
Topics

 Datapath

 x stages performing
computation [x=5]

 y hardware components
needed

 Combinational and

Sequential logic

 Logic Gates

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 09: Datapath and Control

SONGS ABOUT COMPUTER SCIENCE

DIGITAL LOGIC
Written by Emmanuel Schanzer
To the tune of: A Spoonful of Sugar
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

To get all our programs to run
There must be compilation done
Into ones and zer-os:
Seems rather tame.

But how do ones and zeros make
Our hardware bump and shake?
Trans-..is-..tor..gates!
It won't be hard to see.
We Use...

Digital logic: inputs, switches...and grounds.
inputs, switches...and grounds.
inputs, switches...and grounds.
Just by abstracting voltage, into zer-o's and ones.
We can hack all night and day.
… …

mailto:j.yang@uws.edu.au

Five components of a Computer

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Control

Datapath

Memory

Devices

Output

Input

 Processor (CPU):

 Datapath:

 Control:

Elements that process data and addresses in the CPU

[e.g. registers, ALUs, …]

Determines which computation is performed [e.g.

Routes data thru datapath (which regs, which ALU op)

mailto:j.yang@uws.edu.au

Connection and Communication via Bus

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Control

Datapath

Memory

Devices

Output

Input

 A Bus is a shared communication link

 Single set of wires used to connect multiple subsystems

 A Bus is also a fundamental tool for composing large,
complex systems

 … this topic is fully covered in Computer Architecture course…

mailto:j.yang@uws.edu.au

Datapath concept

 Possible approach: build a single block to “execute an instruction”,
which designed to perform all necessary operations starting from
fetching the instruction

 Possible, but too bulky, inefficient and inflexible

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Modular approach: break up the process of “executing an
instruction” into stages, then connect stages… datapath is born!

 Advantages:

 smaller, easier to understand and easier design blocks

 easier to optimise: one block can be changed without
affecting the others

Elements that process
data and addresses
in the CPU

Fetch Decode Exec

mailto:j.yang@uws.edu.au

Datapath Stages

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

P
C

+4

In
s
tr

u
c
ti

o
n

m
e
m

o
ry

re
g
is

te
rs

D
a

ta
m

e
m

o
ry

ALU

stage 4 OR stage 5

1. 2. 3. 4. 5.

rd

rs

rt

imm

 PC (Program Counter)…

 Memory…

 Various registers ...

 ALU …

1. Fetch 2. Decode 3. ALU 4. Mem 5. Reg

mailto:j.yang@uws.edu.au

Datapath Stages: 1

 There is a wide variety of MIPS instructions: what
general steps do they have in common?

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 1: Instruction Fetch

PC=PC+4

in
st

ru
ct

io
n

m
e
m

o
ry

P
C

mailto:j.yang@uws.edu.au

Datapath Stages: 2

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 2: Instruction Decode [0x 02324020 --- refer to ‘instruction

decoding.pdf’ in materials folder]

5-bit decoder:
specifies
registers 0 - 31

register operands

555

mailto:j.yang@uws.edu.au

Datapath Stages: 3

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 3: ALU (Arithmetic-Logic Unit)

 …

 Perform arithmetic/logical operation

 …

mailto:j.yang@uws.edu.au

Datapath Stages: 4 and 5

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 5: Register Write

Stage 4: Memory Access (load/store data)

Calculate memory address
sw

lw

0x 0040003c

mailto:j.yang@uws.edu.au

Datapath Instruction Example

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

+4

in
st

ru
ct

io
n

m
e
m

o
ry

re
g
is

te
rs

D
a
ta

m
e
m

o
ry

ALUP
C

rd

rs

rt

imm

3 1 2

reg[1]

reg[2]

reg[1]
+

reg[2]

look at a sample instruction add: add $r3, $r1, $r2 # r3 = r1+r2

mailto:j.yang@uws.edu.au

Role of Controller

11
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Controller causes the right transfers to happen.

