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Lecture 10: ALU

 Minimising Boolean expressions 

 Using Karnaugh maps

 ALU (Arithmetic Logic Unit)

 ALU design and implementation

 1-bit ALU

 32-bit ALU

SONGS ABOUT COMPUTER SCIENCE

…COMPUTER SCIENCE MAJOR? 
Written by Emmanuel Schanzer
To the tune of: Hotel California
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

… …
My mind is completely twisted
My brain's completely snapped
By these logic gates and Turing machines
And those Karnaugh maps
Registers dance in memory
Clobbering the temps
Some values you remember
Some values you forget
So I called up the professor
Can I have more time? 
He said
I haven't given an extension here since 1969
… …
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Building blocks revisited
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1. AND gate (c = a ● b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor (Mux)

(if d = = 0, c = a;

else c = b)

 We will build ALU using four hardware building blocks:
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Minimising Boolean expressions

 Before we start building ALU, consider how to minimise logic 
expressions in easy way, and implement circuits with as few logic 
gates as possible.

 For example, soon we will see that Carry Out formula expressed as 
a sum of products is (to be explained later):

CarryOut = (A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) + 
(A*B*CarryIn)

…happens to be equivalent of:

CarryOut = (B*CarryIn) + (A*CarryIn) + (A*B)

 But: the above simplification is not immediately obvious.

 Logic minimising tool which we will use is known as:

Karnaugh maps.
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Karnaugh maps

 Use Truth Table to determine y0, y1, …

 Use Karnaugh maps (or K-maps) to simplify the expression
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 Sum of Products y=y0●abc’+y1●abc+y2●ab’c+y3●ab’c’+ …

On [b]

Off [b’]

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

----c----23 = 8 cases

 Product items: Miniterms

mailto:j.yang@uws.edu.au


Karnaugh maps: [I] State Sets

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

abc’d’ abc’d

abcd’ abcd

ac\bd
b b

a

a

ab’c’d ab’c’d’

ab’cd ab’cd’

----b----
b’ b’

----d----24 = 16 cases

a’bcd’ a’bcd

a’bc’d’ a’bc’d

a’b’cd a’b’cd’

a’b’c’d a’b’c’d’

--
--

c-
--

-

--
--

a
--

--

ab ab’

a’b a’b’

a\b
b b’

a

a’

22 = 4 cases

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

----c----23 = 8 cases

 State Sets for 2, 3 and 4-variable functions [a’ stands for NOT a]
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Karnaugh maps: [II] Truth Table

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

ab ab’

a’b a’b’

a\b [State Set]
b b’

a

a’

22 = 4 cases

 Truth Tables

 determined by the internal functions

a\b [Truth table for AND]

b [on] b’ [off]

a

a’

01

0 0

y=y0●ab+y1●ab’+y2●a’b+y3●a’b’

yAND=y0●ab+y1●ab’+y2●a’b+y3●a’b’
=1●ab+0●ab’+0●a’b+0●a’b’
=ab
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Karnaugh maps: Simple mapping examples
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ab ab’

a’b a’b’

a\b [State Set]
b b’

a

a’

22 = 4 cases

 2-input functions

y=y0●ab+y1●ab’+y2●a’b+y3●a’b’
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Karnaugh maps: Grouping for simplification
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 Rules of grouping: 

 of 1s 

 side by side

 Rules of simplification

“A change of one variable 
when crossing a horizontal or 
vertical boundaries of cells” 

 Walk through a group

 Invariables survive; changed 
ones eliminated 

 Sum of net results of all 
groups (clusters)
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Karnaugh maps: Grouping for simplification
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out = b’

out = c’out = a’c’

abc’d’ abc’d

abcd’ abcd

ac\bd
b b

a

a

ab’c’d ab’c’d’

ab’cd ab’cd’

----b----
b’ b’

-----d-----24 = 16 cases

a’bcd’ a’bcd

a’bc’d’ a’bc’d

a’b’cd a’b’cd’

a’b’c’d a’b’c’d’

