* Lecture 11: Single Cycle Processor
|

Topics

Design a single cycle processor: step-by-step

= Requirements of the instruction set
= Assembling a datapath using
= Functional units

= Other combinational and sequential elements

= Designing and assembling control

Iy

Datapath

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Step 1: Requirements of the Instruction Set

Memory
= instruction & data (has to be separate in a single cycle datapath, can't
have two reads from one memory)
Registers
» (32 x32) -read rs, read rt, write rt or rd
PC
= add 4
= add 4 and extended immediate (shifted left by 2)
= add 4 and concatenate PC[31,28] || target || 00
Sign Extender
« To extend a 16-bit field to 32 bits
Add, Sub, AND, OR operation (ALU)
= two registers or
= extended immediate and register
Compare two registers

= also a function of ALU
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction Set and Functional Units

Computer Architecture = Instruction Set Architecture + Machine Organisation

Instruction set architecture defines:

Organisation defines:

Organisation of Programmable Storage

Data Types & Data Structures:
Encodings & Representations

Instruction Set:
Instruction Formats
Modes of Addressing
i.e. Accessing Data Items
and Instructions
Exceptional Conditions

Capabilities & Performance

Characteristics of Principal
Functional Units
(e.g., Registers, ALU, Logic
Units, ...)

Interconnection of components

Information flow between
components

Means by which such information
flow is controlled

Computer Organisation COMP2008, Jamie Yang: .yana@westernsydney.edu.au

Step 2: Components of the Datapath

Storage Elements

= register file (32 registers with 32 bits each)
= PC (32-bit register)

= instruction memory (32-bit words)

= data memory (32-bit words)

Combinational Elements

= Adders

= ALU

= sign extender

= MUX's

Clocking methodology for storage (sequential) elements

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

How to Design a Processor: step-by-step

Analyse instruction set > datapath requirements

= the meaning of each instruction is given by the register
transfers (we use Verilog notation for RTL - Register Transfer

Language)

= datapath must provide storage
= and datapath must support transfer
Select a set of datapath components and establish clocking

methodology

Assemble datapath to meet the requirements
Analyse implementation of each instruction
= to determine setting of control points that trigger the register

Assemble the control logic

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Step 3: Assembling datapath

Register Transfer Requirements for each instruction - Datapath
Assembly

= have to provide paths to enable transfers

For example:

s PC & (PC + 4) + (sign_ext(Imm16) || 00)

= needs a path from sign extender to PC and a path from output
of PC to input of PC

For running instructions
= Instruction Fetch and Read Operands

= Are the steps the same for each instruction?
= Execute Operation and Store results

= Are the steps the same for each instruction?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Logical Register Transfers

Register Transfers

R[rd] & R[rs] + R[rt]

[PC=PC+4

if (RIrs] < R[rt]) then R[rd] « 1 else R[rd] €0 | PC < PC + 4

R[rt] & MEM[R[rs] + sign_ext(Imm16)] PC<PC+4

if (R[rs] == R[rt]) then

else PC«<=PC+ 4

PC < (PC + 4) + (sign_ext(Imm16) || 00)

PC < (PC+4)[31,28] || target || 00

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3a: Overview of the Instruction Fetch Unit

The common register transfer operations

= Fetch the instruction using the Program Counter (PC) at the
beginning of an instruction’s execution

= Update the program counter at the end of the instruction’s
execution

Combinational
elements

State . Next Address [~
elements*\\ Logic

4 Instruction I-MEM[PC]
memory /

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3b: Add, Subtract, logical, SLT

= R[rd] < R[rs] op R[rt] Example: add rd, rs, rt
Instruction from instruction memory - Mem[PC]
31 26 21 16 11 6
l Opcode ‘ rs shamt ‘funct

it fa]
6 bits 5 bits 5/bits 5 bits 5 bits 6 bits
ALUctr
rrl\ rr2) rw

32 x 32-bit

Clock
7 Registers
RegWrite
—

o MARS X-Ray shows the execution process dynamically.

o Logisim or logisim-evolution is also a good software to visualise execution stages over datapath.

o The MIPS simulator at https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/index.html is also interesting.
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