P
C

+4

in
st

ru
ct

io
n

m
e
m

o
ry

re
g
is

te
rs

D
a
ta

m
e
m

o
ry

ALU

rd

rs

rt

imm

Controller

opcode, funct

mailto:j.yang@uws.edu.au

R-Format Instructions

12
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

mailto:j.yang@uws.edu.au

Branch Instructions

13
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

bne $s0, $s1, Exit

bi-directional

address words

mailto:j.yang@uws.edu.au

Combinational and Sequential Circuits

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A complex functional component is implemented using lower level
components - there are two classes of logic circuits:

COMBINATIONAL circuits SEQUENTIAL/STATE circuits

No memory Have internal memory (or: elements that
contain state)

The output depends only on
the input

 the output depends both on the set of
inputs supplied and the value stored in
memory, which is called the state of the
logic block

 how to ensure memory element is
updated neither too soon, nor too late?

Truth Tables, Boolean Algebra Finite state machine (Mealy, Moore)

 …more on sequential circuits later, first: combinational logic…

mailto:j.yang@uws.edu.au

Truth Tables, Boolean Algebra

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Combinational logic does not have memory, so it’s described by
defining the values of the outputs for each possible set of input
values, as in truth tables.

 Another approach: one can express the logic function with logic
equations with the use of Boolean algebra.

Main Boolean algebra laws: [“+” is operator OR, and “●” is
operator AND]

Identity law A+0=A and A ● 1=A

Zero and One laws A+1=1 and A ● 0=0

Inverse laws A+Ā=1 and A ● Ā=0

Commutative laws A+B=B+A and A ● B= B ● A

Associative laws A+(B+C)=(A+B)+C and A ● (B ● C)=(A ● B) ● C

Distributive laws A ● (B+C)=(A ● B)+ (A ● C) and

A+(B ● C)=(A+B) ● (A+C)

mailto:j.yang@uws.edu.au

Logic Gates, Inverter and Multiplexor (Mux)

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1. AND gate (c = a ● b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor (Mux)

(if d = = 0, c = a;

else c = b)

mailto:j.yang@uws.edu.au

Selector (Decoder)

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Only one output is asserted for each input combination

 For example:

if inputs In0, In1, In2 are: 1 0 0 (decimal 4):

Out4 = 1, all other outputs are 0

Out0
Out1
Out2
Out3
Out4
Out5
Out6
Out7

3-bit decoder:
inputs In0, In1, In2

0

0

0

0

1

0

0

0

Convert one bit-pattern to another bit-pattern

mailto:j.yang@uws.edu.au

Universal Gates [Exercise]

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 In fact ALL logic functions can be constructed with only a single
gate type, if it is inverting.

 Common inverting gates are NOR (inverted OR) and NAND
(inverted AND).

 NOR and NAND are called universal gates.

Exercise:
prove the above by implementing
AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

mailto:j.yang@uws.edu.au

Universal Gates [Exercise]

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Exercise:
prove the above by implementing AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

AND

OR

NOT

A
Ā

A
Ā

mailto:j.yang@uws.edu.au

XOR implementation [Exercise]

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How to construct eXclusive OR (XOR)?

Ordinary Implementation Universal Implementation

?

mailto:j.yang@uws.edu.au

Multiplexor implementation [Exercise]

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How to construct Multiplexor (Mux)?

Ordinary Implementation Universal Implementation

?

(Select)

S c

0 a

1 b

mailto:j.yang@uws.edu.au

Arrays of logic elements

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Used when combinational operations need to be performed on
entire word (32 bits)

 for example when the result of an instruction that is written
into a register can come from one of two sources

32-bit wide 2-to-1 multiplexor

3
2
-b

it
 w

id
e
 m

u
lt
ip

le
x
o
r

is
 a

n

a
rr

a
y
 o

f
3
2
 1

-b
it
 m

u
lt
ip

le
xo

rs

mailto:j.yang@uws.edu.au

Programmable Logic Array (PLA)

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Two-levels sum of products representation

 the 1st stage: array of AND gates that forms a set of product
terms (also known as miniterms),

 the 2nd stage: array of OR gates each of which forms a
logical sum of any number of the product terms.