--
--

c-
--

-

--
-a

--
-
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Karnaugh maps: Grouping for simplification
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out = cd+c’d’ out = b’+c

out = b’d+a’c’d’ out = abc’d’
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How to build ALU [Arithmetic Logical Unit]

 1-bit building blocks ready to implement, but MIPS word is 32 bits wide.
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 Solution:

Use a mux to chose operations

Perform all operations in parallel

Build separate hardware blocks for each task

Build 32 separate 1-bit ALUs

A cascaded view of 4-bit  ‘Full Adder’
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More about muxes

 Have data bits and control bits (data lines and control lines )

 Control bits select which data bit will pass through: all others are 
blocked

 In general:

 1 control bit selects between 2 data bits,

 2 control bits select between 4 data bits,

 . . .

 n control bits select between 2n data bits

 We can build a mux of any size to serve our purpose
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Data lines (2n)

Control lines (n)

Output: one per mux
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Build Logical Operations

 ALU =

 FIRST: Logical Functions

 the easiest to implement, they map directly into the hardware

 1-bit logical block for AND and OR:

 Mux control line Operation=0 selects a AND b

 Mux control line Operation=1 selects a OR b
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Logical Functions: AND, OR 

Arithmetic Operations
Adder
Subtraction

… …
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Build 1-bit Adder: Theory

 Each bit of addition has

 Three input bits: Ai Bi CarryIni

 Two output bits: Sumi CarryOuti

( CarryIni+1 = CarryOuti )
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Build 1-bit Adder: implementation

 Full adder, also called a (3,2) adder: 3 inputs and 2 outputs

 Half adder, also called (2,2) adder has only 2 inputs, a and b.
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 STEPS to implement the adder:

1. Construct the circuit for Sum

2. Construct the circuit for CarryOut

3. Connect (1) and (2) together
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1-bit Full Adder: truth table and formula

 Sum = 

(A’*B’*CarryIn) + (A’*B*CarryIn’) + (A*B’*CarryIn’) + (A*B*CarryIn)

 CarryOut =

(A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) + (A*B*CarryIn)
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abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’

-----c-----
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1-bit Full Adder: the Sum formula

Sum=(A’*B’*CarryIn) + (A’*B*CarryIn’) + (A*B’*CarryIn’) + (A*B*CarryIn)
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0 1

1 0

a\bc
b b

a

a’

0 1

1 0

-----b-----
b’ b’

-----c-----

 Can we simplify/minimise logic formulas for CarryOut and Sum for 
building the circuit using logic gates?

 Karnaugh table of the Sum formula: … grouping 1s

No 

simplification 

possible

abc’ abc

a’bc’ a’bc

a\bc
b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

----b----
b’ b’
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1-bit Full Adder: the CarryOut formula

CarryOut

=(A’*B*CarryIn) + (A*B’*CarryIn) + (A*B*CarryIn’) + (A*B*CarryIn)

=(B*CarryIn) + (A*CarryIn) + (A*B)
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1 1

0 1

a\bc
b b

a

a’

1 0

0 0

-----b-----
b’ b’

-----c-----

 Karnaugh table of the CarryOut formula: … grouping 1s

(B*CarryIn) +

(A*CarryIn) +

(A*B)

abc’ abc

a’bc’ a’bc

b b

a

a’

ab’c ab’c’

a’b’c a’b’c’

b’ b’
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1-bit Full Adder: formula -> circuit construction 

Sum=(A’*B’*CarryIn) + (A’*B*CarryIn’) 

+ (A*B’*CarryIn’) + (A*B*CarryIn)
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 For Sum  For CarryOut

CarryOut=(B*CarryIn) + 

(A*CarryIn) + 

(A*B)

Digital circuit simulator: 

https://circuitverse.org/

mailto:j.yang@uws.edu.au
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1-bit Full Adder: integrated circuit construction 
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 Connect Sum and CarryOut together

STEP 1 (Sum)

STEP 2 (CarryOut)
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ALU: Adder and Logical operations
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 ALU =
Logical Functions: AND, OR 

Arithmetic Operations
Adder
Subtraction

… …

A 1-bit ALU that

performs AND, OR and

Addition. 