9

Computing ALUctr

= Multiple level of decoding
= two bit ALUOp determined from opcode (bits 31-26):
00 = Iw, sw - always add
01 = beq - always subtract
10 = R-type - funct (bits 5-0) used to define operation

ALUOp Funct field Operation | Operation
ALUOpL [ALUORO | F5 | F4 | P3| 2 |FL| FO | (anyy | name

0 010
110
010
110
000
001
X x [1](0]1 111

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

RegWrite

This control signal is asserted for all instructions which write to a
register
= all arithmetic and logical, load instruction

It has to be negated (no write to register) for all others
= branch on equal, jump, store instruction

else 1

RegWrite AND Clock
= Register is only written on clock edge

result
32 x 32-bit

Clock
| Registers
RegWrite

Computer Organisation COMP2008, Jamie Yang: .yana@westernsydney.edu.au

ALU Control Unit

Control Unit

ALUOpO

Control | ALUOp1 Egc;r%l ALUctr

From Level 1 (ALU Ctl)
Instruction

opcode

16
lOpcode \ rs \rd \shamt \funct ‘
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

ALUctr

The ALU control signal selects the operation in the ALU
ALU 3-bit control input
000 AND
001 OR
010 ADD
110 SUB
111 SLT (set-on-less-than)
For LW (load) and SW (store) ALU is used to calculate the address
= What operation is used?

R[rt] & MEM[R[rs] + sign_ext(Imm16)]
On BEQ (branch on equal) ALU is used to perform subtraction
= why subtraction?

a=bmeans (a-b)=0

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

3c: Load Operation

Two bit ALUOp: 00 = Ilw, sw - always be translated into ‘add’

31 26 21 16
lOpcode ‘rs ‘rt ‘Imm 16
6 bits 5 bits 5 bits 16 bits

Instruction: Iw rt, rs, imm16
Address: R[rs] + SignExt[imm16]
Register transfers: | R[rt] & Mem[R[rs] + SignExt[imm16]]

ALUOp Funct field Operation | Operation

code name
ALUOp1 | ALUOpO | F5 | F4 | F3 |F2 | F1 | FO | (ALUCctr)

0 0 X | X | x| x| x| X 010 [ADD]

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

ALU Control Unit

= The ALU operation is determined by:

= The ALU Control Unit
= Its output is: ALUctr control signal
= How many bits are needed?
= How about its input?

Control
unit

31 26 21 16
l Opcode ‘ rs ‘ rt ‘ rd

‘shamt ‘funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Datapath for Load Operation

We use shorthand
notation for write
signals by not
showing the clock.

31 26 21 16 11
| Opcode | rs | rt | |

l Imm 16

RegWrite MemRead
ALUctr \
| ALUsrc MemtoReg

M
u
0 X

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Control signals for Iw

= New signals = Also needed
= RegDst < (op == R-Type) ?1:0 = RegWrite < ((op== Store) ||
. for load, destination register is rt (op==BEQ) || (op==JUMP)) ?
. unlike in R-type instructions 0:1
= the MUX is used to select
= ALUsrc < (op==R-Type || op==BEQ)?0:1
« for load, the source of the second ALU
input is sign-extended immediate value
= the MUX to select between the above
and readRegister2
= MemRead < (op == Load) ?1: 0
= the ALU output is used as an address
for data memory
= MemtoReg « (op == Load) ?1:0
= selects memory as the source for
register write
unlike all R-type instructions
The MUX to select between memory

and ALU output
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

= Same as for R-type
instructions
= ALUctr
= Same as for R-type
instructions
= All other Write control signals
deasserted

3e: The Branch Instruction

31 26
’Opcode ‘ rs
6 bits 5 bits 5 bits 16 bits

Instruction: beq rs, rt, imm16

Operation:
Zero < R[rs] == R[rt]

if (Zero)

PC & PC + 4 + (SignExt(imm16) << 2)
else

PC=PC+ 4

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

3d: Store Operation

Two bit ALUOp: 00 = Iw, sw - always ‘add’

31 26 21 16
lOpcode ‘rs ‘rt ‘Imm 16
6 bits 5 bits 5 bits 16 bits

Instruction: sw rt, rs, imm16
Address: R[rs] + SignExt[imm16]
Register transfers: | Mem[R[rs] + SignExt[imm16]] < R[rt]

ALUOp Funct field Operation | Operation
code name
ALUOp1 [ALUOpO | F5 | F4 [F3 [F2]F1] FO | (normalized)
0 0 X | X [X | x|x] X 010 [ADD]

Computer Organisation COMP2008, Jamie Yang: .yana@westernsydney.edu.au

Datapath for Branch Operations

beq rs, rt, imm16 Datapath generates condition (zero)

Add
RegWrite

i ALU control PCSrc
.