1st stage

2nd stage

mailto:j.yang@uws.edu.au

Sample PLA 1/2

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Implements logic from page C-13 in the textbook (three inputs,
three outputs)

2nd stage

1st stage

See a simplified drawing in next slide

Ā ● B ● C

mailto:j.yang@uws.edu.au

Sample PLA 2/2

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 As before, simplified drawing shows AND and OR planes.

 Note inputs A, B and C run the width of AND plane in both
true and complement form.

true

complement

Ā ● B ● C

mailto:j.yang@uws.edu.au

Clock

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Clock: free running signal with fixed cycle time (clock period)

 Clock determines when to write memory element

 level-triggered – act (store) on clock high (or low)

 edge-triggered – act (store) only on clock edge

 We will consider here only negative (falling) edge-triggered
clocking methodology

mailto:j.yang@uws.edu.au

Clock in MIPS (5 steps of datapath)

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Synchronous (or clocked) combinational circuits

 Single-cycle machine: does everything in one clock cycle

 instruction execution = up to 5 steps

 must complete 5th step before cycle ends

clock
signal

rising clock edge

falling clock edge

instruction execution

step 1/step 2/step 3/step 4/step 5

datapath
stable

when the
active clock
edge occurs

mailto:j.yang@uws.edu.au

Sequential logic: memory elements

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 All memory element store states:

 The output from any memory element depends BOTH on the
inputs and on the value stored inside the memory element.

 The simplest memory elements are unclocked (see S-R latch
next).

mailto:j.yang@uws.edu.au

SR (set-reset) Latch, unclocked

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 SR-latch implemented with NOR Gates

 Output depends on both inputs and values stored (previous state)

 S = 1 and R = 1 not allowed

 R=S=0 (removal of the input combination of 0’s and 1’s), output will
not change (NC) -- depends on the values in previous state

 Otherwise output copying input (set or reset action)

S=1 asserted, set Q=1 asserted;

R asserted, Q deasserted.

mailto:j.yang@uws.edu.au

D Latch (clocked), or: Delay Flip-Flop

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 When the clock C is asserted, the latch is opened, and the output
Q immediately assumes the value of the D input

 Sometimes called a transparent latch (when the latch opened, Q
changes as D changes)

a clock
signal

value to
be stored

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Clocked SR Flip-Flop” at
https://www.falstad.com/circuit/e-clockedsrff.html

mailto:j.yang@uws.edu.au

D flip-flop with a falling-edge trigger

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Flip-flop: state changes only on a clock edge

 Master: the first latch, when the clock C is asserted Q follows D

 Slave: the second latch, when the clock C falls gets its input
from the output of the master latch.

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Master-Slave Flip-Flop” at
https://www.falstad.com/circuit/e-masterslaveff.html

mailto:j.yang@uws.edu.au

Register File Implementation

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A register file with two read ports and one write port.

 Can be implemented with a decoder for each read or write port and
an array of D flip-flops used as registers.

Appendix C, C-54

 Register: multiple flip-flops forming a single entity with the same
clock signal

mailto:j.yang@uws.edu.au

Register File Implementation 1/2 (read)

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Implementation of two register read ports for a 32-bit wide register
file

 ‘read register’ signal used as the multiplexor selector signal.

Read register
number 1

Read register
number 2

Read data 1

Read data 2

mailto:j.yang@uws.edu.au

Register File Implementation 2/2 (write)

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Decoder used together with the write signal to determine which
register to write.

 All three inputs will have set-up and hold-time constraints.

Write

Register number

Register data

$30

mailto:j.yang@uws.edu.au

Revision

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 The following block-diagram demonstrates the branch instruction
processing. Explain what do ‘Sign-extend’ and ‘Shift left 2’ perform.

 The two-stage Programmable Logic Array (PLA)

models its output as “a sum of products”.

What does it mean?

bne $s0, $s1, Exit

mailto:j.yang@uws.edu.au

Recommended readings

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

