
Topics

Design a single cycle processor: step-by-step

 Requirements of the instruction set

 Assembling a datapath using 

 Functional units

 Other combinational and sequential elements

 Designing and assembling control
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Lecture 11: Single Cycle Processor

Datapath
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Instruction Set and Functional Units

Computer Architecture = Instruction Set Architecture + Machine Organisation
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Instruction set architecture defines: Organisation defines:

Organisation of Programmable Storage

Data Types & Data Structures:
Encodings & Representations

Instruction Set:
Instruction Formats
Modes of Addressing

i.e. Accessing Data Items 
and Instructions

Exceptional Conditions

Capabilities & Performance

Characteristics of Principal 
Functional Units

(e.g., Registers, ALU, Logic    
Units, ...)

Interconnection of components

Information flow between 
components

Means by which such information 
flow is controlled
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How to Design a Processor: step-by-step

1. Analyse instruction set  datapath requirements

 the meaning of each instruction is given by the register 
transfers (we use Verilog notation for RTL - Register Transfer 
Language)

 datapath must provide storage

 and datapath must support transfer

2. Select a set of datapath components and establish clocking 
methodology

3. Assemble datapath to meet the requirements

4. Analyse implementation of each instruction

 to determine setting of control points that trigger the register

5. Assemble the control logic
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Logical Register Transfers
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inst Register Transfers

ADD R[rd] ⇐ R[rs] + R[rt] PC ⇐ PC + 4

SUB _______________________________________________________

OR _______________________________________________________

SLT if ( R[rs] < R[rt] ) then R[rd] ⇐ 1 else R[rd] ⇐ 0 PC ⇐ PC + 4

LOAD R[rt] ⇐ MEM[ R[rs] + sign_ext(Imm16) ] PC ⇐ PC + 4

STORE _______________________________________________________

BEQ if ( R[rs] == R[rt] ) then 
PC ⇐ (PC + 4) + (sign_ext(Imm16) || 00)

else PC ⇐ PC + 4

JUMP PC ⇐ (PC+4)[31,28] || target || 00
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Step 1: Requirements of the Instruction Set

 Memory

 instruction & data (has to be separate in a single cycle datapath, can’t 
have two reads from one memory) 

 Registers

 (32 x 32) - read rs, read rt, write rt or rd

 PC

 add 4

 add 4 and extended immediate (shifted left by 2)

 add 4 and concatenate PC[31,28] || target || 00

 Sign Extender

 To extend a 16-bit field to 32 bits

 Add, Sub, AND, OR operation (ALU)

 two registers or

 extended immediate and register

 Compare two registers

 also a function of ALU
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Step 2: Components of the Datapath

 Storage Elements

 register file (32 registers with 32 bits each) 

 PC (32-bit register) 

 instruction memory (32-bit words)

 data memory (32-bit words)

 Combinational Elements

 Adders

 ALU

 sign extender

 MUX’s

 Clocking methodology for storage (sequential) elements
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M
u
x
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Step 3: Assembling datapath

 Register Transfer Requirements for each instruction  Datapath 

Assembly

 have to provide paths to enable transfers

 For example:

 PC ⇐ (PC + 4) + (sign_ext(Imm16) || 00)

 needs a path from sign extender to PC and a path from output 
of PC to input of PC 

 For running instructions 

 Instruction Fetch and Read Operands

 Are the steps the same for each instruction?

 Execute Operation and Store results

 Are the steps the same for each instruction?
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3a: Overview of the Instruction Fetch Unit

 The common register transfer operations

 Fetch the instruction using the Program Counter (PC) at the 
beginning of an instruction’s execution

 Update the program counter at the end of the instruction’s 
execution

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction
memory

PC

Next Address
Logic

State
elements

Combinational
elements

I-MEM[PC]
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3b: Add, Subtract, logical, SLT

 R[rd] ⇐ R[rs] op R[rt] Example: add rd, rs, rt
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32 x 32-bit
Registers

Instruction from instruction memory - Mem[PC]

Opcode rs rt rd shamt funct

31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

A
L
UClock

RegWrite

ALUctr

rr1 rwrr2

o MARS X-Ray shows the execution process dynamically.
o Logisim or logisim-evolution is also a good software to visualise execution stages over datapath.
o The MIPS simulator at https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/index.html is also interesting.

mailto:j.yang@uws.edu.au
https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/index.html


RegWrite

 This control signal is asserted for all instructions which write to a 
register

 all arithmetic and logical, load instruction

 It has to be negated (no write to register) for all others

 branch on equal, jump, store instruction 

 RegWrite AND Clock 

 Register is only written on clock edge
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RegWrite ⇐ if ((op== Store) || (op==BEQ) || (op==JUMP)) then 0 

else 1

32 x 32-bit
Registers

Clock

RegWrite

result
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ALUctr

 The ALU control signal selects the operation in the ALU

 ALU 3-bit control input

000 AND

001 OR

010 ADD

110 SUB

111 SLT (set-on-less-than)

 For LW (load) and SW (store) ALU is used to calculate the address

 What operation is used?