Instruction Read Add_' 1 Read

Memory Read A o Data 1 condition

i generated
in datapath

Read :
Instruction File
|address Write Addr

Data 2|

Write Data

MARS X-Ray shows the execution process dynamically.
Logisim or logisim-evolution is also a good software to
visualise execution stages over datapath

The MIPS simulator at
https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/in
dexhtml s also interesting

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au 2

Datapath for Store Operation

31 26 21 16 11
l Opcode ‘ rs ‘ rt ‘ ‘

l Imm 16 ‘)
RegWrite MemWrite
| ALUctr |
ALUsrc MemtoReg

rs ==t |

M
oM u
rt u 0X

CT*—)IX "

RegDst
d
imm16 @

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Control signals for branch

New signals = Also needed
« Branch < (op == BEQ) » ALUctr
= So we know it is branch « Same as for R-
instruction. Once ALU type instructions
operation is complete it will be to enforce
used to produce PCsrc subtraction
= Zero = All Write control
= Produced by ALU if ALU result signals deasserted
is zero ie. Registers are equal ALU operation
when subtracted
= PCsrc
« PCsrc := Zero AND Branch e
meaning that PCsrc is asserted Overflow
if it is a Branch instruction and
ALU result is zero (Zero = 1 Camyout
signal is true)

b—>

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Control signals for sw

= New signals MemWrite < (op == Store) = Also needed
= if asserted = AlUctr
= the content of register rt is written = Same as for R-type
to memory at the address instructions
calculated by the ALU = AlUsrc
= if not asserted (as in ALL other = Same as for Iw to
instructions) calculate the address
= the content of memory does not = All other Write control signals
change deasserted
MemWrite AND Clock

- Why do we need
s MemWrite?

data

Address

Data
Write ~ memory
data

MemRead

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Putting it All Together: A Single Cycle Datapath

=y,

MemRead

9

Memwrite

RegWrite
RegDst

nstr{25-21)(ccad Addr 1

Instruction

Read Address

Memory nstr[20-16][, ARAe d'rStzerData 1 .
Read " a
1 Instr{31-0] File Memory Read Data
(Address \Write Addr Readd & Y
Instr ! \Write Data Data 2 \Write Data
15-11] N T

Jinstr [19 Sign
16 \Extend| *35
Instr[5-0]

ovf
t
ero
ALU
f

What about JUMP?

31 26
lOpcode ‘
6 bits 26 bits

Operation:
PC < (PC + 4)<31,28> || target || 00

j target

@s@ \28 32
Y\ left 2 /TN
PC-+4[31-28]

JumMP

—
From ALU et
(branch target) PCSre jump target)

New signal (select cond.
9 branch)

Instruction
Memory = JUMP

Rsad = Selects JUMP address
Address « Al Write signals in the
datapath de-asserted

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Step 5: Logic for each control signal

Jump & (op == Jump)
PCsrc < if (op == BEQ) then subject to Zero else 0
w.
Branch « (op == BEQ) . Zero is the signal
PCsrc from ALU

ALUsrc < if (op==R-Type || op==BEQ) then 0 (“reg2”) else 1 ("imm32")
ALUctr < if (op == R-Type) then funct
elseif (op == BEQ) then “sub” else “add”

MemRead < (op == Load)

MemWrite < (op == Store)

MemtoReg < (op == Load)

RegWrite < ((op== Store) || (op==BEQ) || (op==JUMP))?0:1
RegDst < (op == R-Type)

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Refer to FIGURE 4.24

Jump address [31- 0]

Complete datapath

Instr[25-0.
So ShifE["3g 32
PC+4[31-28]

MemRead
&

ALUSKC

RegWrite

0

Instruction Read Addr 1 o _,\
Al

v
. Read
Register
- Memory Read Aegdr 2 Data 1 zer Data
eal "
Instr[31- Read Data
adress " Fwite AGEE & (A Memory Read Da
Write Data
Write Data 228 2 | L,

