Topics

= Datapath

= X stages performing
computation [x=5]

= vy hardware components
needed

= Combinational and

Sequential logic
= Logic Gates

Lecture 09: Datapath and Control

' SONGS ABOUT COMPUTER SCIENCE

DIGITAL LOGIC
’ Written by Emmanuel Schanzer

To the tune of: A Spoonful of Sugar
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

+ To get all our programs to run

. There must be compilation done
\ Into ones and zer-os:

i Seems rather tame.

\ But how do ones and zeros make
» Our hardware bump and shake?

i Trans-..is-..tor..gates!

It won't be hard to see.

+ We Use...

 Digital logic: inputs, switches...and grounds.

i inputs, switches...and grounds.

inputs, switches...and grounds.

+ Just by abstracting voltage, into zer-o's and ones.
: We can hack all night and day.
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Five components of a Computer

Processor Devices

' Control Memory

, Datapath'

Input

)

s Processor (CPU):

= Datapath: Elements that process data and addresses in the CPU
[e.g. registers, ALUs, ...]

= Control: Determines which computation is performed [e.g.
Routes data thru datapath (which regs, which ALU op)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 2
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Connection and Communication via Bus

Processor Devices

' Control Memory ¢== | Input

)

, Datapath'

= A Bus is a shared communication link
= Single set of wires used to connect multiple subsystems

= A Bus is also a fundamental tool for composing large,
complex systems

= ... this topic is fully covered in Computer Architecture course...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au



mailto:j.yang@uws.edu.au

Datapath concept

= Possible approach: build a single block to “execute an instruction”,
which designed to perform all necessary operations starting from
fetching the instruction

= Possible, but too bulky, inefficient and inflexible

;;;;;

= Modular approach: break up the process of “executing an
instruction” into stages, then connect stages... datapath is born!

= Advantages:
= smaller, easier to understand and easier design blocks

= easier to optimise: one block can be changed without

ffecting the oth
aftecting the others Elements that process

Fetch Decade Exec | | data and addresses
= = in the CPU
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Datapath Stages

s PC (Program Counter)...

= Memory...
= Various registers ...
. ALU ... l
rd wn >
O S > rs 2 -
5 M 5 = 2 > ALU 8c
3 € |rt D B &
50— £ > a
0w £ =
= . >
€

stage 4 OR stage 5
<€ —> € > € > € > €—>

1. Fetch 2. Decode 3. ALU 4. Mem 5. Reg
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Datapath Stages: 1

= There is a wide variety of MIPS instructions: what
general steps do they have in common?

Stage 1: Instruction Fetch

@)
PC=PC+4 5 )

instruction
memory

Add

PC Read address

|

Instruction ——

Instruction
memory
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Datapath Stages: 2

Stage 2: Instruction Decode [0x 02324020 --- refer to ‘instruction
decoding.pdf’ in materials folder]

(x 02324020 - what MIPS instruction is it?

register operands

0 2

3 2

4 0

2

0

oioioio|lnioi1i

0[0:i0i1i{1[0i0:i1:0

oi1ioioloioionio

op

3§30 29 28 2T 26 25 2452322 21 20519318117 16§

s [

15§ 14513812 11:10§ 9 ¢ 8 §

rd shamt

0i0i1i0
TiB6i5i4i

] =1

inio
i 1: 0

0
7]
funct

x]

0 00D 0 0 D1

0

01 00 0

0000 G0

1 000 0D

16

0001100
1116

—

g
Ra8=5t0

R-type instruction

R17=5s1 R18=0s2

ANS

not used by "add”

dec: 32 or hex: 20

add

addrd, rs, it

WER: 3dd 52, $17, $15 f=> add 0,
J 9

5

551, lh*

Reg no.

rd
010 1 0 0 O
5-bit decoder:
specifies

registers 0 - 31

-

Data

|t for for

Read register
number 1 Read| __
data 1
Read register
number 2
Write Register file
register Read
ea
Write data 2
data Write
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Datapath Stages: 3

_)g, Read register ren
ber 1 ea
Regno. 5| data 1 [N
Av, Read register .
number 2 \
5 Write  egister file \‘
S register nead [
ea 1
Data Write data 2 /’ //
B data Write / /
/ /
/ ’
e
/ /
/ /
: : : : ! ALU operation
Stage 3: ALU (Arithmetic-Logic Unit) i P
= :
= Perform arithmetic/logical operation \ roro |
\ .-I L) .
N ALU ALy
Y result
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Datapath Stages: 4 and 5

