
Topics

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 10: ALU

 Minimising Boolean expressions

 Using Karnaugh maps

 ALU (Arithmetic Logic Unit)

 ALU design and implementation

 1-bit ALU

 32-bit ALU

SONGS ABOUT COMPUTER SCIENCE

…COMPUTER SCIENCE MAJOR?
Written by Emmanuel Schanzer
To the tune of: Hotel California
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

… …
My mind is completely twisted
My brain's completely snapped
By these logic gates and Turing machines
And those Karnaugh maps
Registers dance in memory
Clobbering the temps
Some values you remember
Some values you forget
So I called up the professor
Can I have more time?
He said
I haven't given an extension here since 1969
… …

mailto:j.yang@uws.edu.au

Building blocks revisited

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1. AND gate (c = a ● b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor (Mux)

(if d = = 0, c = a;

else c = b)

 We will build ALU using four hardware building blocks:

mailto:j.yang@uws.edu.au

Minimising Boolean expressions

 Before we start building ALU, consider how to minimise logic
expressions in easy way, and implement circuits with as few logic
gates as possible.

 For example, soon we will see that Carry Out formula expressed as
a sum of products is (to be explained later):

CarryOut = (A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) +
(A*B*CarryIn)

…happens to be equivalent of:

CarryOut = (B*CarryIn) + (A*CarryIn) + (A*B)

 But: the above simplification is not immediately obvious.

 Logic minimising tool which we will use is known as:

Karnaugh maps.

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Karnaugh maps

 Use Truth Table to determine y0, y1, …

 Use Karnaugh maps (or K-maps) to simplify the expression

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Sum of Products y=y0●abc’+y1●abc+y2●ab’c+y3●ab’c’+ …

On [b]

Off [b’]

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

----c----23 = 8 cases

 Product items: Miniterms

mailto:j.yang@uws.edu.au

Karnaugh maps: [I] State Sets

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

abc’d’ abc’d

abcd’ abcd

ac\bd
b b

a

a

ab’c’d ab’c’d’

ab’cd ab’cd’

----b----
b’ b’

----d----24 = 16 cases

a’bcd’ a’bcd

a’bc’d’ a’bc’d

a’b’cd a’b’cd’

a’b’c’d a’b’c’d’

--
--

c-
--

-

--
--

a
--

--

ab ab’

a’b a’b’

a\b
b b’

a

a’

22 = 4 cases

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

----c----23 = 8 cases

 State Sets for 2, 3 and 4-variable functions [a’ stands for NOT a]

mailto:j.yang@uws.edu.au

Karnaugh maps: [II] Truth Table

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

ab ab’

a’b a’b’

a\b [State Set]
b b’

a

a’

22 = 4 cases

 Truth Tables

 determined by the internal functions

a\b [Truth table for AND]

b [on] b’ [off]

a

a’

01

0 0

y=y0●ab+y1●ab’+y2●a’b+y3●a’b’

yAND=y0●ab+y1●ab’+y2●a’b+y3●a’b’
=1●ab+0●ab’+0●a’b+0●a’b’
=ab

mailto:j.yang@uws.edu.au

Karnaugh maps: Simple mapping examples

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

ab ab’

a’b a’b’

a\b [State Set]
b b’

a

a’

22 = 4 cases

 2-input functions

y=y0●ab+y1●ab’+y2●a’b+y3●a’b’

mailto:j.yang@uws.edu.au

Karnaugh maps: Grouping for simplification

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Rules of grouping:

 of 1s

 side by side

 Rules of simplification

“A change of one variable
when crossing a horizontal or
vertical boundaries of cells”

 Walk through a group

 Invariables survive; changed
ones eliminated

 Sum of net results of all
groups (clusters)

mailto:j.yang@uws.edu.au

Karnaugh maps: Grouping for simplification

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

out = b’

out = c’out = a’c’

abc’d’ abc’d

abcd’ abcd

ac\bd
b b

a

a

ab’c’d ab’c’d’

ab’cd ab’cd’

----b----
b’ b’

-----d-----24 = 16 cases

a’bcd’ a’bcd

a’bc’d’ a’bc’d

a’b’cd a’b’cd’

a’b’c’d a’b’c’d’

--
--

c-
--

-

--
-a

--
-

mailto:j.yang@uws.edu.au

Karnaugh maps: Grouping for simplification

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

out = cd+c’d’ out = b’+c

out = b’d+a’c’d’ out = abc’d’

mailto:j.yang@uws.edu.au

How to build ALU [Arithmetic Logical Unit]

 1-bit building blocks ready to implement, but MIPS word is 32 bits wide.

