
Topics
Design a single cycle processor: step-by-step
 Requirements of the instruction set
 Assembling a datapath using

 Functional units
 Other combinational and sequential elements

 Designing and assembling control

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 11: Single Cycle Processor

Datapath

Instruction Set and Functional Units

Computer Architecture = Instruction Set Architecture + Machine Organisation

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction set architecture defines: Organisation defines:
Organisation of Programmable Storage

Data Types & Data Structures:
Encodings & Representations

Instruction Set:
Instruction Formats
Modes of Addressing

i.e. Accessing Data Items
and Instructions

Exceptional Conditions

Capabilities & Performance

Characteristics of Principal
Functional Units

(e.g., Registers, ALU, Logic
Units, ...)

Interconnection of components

Information flow between
components

Means by which such information
flow is controlled

How to Design a Processor: step-by-step

1. Analyse instruction set datapath requirements
 the meaning of each instruction is given by the register

transfers (we use Verilog notation for RTL - Register Transfer
Language)

 datapath must provide storage
 and datapath must support transfer

2. Select a set of datapath components and establish clocking
methodology

3. Assemble datapath to meet the requirements
4. Analyse implementation of each instruction

 to determine setting of control points that trigger the register
5. Assemble the control logic

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Logical Register Transfers

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

inst Register Transfers
ADD R[rd] R[rs] + R[rt] PC PC + 4
SUB ___
OR ___
SLT if (R[rs] < R[rt]) then R[rd] 1 else R[rd] 0 PC PC + 4
LOAD R[rt] MEM[R[rs] + sign_ext(Imm16)] PC PC + 4
STORE ___
BEQ if (R[rs] == R[rt]) then

PC (PC + 4) + (sign_ext(Imm16) || 00)
else PC PC + 4

JUMP PC (PC+4)[31,28] || target || 00

Step 1: Requirements of the Instruction Set

 Memory
 instruction & data (has to be separate in a single cycle datapath, can’t

have two reads from one memory)
 Registers

 (32 x 32) - read rs, read rt, write rt or rd
 PC

 add 4
 add 4 and extended immediate (shifted left by 2)
 add 4 and concatenate PC[31,28] || target || 00

 Sign Extender
 To extend a 16-bit field to 32 bits

 Add, Sub, AND, OR operation (ALU)
 two registers or
 extended immediate and register

 Compare two registers
 also a function of ALU

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Step 2: Components of the Datapath

 Storage Elements
 register file (32 registers with 32 bits each)
 PC (32-bit register)
 instruction memory (32-bit words)
 data memory (32-bit words)

 Combinational Elements
 Adders
 ALU
 sign extender
 MUX’s

 Clocking methodology for storage (sequential) elements

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

M
u
x

Step 3: Assembling datapath

 Register Transfer Requirements for each instruction Datapath
Assembly
 have to provide paths to enable transfers

 For example:
 PC (PC + 4) + (sign_ext(Imm16) || 00)
 needs a path from sign extender to PC and a path from output

of PC to input of PC
 For running instructions

 Instruction Fetch and Read Operands
 Are the steps the same for each instruction?

 Execute Operation and Store results
 Are the steps the same for each instruction?

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3a: Overview of the Instruction Fetch Unit

 The common register transfer operations
 Fetch the instruction using the Program Counter (PC) at the

beginning of an instruction’s execution
 Update the program counter at the end of the instruction’s

execution

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction
memory

PC

Next Address
Logic

State
elements

Combinational
elements

I-MEM[PC]

3b: Add, Subtract, logical, SLT

 R[rd] R[rs] op R[rt] Example: add rd, rs, rt

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

32 x 32-bit
Registers

Instruction from instruction memory - Mem[PC]

Opcode rs rt rd shamt funct
31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Clock
RegWrite

ALUctr
rr1 rwrr2

o MARS X‐Ray shows the execution process dynamically.

o Logisim or logisim‐evolution is also a good software to visualise execution stages over datapath.

o The MIPS simulator at https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/index.html is also interesting.

RegWrite

 This control signal is asserted for all instructions which write to a
register
 all arithmetic and logical, load instruction

 It has to be negated (no write to register) for all others
 branch on equal, jump, store instruction

 RegWrite AND Clock
 Register is only written on clock edge

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

RegWrite if ((op== Store) || (op==BEQ) || (op==JUMP)) then 0
else 1

32 x 32-bit
Registers

Clock
RegWrite

result

ALUctr

 The ALU control signal selects the operation in the ALU
 ALU 3-bit control input

000 AND

001 OR

010 ADD

110 SUB

111 SLT (set-on-less-than)

 For LW (load) and SW (store) ALU is used to calculate the address
 What operation is used?