Mux “Operation” signal

selects which operation 

is performed.
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Subtraction 1/3
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 Subtraction: adding the negative version of an operand.

 Recall two’s complement numbers: to create a negative number we 
need to:

1. invert each bit of b

2. add 1

Simply invert 

How about ‘add 1’ ?
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Subtraction 2/3
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 Notice that, the least 
significant bit still has CarryIn 
signal, which is never used for 
addition

 How CarryIn for ALU0 differs

from other CarryIns?

- Initial CarryIn vs. Intermediate 
CarryIns.
- Initial CarryIn can be set at will

 If we set the Initial CarryIn bit 
to 1 instead of 0, we get: 
a+b+1 
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Subtraction 3/3
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 What happens if we now use Binvert for invert b and set the Initial 
CarryIn (at the least significant bit) to 1?

 The adder calculates: a+b+1 = a+(b+1) = a+(-b)=a-b

 This simplicity of hardware implementation of a two’s complement 
adder is good illustration why two’s complement representation is 
commonly used for integer computer arithmetics!

Least significant bit Other bits
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ALU structure so far
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 Operations: AND OR ADD SUB

 Control lines: 000 001 010 110

0 – ADD

1 – SUB

00 – AND

01 – OR

10 – ADD

First bit (LSB) Other bits
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32-bit ALU so far
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Binvert (or Bnegate) Operation

Result0

Result1

Result31

a0

b0

…

a1

b1

a31

b31

thirty two
1-bit ALUs
connected
together
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Set on less than (slt) support
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 slt rd, rs, rt

1 if (rs < rt)
0 else

rd := 

if (rs-rt) <0
else

LSB

 Implement the idea in ALU

 modify 1-bit ALU for the most significant bit (ALU31 for bit 31):

 a new output line (Set – 1 bit) used only for slt

 (by the way we added overflow detection logic, also 
associated with this bit)

 new input line (Less – 32 bits) goes directly to mux

 New control line (111) for slt

Less

MSB
[determines the sign]

..10
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ALU with slt support
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MSB
(ALU31)

LSB
(ALU0)
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Branch support
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 Conditional branch instructions switch either if two registers are 
equal, or if they are not equal:

 beq register1, register2, label (example: beq $s4,$s2, LABEL1)

 bne register1, register2, label (example: bne $s1,$s3, L7)

 How to test that contents of two register is equal?

 a = b means (a – b) = 0

 How to implement the above:

 Subtract b from a

 Add hardware to test if the result is zero

 OR all the outputs together, and invert the output:

Zero = (Result1 + Result2 + .. + Result31)

 Next slide show additional hardware for branch support :

variable
1 (true)  if (a – b) = 0 holds
0 (false) else
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32-bit ALU with branch support
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Zero detector:
1 (a = b holds)
0 otherwise
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Shift instructions
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 What is left:

 logical and arithmetic shifts sll, srl, sra

 Need a new data line for a shifter (L and R)?

 however shifters are much more easily implemented outside 
the ALU.

The symbol commonly used 
to represent ALU. It is
also used to represent an 
adder, so it is labelled ALU
or Adder.

3 Operations: AND OR ADD SUB  …

Control lines: 000 001 010 110

 1-bit ALU: integrated block notation
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 In 1-bit full Adder, the circuit 
construction for ‘CarryOut’ is 
correct:
1) True 2) False

Revision and quiz
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 Given the following Karnaugh
map. The output can be 
expressed by out = c’.

1) True 2) False

 How ALU is used to support the branch instruction?

beq register1, register2, label
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Recommended readings
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Text readings are listed in Teaching 
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check 
whether eBook available on library site 

PH6: companion materials (e.g. online 
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online 
sections for further readings) 
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263
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