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Solution:

Use a mux to chose operations

Perform all operations in parallel

Build separate hardware blocks for each task

Build 32 separate 1-bit ALUs

A cascaded view of 4-bit ‘Full Adder’

mailto:j.yang@uws.edu.au

More about muxes

 Have data bits and control bits (data lines and control lines)

 Control bits select which data bit will pass through: all others are
blocked

 In general:

 1 control bit selects between 2 data bits,

 2 control bits select between 4 data bits,

 . . .

 n control bits select between 2n data bits

 We can build a mux of any size to serve our purpose

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Data lines (2n)

Control lines (n)

Output: one per mux

mailto:j.yang@uws.edu.au

Build Logical Operations

 ALU =

 FIRST: Logical Functions

 the easiest to implement, they map directly into the hardware

 1-bit logical block for AND and OR:

 Mux control line Operation=0 selects a AND b

 Mux control line Operation=1 selects a OR b

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Logical Functions: AND, OR

Arithmetic Operations
Adder
Subtraction

… …

mailto:j.yang@uws.edu.au

Build 1-bit Adder: Theory

 Each bit of addition has

 Three input bits: Ai Bi CarryIni

 Two output bits: Sumi CarryOuti

(CarryIni+1 = CarryOuti)

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Build 1-bit Adder: implementation

 Full adder, also called a (3,2) adder: 3 inputs and 2 outputs

 Half adder, also called (2,2) adder has only 2 inputs, a and b.

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 STEPS to implement the adder:

1. Construct the circuit for Sum

2. Construct the circuit for CarryOut

3. Connect (1) and (2) together

mailto:j.yang@uws.edu.au

1-bit Full Adder: truth table and formula

 Sum =

(A’*B’*CarryIn) + (A’*B*CarryIn’) + (A*B’*CarryIn’) + (A*B*CarryIn)

 CarryOut =

(A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) + (A*B*CarryIn)

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

-----c-----

mailto:j.yang@uws.edu.au

1-bit Full Adder: the Sum formula

Sum=(A’*B’*CarryIn) + (A’*B*CarryIn’) + (A*B’*CarryIn’) + (A*B*CarryIn)

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0 1

1 0

a\bc
b b

a

a’

0 1

1 0

-----b-----
b’ b’

-----c-----

 Can we simplify/minimise logic formulas for CarryOut and Sum for
building the circuit using logic gates?

 Karnaugh table of the Sum formula: … grouping 1s

No

simplification

possible

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

mailto:j.yang@uws.edu.au

1-bit Full Adder: the CarryOut formula

CarryOut

=(A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) + (A*B*CarryIn)

=(B*CarryIn) + (A*CarryIn) + (A*B)

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1 1

0 1

a\bc
b b

a

a’

1 0

0 0

-----b-----
b’ b’

-----c-----

 Karnaugh table of the CarryOut formula: … grouping 1s

(B*CarryIn) +

(A*CarryIn) +

(A*B)

abc’ abc

a’bc’ a’bc

b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

b’ b’

mailto:j.yang@uws.edu.au

1-bit Full Adder: formula -> circuit construction

Sum=(A’*B’*CarryIn) + (A’*B*CarryIn’)

+ (A*B’*CarryIn’) + (A*B*CarryIn)

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 For Sum For CarryOut

CarryOut=(B*CarryIn) +

(A*CarryIn) +

(A*B)

Digital circuit simulator:

https://circuitverse.org/

mailto:j.yang@uws.edu.au
https://circuitverse.org/

1-bit Full Adder: integrated circuit construction

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Connect Sum and CarryOut together

STEP 1 (Sum)

STEP 2 (CarryOut)

mailto:j.yang@uws.edu.au

ALU: Adder and Logical operations

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 ALU =
Logical Functions: AND, OR

Arithmetic Operations
Adder
Subtraction

… …

A 1-bit ALU that

performs AND, OR and

Addition.