 On BEQ (branch on equal) ALU is used to perform subtraction
 why subtraction?

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

R[rt] MEM[R[rs] + sign_ext(Imm16)]

a = b means (a – b) = 0

ALU Control Unit

 The ALU operation is determined by:

 The ALU Control Unit
 Its output is: ALUctr control signal
 How many bits are needed?
 How about its input?

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

ALU
Control

unit

ALUctr

Opcode rs rt rd shamt funct

Computing ALUctr

 Multiple level of decoding
 two bit ALUOp determined from opcode (bits 31-26):

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

00 = lw, sw - always add
01 = beq - always subtract
10 = R-type - funct (bits 5-0) used to define operation

ALUOp Funct field Operation
code

(ALUctr)

Operation
nameALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 010
0 1 x x x x x x 110
1 x x x 0 0 0 0 010
1 x x x 0 0 1 0 110
1 x x x 0 1 0 0 000
1 x x x 0 1 0 1 001
1 x x x 1 0 1 0 111

lw/sw

beq

R-Type

ALU Control Unit

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Control
Level 1

Control
Level 2

(ALU Ctl)

opcode

function

From
instruction
word

ALUOp0
ALUOp1

Control Unit

ALUctr

To ALU

31 26 21 16 11 6 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Opcode rs rt rd shamt funct

3c: Load Operation

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Instruction: lw rt, rs, imm16
Address: R[rs] + SignExt[imm16]
Register transfers: R[rt] Mem[R[rs] + SignExt[imm16]]

Opcode rs rt Imm 16

Two bit ALUOp: 00 = lw, sw - always be translated into ‘add’

ALUOp Funct field Operation
code

(ALUctr)

Operation
name

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0
0 0 x x x x x x 010 [ADD]

Datapath for Load Operation

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

We use shorthand
notation for write
signals by not
showing the clock.

Opcode rs rt
31 26 21 16 11 6 0

Imm 16

M
u
x

M
u
x

sign
extend

M
u
x

MemtoReg

MemRead
ALUctr

ALUsrc

RegWrite

imm16

RegDst

rd

rt

rs

3

16 32

Opcode rs rt

0

1

0

1 0

1

Control signals for lw

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Also needed
 RegWrite ((op== Store) ||

(op==BEQ) || (op==JUMP)) ?
0 : 1

 Same as for R-type
instructions

 ALUctr
 Same as for R-type

instructions
 All other Write control signals

deasserted

 New signals
 RegDst

 for load, destination register is rt
 unlike in R-type instructions
 the MUX is used to select

 ALUsrc
 for load, the source of the second ALU

input is sign-extended immediate value
 the MUX to select between the above

and readRegister2
 MemRead

 the ALU output is used as an address
for data memory

 MemtoReg
 selects memory as the source for

register write
 unlike all R-type instructions
 The MUX to select between memory

and ALU output

(op == Load) ? 1 : 0

(op == Load) ? 1 : 0

(op==R-Type || op==BEQ) ? 0 : 1

(op == R-Type) ? 1 : 0

3d: Store Operation

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Instruction: sw rt, rs, imm16
Address: R[rs] + SignExt[imm16]
Register transfers: Mem[R[rs] + SignExt[imm16]] R[rt]

Opcode rs rt Imm 16

Two bit ALUOp: 00 = lw, sw - always ‘add’

ALUOp Funct field Operation
code

(normalized)

Operation
nameALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 x x x x x x 010 [ADD]

Datapath for Store Operation

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Opcode rs rt
31 26 21 16 11 6 0

Imm 16

M
u
x

M
u
x

sign
extend

M
u
x

MemtoReg

MemWrite
ALUctr

ALUsrc

RegWrite

imm16

RegDst

rd

rt

rs

3

0

1

0

1
0

1

Control signals for sw

 New signals MemWrite
 if asserted

 the content of register rt is written
to memory at the address
calculated by the ALU

 if not asserted (as in ALL other
instructions)

 the content of memory does not
change

 MemWrite AND Clock

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Also needed
 ALUctr

 Same as for R-type
instructions

 ALUsrc
 Same as for lw to

calculate the address
 All other Write control signals

deasserted

Why do we need
MemWrite?

(op == Store)

3e: The Branch Instruction

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Opcode rs rt Imm 16
31 26 21 16 0

6 bits 5 bits 5 bits 16 bits

Operation:
Zero R[rs] == R[rt]

if (Zero)
PC PC + 4 + (SignExt(imm16) << 2)

else
PC PC + 4

Instruction: beq rs, rt, imm16

Datapath for Branch Operations

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

beq rs, rt, imm16 Datapath generates condition (zero)

Instruction
Memory

Add

PC ALU

Sign
Extend

Read
Address Instruction

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

ALU control
RegWrite

16 32

Register

File

Read
Data 1

Read
Data 2

ALUSrc

M
u
x

Shift
left 2

Add

M
u
x

PCSrc

condition
generated
in datapath

Zero

0

1

0
1

o MARS X‐Ray shows the execution process dynamically.

o Logisim or logisim‐evolution is also a good software to

visualise execution stages over datapath.

o The MIPS simulator at
https://www3.ntu.edu.sg/home/smitha/FYP_Gerald/in

dex.html is also interesting.

