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Lecture 12: Pipelining
For a program with 100 billion
instructions, Execution Time = ?…

add $s0, $s2, $s3
and $t0, $s0, $s1
or $t1, $s4, $s0
sub $t2, $s0, $s5
…

Pipelining is Natural! Laundry Example
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 Use case scenario
 Ann, Brian, Cathy, Dave
 each has one load of clothes to 

wash, dry, fold, and put away

 Load parameters

Step Device Cycle
1 Wash Washer 30 min
2 Dry Dryer 30 min
3 Fold Folder 30 min
4 Put 

away
Stasher (put 
clothes into 
drawers)

30 min 

wash

dry

fold

put 
away

30 min

 Efficient organisation?

Washer

Dryer

Folder

Stasher

Sequential Laundry
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 Sequential laundry takes 8 hours for 4 loads

Pipelined Laundry: Start work ASAP
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 Pipelined laundry takes 3.5 hours for 4 loads!

Pipelining Lessons (Task, Resource)
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 Potential speedup = Number of 
pipe-stages (Pipeline depth)
 Ideal could be: 

8hrs/2hrs=4
 Time to “fill” pipeline and time 

to “drain” reduce speedup:
 Speedup in this example: 

8hrs/3.5hrs=2.3

{Wash, Dry, Fold, Stash}

 A way to parallelize: a load consists of multiple sub-tasks operating 
simultaneously using different resources (hardware equipments)

 Pipelining in parallel: a load is processed over multiple steps (called 
pipeline “stages” or “segments”) using corresponding tools in parallel

 Pipelining doesn’t help latency of single task; it helps throughput
of entire workloads

Pipelining Lessons (Time cycles)
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 Suppose new Folder takes 20 
minutes, new Stasher takes 
20 minutes. How much faster 
is pipeline?
/* see the last slide for answer */

 Pipeline rate is limited by the 
slowest pipeline stage

 Unbalanced lengths of pipe 
stages reduces speedup
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Steps in Executing MIPS instruction
instruction stages and hardware resources
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IF
IM

ID
RF

EX
ALU

DM
WB
RF

1) IF: Instruction Fetch (PC -> memory)
Hardware: Instruction Memory (IM)

2) ID: Instruction Decode (Read Registers)
Hardware: Register File [read] (RF)

3) EX: Execute (Perform Operation)
Hardware: ALU

4) MEM: Memory Access (for data)
Hardware: Data Memory (DM)

 Load: Read Data from Memory
 Store: Write Data to Memory

5) WB: Write Back (Write Data to Register)
Hardware: Register File [write] (RF)

To simplify pipeline, every instruction takes the same pipeline depth 
(even if not needed; unused stages are NOP.); every stage has the same length.

Pipelined Execution Representation
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Single-Cycle

Pipelined

So the latency is ____ ps; Time between instructions is ____ps

add $s0, $s2, $s3
and $t0, $s0, $s1

Sequential

/* see the “Revision and quiz” slide 
for answer */

 Pipeline stages not balanced perfectly:
instructions take the same pipeline depth; some instructions have NOP stages;

every stage has the same length as the longest.

So the latency is ____ ps; Time between instructions is ____ps950 950



Time (cycles)

lw  $s2, 40($0) RF 40

$0
RF

$s2
+ DM

RF $t2

$t1
RF

$s3
+ DM

RF $s5

$s1
RF

$s4
- DM

RF $t6

$t5
RF

$s5
& DM

RF 20

$s1
RF

$s6
+ DM

RF $t4

$t3
RF

$s7
| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw  $s6, 20($s1)

or  $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM
lw

sub

and

sw

or

Pipelining Abstraction
instruction stages and hardware resources
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IM: Instruction Memory
RF: Register File
DM: Data Memory

the 2nd half of 
the cycle

the 1st half of 
the cycle

To simplify pipeline, every instruction takes the same pipeline depth 
(even if not needed; unused stages are NOP.); every stage has the same length.

Pipelined Datapath
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Pipeline registers

 State transition: need for propagating state at the end of every stage to push 
the instruction through the pipeline. 