 On BEQ (branch on equal) ALU is used to perform subtraction

 why subtraction?
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R[rt] ⇐ MEM[ R[rs] + sign_ext(Imm16) ]

a = b means (a – b) = 0
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ALU Control Unit

 The ALU operation is determined by:

 The ALU Control Unit

 Its output is: ALUctr control signal

 How many bits are needed? 

 How about its input? 
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31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ALU
Control

unit

ALUctr

Opcode rs rt rd shamt funct
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Computing ALUctr

 Multiple level of decoding

 two bit ALUOp determined from opcode (bits 31-26):
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00 = lw, sw - always add
01 = beq - always subtract
10 = R-type - funct (bits 5-0) used to define operation

ALUOp Funct field Operation 
code

(ALUctr)

Operation 
nameALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 010

0 1 x x x x x x 110

1 x x x 0 0 0 0 010

1 x x x 0 0 1 0 110

1 x x x 0 1 0 0 000

1 x x x 0 1 0 1 001

1 x x x 1 0 1 0 111

lw/sw

beq

R-Type
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ALU Control Unit
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Control
Level 1

Control
Level 2

(ALU Ctl)

opcode

function

From
instruction
word

ALUOp0

ALUOp1

Control Unit

ALUctr

To ALU

31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Opcode rs rt rd shamt funct
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3c: Load Operation
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31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Instruction: lw rt, rs, imm16

Address: R[rs] + SignExt[imm16]

Register transfers: R[rt] ⇐ Mem[R[rs] + SignExt[imm16]]

Opcode rs rt Imm 16

Two bit ALUOp: 00 = lw, sw - always be translated into ‘add’

ALUOp Funct field Operation 
code

(ALUctr)

Operation 
name

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 010 [ADD]
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Datapath for Load Operation
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We use shorthand
notation for write
signals by not
showing the clock.

Opcode rs rt

31 26 21 16 11 6 0

Imm 16

M
u
x

M
u
x

sign
extend

M
u
x

MemtoReg

MemRead

ALUctr
ALUsrc

RegWrite

imm16

RegDst

rd

rt

rs

3

16 32

Opcode rs rt

0

1

0

1
0

1
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Control signals for lw
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 Also needed

 RegWrite ⇐ ((op== Store) || 

(op==BEQ) || (op==JUMP)) ? 
0 : 1

 Same as for R-type 
instructions

 ALUctr

 Same as for R-type 
instructions

 All other Write control signals 
deasserted

 New signals

 RegDst

 for load, destination register is rt

 unlike in R-type instructions

 the MUX is used to select

 ALUsrc

 for load, the source of the second ALU 
input is sign-extended immediate value

 the MUX to select between the above 
and readRegister2

 MemRead

 the ALU output is used as an address 
for data memory

 MemtoReg

 selects memory as the source for 
register write

 unlike all R-type instructions

 The MUX to select between memory 
and ALU output

⇐ (op == Load) ? 1 : 0

⇐ (op == Load) ? 1 : 0

⇐ (op==R-Type || op==BEQ) ? 0 : 1

⇐ (op == R-Type) ? 1 : 0
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3d: Store Operation
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31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Instruction: sw rt, rs, imm16

Address: R[rs] + SignExt[imm16]

Register transfers: Mem[ R[rs] + SignExt[imm16] ] ⇐ R[rt]

Opcode rs rt Imm 16

Two bit ALUOp: 00 = lw, sw - always ‘add’

ALUOp Funct field Operation 
code

(normalized)

Operation 
nameALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 010 [ADD]
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Datapath for Store Operation
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Opcode rs rt

31 26 21 16 11 6 0

Imm 16

M
u
x

M
u
x

sign
extend

M
u
x

MemtoReg

MemWrite

ALUctr
ALUsrc

RegWrite

imm16

RegDst

rd

rt

rs

3

0

1

0

1
0

1
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Control signals for sw

 New signals MemWrite

 if asserted

 the content of register rt is written 
to memory at the address 
calculated by the ALU

 if not asserted (as in ALL other 
instructions)

 the content of memory does not 
change

 MemWrite AND Clock
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 Also needed

 ALUctr

 Same as for R-type 
instructions

 ALUsrc

 Same as for lw to 
calculate the address

 All other Write control signals 
deasserted

Why do we need
MemWrite?