Mux “Operation” signal

selects which operation

is performed.

mailto:j.yang@uws.edu.au

Subtraction 1/3

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Subtraction: adding the negative version of an operand.

 Recall two’s complement numbers: to create a negative number we
need to:

1. invert each bit of b

2. add 1

Simply invert

How about ‘add 1’ ?

mailto:j.yang@uws.edu.au

Subtraction 2/3

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Notice that, the least
significant bit still has CarryIn
signal, which is never used for
addition

 How CarryIn for ALU0 differs

from other CarryIns?

- Initial CarryIn vs. Intermediate
CarryIns.
- Initial CarryIn can be set at will

 If we set the Initial CarryIn bit
to 1 instead of 0, we get:
a+b+1

mailto:j.yang@uws.edu.au

Subtraction 3/3

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 What happens if we now use Binvert for invert b and set the Initial
CarryIn (at the least significant bit) to 1?

 The adder calculates: a+b+1 = a+(b+1) = a+(-b)=a-b

 This simplicity of hardware implementation of a two’s complement
adder is good illustration why two’s complement representation is
commonly used for integer computer arithmetics!

Least significant bit Other bits

mailto:j.yang@uws.edu.au

ALU structure so far

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Operations: AND OR ADD SUB

 Control lines: 000 001 010 110

0 – ADD

1 – SUB

00 – AND

01 – OR

10 – ADD

First bit (LSB) Other bits

mailto:j.yang@uws.edu.au

32-bit ALU so far

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Binvert (or Bnegate) Operation

Result0

Result1

Result31

a0

b0

…

a1

b1

a31

b31

thirty two
1-bit ALUs
connected
together

mailto:j.yang@uws.edu.au

Set on less than (slt) support

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 slt rd, rs, rt

1 if (rs < rt)
0 else

rd :=

if (rs-rt) <0
else

LSB

 Implement the idea in ALU

 modify 1-bit ALU for the most significant bit (ALU31 for bit 31):

 a new output line (Set – 1 bit) used only for slt

 (by the way we added overflow detection logic, also
associated with this bit)

 new input line (Less – 32 bits) goes directly to mux

 New control line (111) for slt

Less

MSB
[determines the sign]

..10

mailto:j.yang@uws.edu.au

ALU with slt support

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MSB
(ALU31)

LSB
(ALU0)

mailto:j.yang@uws.edu.au

Branch support

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Conditional branch instructions switch either if two registers are
equal, or if they are not equal:

 beq register1, register2, label (example: beq $s4,$s2, LABEL1)

 bne register1, register2, label (example: bne $s1,$s3, L7)

 How to test that contents of two register is equal?

 a = b means (a – b) = 0

 How to implement the above:

 Subtract b from a

 Add hardware to test if the result is zero

 OR all the outputs together, and invert the output:

Zero = (Result1 + Result2 + .. + Result31)

 Next slide show additional hardware for branch support :

variable
1 (true) if (a – b) = 0 holds
0 (false) else

mailto:j.yang@uws.edu.au

32-bit ALU with branch support

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Zero detector:
1 (a = b holds)
0 otherwise

mailto:j.yang@uws.edu.au

Shift instructions

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 What is left:

 logical and arithmetic shifts sll, srl, sra

 Need a new data line for a shifter (L and R)?

 however shifters are much more easily implemented outside
the ALU.

The symbol commonly used
to represent ALU. It is
also used to represent an
adder, so it is labelled ALU
or Adder.

3 Operations: AND OR ADD SUB …

Control lines: 000 001 010 110

 1-bit ALU: integrated block notation

mailto:j.yang@uws.edu.au

 In 1-bit full Adder, the circuit
construction for ‘CarryOut’ is
correct:
1) True 2) False

Revision and quiz

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Given the following Karnaugh
map. The output can be
expressed by out = c’.

1) True 2) False

 How ALU is used to support the branch instruction?

beq register1, register2, label

mailto:j.yang@uws.edu.au

Recommended readings

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