Stage 4: Memory Access (load/store data)

Calculate memory address

Stage 5: Register Write

SW ‘ MemWrite

Reg no.

| o 4o for

Data

Read
—= Address data —
Data
Write memory
data
0x 0040003c
IW ‘ MemRead
Read register
number 1 Read] ___
data 1
Read register
number 2
Write Register file
register
Read .
Write data 2
data Write

1
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Datapath Instruction Example

l reg[1]
+
_ rd » regl1, reg[2]
o > E 9 >
—| ¥ > =55 2| © C O f—
= l S B [t MY 5 E
b q) | - —
o £ &
-
» — . )
€

look at a sample instruction add: add $r3, $r1, $r2 # r3 =r1+r2
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= Controller causes the right transfers to happen.

Role of Controller

PC

r

RS

instruction
memory

registers €

v v

iImm

+4

>

A

%

T

opcode, funct

\ 4
Controller

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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R-Format Instructions

= Read two register operands
= Perform arithmetic/logical operation
= Write register result

.
S | Read ALU operation
- register 1 ) 4 i
egister Read
EE—
Register ) 5 |Read data 1
numbers | register 2
5 | \Write Registers > Data
S VI
. register Read
: data 2
S :
I
‘ &
\ RegWrite
S e
a. Registers Rl b. ALU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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Branch Instructions

= Read register operands
= Compare operands
« Use ALU, subtract and check Zero output

u CaICUIate ta I‘get add Fess PC +4 from instruction datapath —
address words Add Sum g%g‘t’“
; Read ALU operation
bne $SO, $Sl, EXxit Instruction register 1 Read R
Read data 1
| register 2 To branch
i ALU Zero ,
Write Registers control logic
register Read
Write data 2
data
RegWrite
16

bi-directional
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Combinational and Sequential Circuits

= A complex functional component is implemented using lower level
components - there are two classes of logic circuits:

COMBINATIONAL circuits SEQUENTIAL/STATE circuits

No memory Have internal memory (or: elements that
contain state)

The output depends only on | = the output depends both on the set of
the input inputs supplied and the value stored in

memory, which is called the state of the
logic block

= how to ensure memory element is
updated neither too soon, nor too late?

inputs

—
. _ output
b—.' Combinational > flip-flop » F

o | digital circuit “memory”

feedback

Truth Tables, Boolean Algebra | Finite state machine (Mealy, Moore)
= ...more on sequential circuits later, first: combinational logic...
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Truth Tables, Boolean Algebra

= Combinational logic does not have memory, so it's described by
defining the values of the outputs for each possible set of input
values, as in truth tables.

= Another approach: one can express the logic function with logic
equations with the use of Boolean algebra.

Main Boolean algebra laws: [*+" is operator OR, and “." is
operator AND]

Identity law A+0=Aand A e 1=A
Zero and One laws | A+1=1and A e 0=0
Inverse laws A+A=1 and A e A=0

Commutative laws |A+B=B+Aand Ae B=Be A
Associative laws A+(B+C)=(A+B)+C and Ae (Be C)=(AeB) e C

Distributive laws A e (B+C)=(A e B)+ (A e C) and
A+(B e C)=(A+B) e (A+C)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 15



mailto:j.yang@uws.edu.au

1. AND gate (c=a e b) Z:D—'

3. Inverter (c = a) a

2. ORgate(c=a+b) [ ) >—
ADDQ—FC
d

4. Multiplexor (Mux)
(ifd==0,c=a; c
else ¢ = b) AN

C

Logic Gates, Inverter and Multiplexor (Mux)

_a | b | c=a.b]

0 0 0

0 1 0

1 0 0

1 1 1
__a | b | c=a+Db]

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 0

0 a

1 b
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Selector (Decoder)

Only one output is asserted for each input combination
For example:
if inputs In0, In1, In2 are: 1 0 0 (decimal 4):
Out4 = 1, all other outputs are 0

* Outo
— Outl

— Out2
3-bit decoder: > Out3

inputs In0, In1, In2 —\" Decoder | | outa
— Outb

—— Outé6
I Out?7

oO|lco|jOoO|Im|O|O|OC|O

Convert one bit-pattern to another bit-pattern

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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Universal Gates [Exercise]

= In fact ALL logic functions can be constructed with only a single

gate type, if it is inverting.