1510] Sign
16 \Extend/ ‘37
Instr[5-0]

l_O_pcode [rs [rt [rd [shamt [fqnctl
Complete” control unit '

CONTROL OUTPUTS

000000
001000
100011 Lw.
101011 Sw
000100
000010 i

To1
"o

EICIIS N suumoau
olole|r|o|o|YEAE]

/ /7
The controller must also generate four ALUCONTROL signals using the FUNCT input and ALUOP output:

[ronere) | swcowmmouss |
pred 0010
000 0110
0010 P
0110
0000
0001
0111

ALU operation

Result
Overflow

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Step 4: Given Datapath: RTL — Control

Instruction<31:0>

<§CTC>

‘ CONTROL

Branch(PCsrc) RegDst ALUctr MemRead Jump

\ RegWrite \ ALUSrC \MemWrite \ MemtoReg \

DATA PATH

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Control signal table

Operation | RegDst | RegWrite | ALUSrc | ALUctr | MemWrite | MemRead | MemToReg

add 1 0 010 0 0

sub 110

and 000

or 001

slt 111

lw

SW 010

o|lo|=|lo|o|loje|e

1
1
1
1
1 010
0
0

x| |x|ola|la|lala|a

beq 110

sw and beq are the only instructions that do not write any registers.

lw and sw are the only instructions that use the constant field. They also
depend on the ALU to compute the effective memery address.

ALUctr for R-type instructions depends on the instructions’ func field.
The PCSrc control signal (not listed) should be set if the instruction is beq
and the ALU’s Zero output is true.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Complete control unit

ALUctr 3 bits

RegWrite
MemRead
MemWrite
MemtoReg
RegDst
ALUSrc
PCSrc
Jump

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Drawback of this Single Cycle Processor

= Execution Time = Insts * CPI * Cycle Time
= Processor design (datapath and control) will determine:
= Clock cycle time
= Clock cycles per instruction
= Single cycle processor:
« Advantage: CPI = 1 'i'
« Disadvantage: long cycle time %ﬁﬁ;‘;{fﬂ,
o

Arithmetic & Logical
PC [InstMemory | RegFile Jmu] ALU oL setu}

Load
[Pc T instmemory | RegFile [w.] ALU | Data Mem [oufetug]
Critical Path

Store
[Pc T instMemory | RegFile Jmd ALU [Data Mem

Branch
[Pc T instmemory T RegFile [emp[md]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Drawback of this Single Cycle Processor

= Long cycle time:
= Cycle time must be long enough for WHICH? instruction:
Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew (*)

(*) difference in time for clock signal to reach state elements

= If the cycle time is long enough for the longest instruction, it is long
enough for all other instructions
= All instructions take as much time as the slowest.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 33

Solution to single cycle problems

= Single Cycle Problems:
= What if we had a more complicated instruction like floating point
operation?

= Possible Solution:

= use a “smaller” cycle time

= have different instructions take different numbers of cycles

= a “multicycle” datapath in Pipelining

o] Address peta
et Register # Additional
Memory "Gl Registers ALUOY “sint I”
Register # interna
registers
—{ Data register Regiser® 9
Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au 34

Revision and quiz

= It's important to understand an instruction in its mnemonic format,
encoding format, register transfer representation, and
corresponding datapath assembling. Use Load operation as an
example to illustrate your understanding.

= The following drawing is correct.
1) True 2) False

ALUctr 3 bits

26 21 16
Opcode ‘ rs | rt ‘ rd ‘ shamt ‘ funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0

= The sw instruction doesn’t write any registers.
1) True 2) False

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 35

Recommended readings

General Data [Unitoutiine | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ | |

‘ Extra Materials

ascil_chart.pdf | bias icn.pdf | HP_AppA.pd +-instrucion cecoding.odf | masking help.pcf | PCSpim.pd |
PCSpim Portable Version | Library materials

Text readings are listed in Téaching

PHB, §4.1-54.4, P256-P284: The processar 8)
Schedule and Learning Guide

PH3, §4.1-84.4, P244-P272: The processar

PH4, §4.1-84.4, P300-P329: The processor PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-

journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 36