⇐ (op == Store)
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3e: The Branch Instruction
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Opcode rs rt Imm 16

31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Operation:
Zero ⇐ R[rs] == R[rt]

if (Zero)
PC ⇐ PC + 4 + ( SignExt(imm16) << 2 )

else
PC ⇐ PC + 4

Instruction: beq rs, rt, imm16
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Datapath for Branch Operations
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beq rs, rt, imm16 Datapath generates condition (zero)

Instruction
Memory

Add

PC ALU

Sign
Extend

Read
Address

Instruction

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

ALU control

RegWrite

16 32

Register

File

Read
Data 1

Read
Data 2

ALUSrc

M
u
x

Shift 
left 2

Add

M
u
x

PCSrc

condition 
generated
in datapath

Zero

0

1

0

1

o MARS X-Ray shows the execution process dynamically.
o Logisim or logisim-evolution is also a good software to 

visualise execution stages over datapath.
o The MIPS simulator at 

https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/in
dex.html is also interesting.
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 New signals

 Branch

 So we know it is branch 
instruction. Once ALU 
operation is complete it will be 
used to produce PCsrc

 Zero

 Produced by ALU if ALU result 
is zero ie. Registers are equal 
when subtracted

 PCsrc

 PCsrc := Zero AND Branch 
meaning that PCsrc is asserted 
if it is a Branch instruction and 
ALU result is zero (Zero = 1 
signal is true)

Control signals for branch
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 Also needed

 ALUctr

 Same as for R-
type instructions 
to enforce 
subtraction

 All Write control 
signals deasserted

⇐ (op == BEQ)
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Putting it All Together: A Single Cycle Datapath

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr [15-0]

Instr[25-21]

Instr[20-16]

Instr 
[15-11]

Control
Unit

Instr[31-26]

Branch



What about JUMP?
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j target
Opcode

31 26 0

6 bits 26 bits

Read
Address

Instruction
Memory

Add

PC

4

PCSrc
(select cond.

branch)

0

1

Shift 
left 2

1

0

From ALU
(branch target)

JUMP
(select

jump target)

Operation:
PC ⇐ (PC + 4)<31,28> || target || 00

 New signal

 JUMP

 Selects JUMP address

 All Write signals in the 
datapath de-asserted

26 28 32

PC+4[31-28]

PC+4
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Complete datapath

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr
[15-11]

Control
Unit

Instr[31-26]

Branch

Shift

left 2

0

1

Jump

32

Instr[25-0]

26
PC+4[31-28]

28

Jump address [31– 0]

Refer to FIGURE 4.24 



Step 4: Given Datapath: RTL  Control
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DATA PATH

CONTROL

Inst
Memory

<
3
1
:2

6
>

<
2
1
:2

5
>

<
1
6
:2

0
>

<
1
1
:1

5
>

<
0
:1

5
>

<
0
:2

5
>

<
0
:5

>
Instruction<31:0>

Branch(PCsrc)

RegWrite

RegDst

ALUSrc

ALUctr

MemWrite

MemRead

MemtoReg

Jump
Zero
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Complete control unit
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Control Unit

ALU
control
level 2

ALUOp0

ALUOp1

ALUctr 3 bits

RegWrite

MemRead

MemWrite

MemtoReg

RegDst

ALUSrc

PCSrc

Jump
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Jump ⇐ (op == Jump)

PCsrc ⇐ if (op == BEQ) then subject to Zero else 0

Branch ⇐ (op == BEQ)

PCsrc ⇐ Branch AND Zero

ALUsrc ⇐ if (op==R-Type || op==BEQ) then 0 (“reg2”) else 1 (“imm32”)

ALUctr ⇐ if (op == R-Type) then funct

elseif (op == BEQ) then “sub” else “add”

MemRead ⇐ (op == Load)

MemWrite ⇐ (op == Store)

MemtoReg ⇐ (op == Load)

RegWrite ⇐ ((op== Store) || (op==BEQ) || (op==JUMP)) ? 0 : 1

RegDst ⇐ (op == R-Type)

Step 5: Logic for each control signal
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Zero is the signal
from ALU
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Complete control unit
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Opcode rs rt rd shamt funct
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Control signal table
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Drawback of this Single Cycle Processor

 Execution Time = Insts * CPI * Cycle Time

 Processor design (datapath and control) will determine:

 Clock cycle time

 Clock cycles per instruction

 Single cycle processor:

 Advantage: CPI = 1

 Disadvantage: long cycle time
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Drawback of this Single Cycle Processor

 Long cycle time:

 Cycle time must be long enough for WHICH? instruction:

 If the cycle time is long enough for the longest instruction, it is long 
enough for all other instructions

 All instructions take as much time as the slowest.
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Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew (*)

(*) difference in time for clock signal to reach state elements
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Solution to single cycle problems

 Single Cycle Problems:

 What if we had a more complicated instruction like floating point

operation?

 Possible Solution:

 use a “smaller” cycle time

 have different instructions take different numbers of cycles

 a “multicycle” datapath in Pipelining
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Additional 

“internal” 

registers 
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Revision and quiz
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 It’s important to understand an instruction in its mnemonic format, 
encoding format, register transfer representation, and 
corresponding datapath assembling. Use Load operation as an 
example to illustrate your understanding.

 The following drawing is correct. 

1) True 2) False

 The sw instruction doesn’t write any registers.

1) True 2) False
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Recommended readings
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Text readings are listed in Teaching 
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check 
whether eBook available on library site 

PH6: companion materials (e.g. online 
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online 
sections for further readings) 
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263
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