 Pipeline registers: add registers between every two stages (used as state 
elements)

IF/ID ID/EX EX/MEM MEM/WB

Pipeline registers
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 Pipeline registers separate pipeline stages 
 Names of registers: names of two stages they separate

IF/ID, ID/EX, EX/MEM, MEM/WB. Why no register WB/IF? 
 Wide enough to store all data (and control signals) passed between stages

Problems for Pipelining
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 Limits to pipelining: hazards prevent next instruction from 
executing during its designated clock cycle

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

A

B

C

D

 Data hazard: B, C, D depends on the result of A. 
 Possible solutions to data hazard :

Static Dynamic
Insert nops in code at compile time
Rearrange code at compile time

Forward data at run time
Stall the processor/pipeline at run time

Pipeline Hazards (conflicts)
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 Limits to pipelining: hazards prevent next instruction from 
executing during its designated clock cycle

Data hazards
[intermediate input]

Instruction depends on the result of prior 
instruction that is still in the pipeline

Structural hazards Attempt to use the same resource in two different 
ways at the same time; hardware cannot support a 
particular combination of instructions.

Control hazards

[decision making]

Pipelining of branches & other control instructions 
stall the pipeline until the next value of PC is known



Single Memory is a Structural Hazard
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 Each instruction is fetched from memory
 30% of instructions are load or store
 Not possible to access same memory twice in same clock pulse

Structural Hazards and Solutions
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 Example:
 Each instruction is fetched from memory = ______
 30% of instructions are load or store = ______
 Total no. of accesses calculated per cycle = ____
 Total no. of accesses expected per cycle = ___

 Solution:
 level 1 cache is split into:

 instruction cache: I-Cache, and
each instruction needs one read from I-cache

 data cache: D-Cache
30% instructions need access to D-cache

 we can maintain CPI of 1

memory access
memory access

no duplicated rsc

/* see the “Revision and quiz” slide 
for answer */

Data hazards
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Time (cycles)

add $s0, $s2, $s3 R F $s3

$s2
R F

$s0
+ D M

R F $s1

$s0
R F

$t0
& D M

RF $s0

$s4
R F

$t1
| D M

R F $s5

$s0
RF

$t2
- D M

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

nop

nop

RF R FD Mnop
IM

R F RFD Mnop
IM

9 10

 Later instructions use the results of the earlier instructions (attempt 
to use an item before it is ready)

 Solution: Compile-Time Hazard Elimination
 Insert enough nops for result to be ready
 Or find other instructions which will logically fit between add and 

subsequent instructions (move independent instructions forward)



Data hazards
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Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

 Issue: The subsequent instructions need this value $s0 earlier
 ADD gets value of $s0 after which stage? ________________
 AND needs before its stage _____; OR in stage _____; SUB in stage _____

 Solution: Dynamic Hazard Elimination
 Data forwarding: the result can be passed directly to the functional 

unit which needs it.

/* see the “Revision and quiz” slide for answer */

Data Forwarding
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 Forward result to EX stage of subsequent instructions from either:
 Memory stage or Writeback stage of ADD
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CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
W E3

A2

CLK

Sign
Extend
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add $s0, $s2, $s3
and $t0, $s0, $s1
…    (rd)  (rs)  (rt)

SrcA
SrcB

Forwarding can fail where result is not ready
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Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

lw gets value of $s0 in the which stage? ________________

T im e  (cyc le s )

lw $s0, 40($0) R F 40

$0
R F

$s0
+ D M

R F $s1

$s0
R F

$t0
& D M

R F $s 0

$s 4
R F

$t1
| D M

R F $s 5

$s 0
R F

$t 2
- D M

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

an d

IM

IM

IM

IM
lw

or

su b

9

R F $s1

$s0

IM
or

S ta ll

Must delay/stall instruction (“pipeline bubble”)

Data hazards in Memory
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 So far we considered data hazards limited to registers
 There may also be data hazards in memory

 A cache miss may delay load or store instruction
 Store and load instructions on the same address too close in time 

 Name dependency: only happens to use the same name
 Three categories: Classification depending on order of reads and writes:

 RAW read after write
 WAR write after read
 WAW write after write

 Solutions
 some machines enforce memory accesses strictly in program order

 this affects pipeline performance
 some allow a different order

 in general more hardware is required for control

What about RAR read after read?

Data hazards in Memory: RAW, WAR
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 RAW: Write may not complete before read is attempted
 This is the most common type of data hazard

 It is created by the logic of the program 
 Obviously a value must be computed before it is used.

