary exam).

GOOD LUCK!!!

Recommended readings

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