 New signals
 Branch

 So we know it is branch
instruction. Once ALU
operation is complete it will be
used to produce PCsrc

 Zero
 Produced by ALU if ALU result

is zero ie. Registers are equal
when subtracted

 PCsrc
 PCsrc := Zero AND Branch

meaning that PCsrc is asserted
if it is a Branch instruction and
ALU result is zero (Zero = 1
signal is true)

Control signals for branch

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Also needed
 ALUctr

 Same as for R-
type instructions
to enforce
subtraction

 All Write control
signals deasserted

(op == BEQ)

Putting it All Together: A Single Cycle Datapath

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1
1
0

0
0

0

1

ALUOp

Instr[5-0]

Instr [15-0]

Instr[25-21]

Instr[20-16]

Instr
[15-11]

Control
Unit

Instr[31-26]

Branch

What about JUMP?

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

j target Opcode
31 26 0

6 bits 26 bits

Read
Address

Instruction
Memory

Add

PC

4

PCSrc
(select cond.

branch)

0

1

Shift
left 2 1

0

From ALU
(branch target)

JUMP
(select

jump target)

Operation:
PC (PC + 4)<31,28> || target || 00

 New signal
 JUMP

 Selects JUMP address
 All Write signals in the

datapath de-asserted

26 28 32

PC+4[31-28]

PC+4

Complete datapath

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite
MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add
PCSrc

RegDst

ALU
control

1

1
1
0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr
[15-11]

Control
Unit

Instr[31-26]
Branch

Shift
left 2

0

1

Jump

32
Instr[25-0]

26
PC+4[31-28]

28

Jump address [31– 0]

Refer to FIGURE 4.24

Step 4: Given Datapath: RTL Control

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

DATA PATH

CONTROL

Inst
Memory

<
31:26>

<
21:25>

<
16:20>

<
11:15>

<
0:15>

<
0:25>

<
0:5>

Instruction<31:0>

Branch(PCsrc)

RegWrite

RegDst
ALUSrc

ALUctr

MemWrite

MemRead
MemtoReg

Jump Zero

Complete control unit

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Control Unit

ALU
control
level 2

ALUOp0

ALUOp1

ALUctr 3 bits

RegWrite
MemRead
MemWrite
MemtoReg
RegDst
ALUSrc
PCSrc
Jump

Jump (op == Jump)
PCsrc if (op == BEQ) then subject to Zero else 0

Branch (op == BEQ)
PCsrc Branch AND Zero

ALUsrc if (op==R-Type || op==BEQ) then 0 (“reg2”) else 1 (“imm32”)
ALUctr if (op == R-Type) then funct

elseif (op == BEQ) then “sub” else “add”

MemRead (op == Load)
MemWrite (op == Store)
MemtoReg (op == Load)
RegWrite ((op== Store) || (op==BEQ) || (op==JUMP)) ? 0 : 1
RegDst (op == R-Type)

Step 5: Logic for each control signal

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Zero is the signal
from ALU

Complete control unit

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Opcode rs rt rd shamt funct

Control signal table

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Drawback of this Single Cycle Processor

 Execution Time = Insts * CPI * Cycle Time
 Processor design (datapath and control) will determine:

 Clock cycle time
 Clock cycles per instruction

 Single cycle processor:
 Advantage: CPI = 1
 Disadvantage: long cycle time

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Drawback of this Single Cycle Processor

 Long cycle time:
 Cycle time must be long enough for WHICH? instruction:

 If the cycle time is long enough for the longest instruction, it is long
enough for all other instructions
 All instructions take as much time as the slowest.

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew (*)

(*) difference in time for clock signal to reach state elements

Solution to single cycle problems

 Single Cycle Problems:
 What if we had a more complicated instruction like floating point
operation?

 Possible Solution:
 use a “smaller” cycle time
 have different instructions take different numbers of cycles
 a “multicycle” datapath in Pipelining

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Additional
“internal”
registers

Revision and quiz

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 It’s important to understand an instruction in its mnemonic format,
encoding format, register transfer representation, and
corresponding datapath assembling. Use Load operation as an
example to illustrate your understanding.

 The following drawing is correct.
1) True 2) False

 The sw instruction doesn’t write any registers.
1) True 2) False

Recommended readings

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