 Forwarding can be used to overcome this hazard

 WAR: the location is overwritten before read is completed
 This type of data hazard is rare (Antidependences)

 This can only occur if results are written early in the pipeline and 
operands are read late in the pipeline. (only complex addressing 
modes require operands to be read late in the pipeline.)

 Register renaming can be used to overcome this hazard
 A large no of architecture registers reduces name dependencies.

Control hazards
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 Instructions in the pipeline are fetched in order of the program
 This flow would change when there is a branch, or a 

procedure call
 Branch penalty: The pipeline has to stall until the address of the 

next instruction is determined
 Resolve the condition of the branch

 conditional branch only
 Calculate branch address

 conditional branch
 unconditional branch
 return from procedure

 In our pipeline
 When is branch address calculated? ___________________
 When is condition evaluated? __________________
 What resources are used? _____________

EX stage (stage 3)
ID stage (stage 2)

[Adder], ALU

Control hazards
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 Solutions
 [Stall when branch decoded]: 3 cycles lost per branch! (too 

much waste as there are ~30% branch instructions)
 Delayed branches: execute instructions not dependent on 

branch direction before the address is resolved
 Predict Branch Not Taken (e.g. for selections): 

 47% branches not taken on average
 Execution continued down the sequential path
 If branch taken, “squash/cancel” instructions in pipeline

 Predict Branch Taken (e.g. for loops): 
 53% MIPS branches taken on average
 Can’t proceed until we know the branch address (ID stage)

 Sophisticated branch prediction: execute the “more likely” 
stream of instructions, and undo if guessed wrongly

Control hazards
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 Delayed branches
 Compilers move instruction that has no conflict with branch into delay slot

 Fills about 60% of branch delay slots
 About 80% of instructions executed in branch delay slots useful in 

computation
 48% (60% x 80%) of slots usefully filled

 Where to get branch delay slot instructions?
 Before branch instruction
 From fall through

only valuable when branch-not-taken
 From the target address

only valuable when branch-taken

Original sequence
add    $4 $5 $6
beq $1 $2 40

Reordered to this
beq $1 $2 40
add    $4 $5 $6



T im e (cyc le s)

beq $t1, $t2, 40 R F $ t2

$ t1

R F- D M

R F $ s1

$ s0
R F& D M

R F $ s0

$ s4

R F| D M

R F $s5

$s0

R F- D M

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

a nd

IM

IM

IM

IM
lw

or

s ub

20

24

28

2C

30

...

...

9

F lu sh
the se

ins tru c tio n s

64 slt $t3, $s2, $s3 R F $s3

$s2
R F

$ t3s
l
t D MIM

slt

Control hazards
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 Predict-not-taken branch
 Execute successor instructions in sequence

 PC+4 already calculated, so use it to get next instruction
 This scheme is simplest to implement

 “Squash” instructions in pipeline if branch taken
 the instructions in IF, ID and EX stage are discarded
 nothing has been written so far

Control hazards
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 Predict-taken branch (Early Branch Resolution)
 Can’t proceed until we know the branch address (ID stage)

 MIPS still incurs one cycle branch penalty
[Penalty now is only one lost cycle]

 Makes sense if
 branch conditions are more complex and take longer to calculate

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DMand $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and
IM

IM
lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3s

l
t DMIM

slt

Control hazards
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 Static branch prediction
 can be performed by the compiler by hinting

 all forward branches not-taken
 all backward branches (loops) as taken
 unrolling loops to decrease the frequency of branches

 can be based on program traces
 for frequently executed programs we can determine which branches 

are more likely to be taken, and which more likely to be not taken
 Dynamic branch prediction

 Prediction is based on the run-time behaviour of the program
 Behaviour of the branch
 Behaviour of the preceding branches

 Requires additional hardware to store this information
 Branch Prediction Buffer
 Branch History Table

Branch Prediction Buffer
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 A table indexed by the lower portion of the address 
of the branch instruction
 Contains one bit per entry:

 recently taken or not taken
 like a cache but every access is a hit

 The prediction MAY NOT be for the branch currently executed
 it depends how many entries in the table
 more entries -> more hardware -> slower

 start branch execution according to the prediction
 if prediction correct – continue
 if prediction incorrect

 invert the prediction bit and store in the table
 cancel partially executed instructions
 start the proper sequence of instructions

[0x00400028] beq $t1,$t2,L

States in 1-bit prediction scheme
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 Performance for loops
 one misprediction on the last 

execution of the loop
 one misprediction on the first 

execution of the loop (previous 
execution of this loop ended with 
branch not taken)

 for example if the loop executed 
10 times: 80% accuracy

 For less regular branches
 much lower accuracy
 may even be zero if the branch is 

alternately: not taken - taken

T

T

NT

NT

Feedback

1
Taken

0
Not Taken

A loop of 10 iterations before exit:
// … …

for (i=0; i<10; i++)
a[i] = a[i] * 2.0;

States in 2-bit prediction scheme
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 Finite state automaton
 the 2-bit value is a saturating 

“counter”
 increment on “taken”
 decrement on “not taken”

 Use 2 bits per entry instead of 
one

 Prediction must be wrong 
twice before it is changed
 if predicted taken

start execution at target as 
soon as target is known

 if predicted not-taken
continue sequential execution 
until direction

 Change prediction only if 
getting misprediction twice

Pipelined Performance Example
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 SPECINT2000 benchmark: 
 25% loads
 10% stores 
 11% branches
 2% jumps
 52% R-type

 Suppose:
 40% of loads used by next instruction
 25% of branches mispredicted
 All jumps flush next instruction

 What is the average CPI?
 Load/Branch CPI = 1 when no stalling, 2 when stalling.  Thus,

 CPIlw = 1(0.6) + 2(0.4) = 1.4
 CPIbeq = 1(0.75) + 2(0.25) = 1.25
 Average CPI = (0.25)(1.4) + (0.1)(1) + (0.11)(1.25) + (0.02)(2) + 

(0.52)(1) = 1.15

For a program with 100 billion
instructions, Execution Time = ?

The rest is for self-study

Pipelined Performance Example
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 Pipelined processor critical path: 
 Tc = 2(tRFread + tmux + teq + tAND + tmux + tsetup ) = 

2[150 + 25 + 40 + 15 + 25 + 20] ps = 550 ps

Pipelined processor critical path

Tc = max

1) Fetch tpcq + tmem + tsetup

2) Decode 2(tRFread + tmux + teq + tAND + tmux + tsetup) 2*half cycle
3) Execute tpcq + tmux + tmux + tALU + tsetup

4) Memory tpcq + tmemwrite + tsetup

5) Writeback 2(tpcq + tmux + tRFwrite) 2*half cycle



Pipelined Performance Example

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 For a program with 100 billion instructions executing on a pipelined 
MIPS processor,
 CPI = 1.15
 Tc = 550 ps

 Execution Time = (# instructions) × CPI × Tc
= (100 × 109)(1.15)(550  × 10-12)
= 63 seconds

 What is speedup?

Summary
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 Pipelining is a fundamental concept
 Multiple steps using distinct resources
 Exploiting parallelism in instructions

 What makes it easy? (MIPS vs. 80x86)
 All instructions are the same length

simple instruction fetch
 Just a few instruction formats

read registers before decode instruction
 Memory operands only in loads and stores

fewer pipeline stages
 Data aligned 1 memory access / load; 1 memory access / store

 What makes it hard?
 Structural hazards: suppose we had only one cache?

Need more HW resources
 Control hazards: need to worry about branch instructions?

Branch prediction, delayed branch
 Data hazards: an instruction depends on results of a previous instruction?

need forwarding, compiler scheduling

Revision and quiz
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 … How much faster is pipeline (slide 6)? Answer: 20min

 So the latency is ____ ps; Time between instructions is ____ps
 List the steps for executing MIPS instructions through pipelining 

datapath. In addition, what functional hardware components are 
used?

 There are three types of pipeline hazards, what they are?
 … answer (slide 15):

 … answer (slide 17):

 With the delayed branch strategy, getting instructions from ‘fall 
through’ is one solution. This solution is valuable only when branch-
not-taken.
1) True 2) False

1250 250

Recommended readings
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Text readings are listed in Teaching 
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check 
whether eBook available on library site 

PH6: companion materials (e.g. online 
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online 
sections for further readings) 
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263