= Common inverting gates are NOR (inverted OR) and NAND

(inverted AND).

= NOR and NAND are called universal gates.

Exercise:
prove the above by implementing
AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

A

)

B

A
0
a
1
1

~loe|l-|alm

Q|S|C |~ |x

~|lo|—-|o|lm

D—L—L—LH
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Universal Gates [Exercise]

Exercise:

prove the above by implementing AND, OR and NOT:
1. using only NOR gates,
2. using only NAND gates.

AND ) NOT
¥ AT
. | DD_ A _EDQ— i

- =
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XOR implementation [Exercise]

How to construct eXclusive OR (XOR)?

X b4
ij‘Z g
1
1

= OO

O —0O|N

Ordinary Implementation

Universal Implementation

=Dy
—y

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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Multiplexor implementation [Exercise]

How to construct Multiplexor (Mux)?

A—>

B—

o~z

S C
0 a
1 b

Ordinary Implementation

Universal Implementation

A
J_ﬁ)‘c

S (Select)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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Arrays of logic elements

= Used when combinational operations need to be performed on
entire word (32 bits)

= for example when the result of an instruction that is written
into a register can come from one of two sources

Select

Select l

A ——» M

c
© c>;2 A31—
32 8°2) u » C31
A Q
M 32 c E—) o .2 B31— ¥
2] x d S =
B Q
a £ A
2 A —
o . = u — c30
32-bit wide 2-to-1 multiplexor = x
) BEG__F\__/ -
N -
-
U
= O
2%
M ©

u z0
X

BO ——»
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Programmable Logic Array (PLA)

= Two-levels sum of products representation

= the 1st stage: array of AND gates that forms a set of product
terms (also known as miniterms),

= the 2nd stage: array of OR gates each of which forms a
logical sum of any humber of the product terms.

—— 1st stage
Inputs < AND gates
product terms I
{miniterms)
2nd stage | —
OR gates > Outputs
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Sample PLA 1/2

= Implements logic from page C-13 in the textbook (three inputs,
three outputs)

Inputs
A - . » * ® . »

i U P g g

[ 1]
sdvsiviuivule

- = : Outputs
A.BTC —— ._37
» r - ]
=

See a simplified drawing in next slide 2nd stage
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Sample PLA 2/2

= As before, simplified drawing shows AND and OR planes.

= Note inputs A, B and C run the width of AND plane in both
true and complement form.

Inputs — tre
A—e +r—o ¢ ¢ —
complement >o—. +—o
BE—e +—@ ——
AND plane
>0—¢ ¢ ¢
C—eo | | & ®
Dc » ——
— Outputs
A°B°C- r—o—o—0——¢—¢ D
OR plane * ——9 E
4 F

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 25



mailto:j.yang@uws.edu.au

Clock

= Clock: free running signal with fixed cycle time (clock period)

high (1) ——

low (0)

«

period | rising edge falling edge

s Clock determines when to write memory element
= |evel-triggered — act (store) on clock high (or low)
= edge-triggered — act (store) only on clock edge

= We will consider here only negative (falling) edge-triggered
clocking methodology

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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Clock in MIPS (5 steps of datapath)

= Synchronous (or clocked) combinational circuits
= Single-cycle machine: does everything in one clock cycle
= instruction execution = up to 5 steps
= must complete 5th step before cycle ends
falling clock edge

rising clock edge

| |
| |

| |

clock | |
signal ' |
I | NI

when the : :datapath :
active clock instruction execution jstable |
| |

edge occurs step 1/step 2/step 3/step 4/step 5 | I
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Sequential logic: memory elements

= All memory element store states:

= The output from any memory element depends BOTH on the
inputs and on the value stored inside the memory element.

= The simplest memory elements are unclocked (see S-R latch

next).

IN

primary inputs

g

~

LOGIC
~ IMEMORY

feedback inputs -

memory-combinational logic feedback loop

COMBINATIONAL
OuUT >

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au
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SR (set-reset) Latch, unclocked

= SR-latch implemented with NOR Gates

= QOutput depends on both inputs and values stored (previous state)
= S=1andR =1 not allowed

= R=S=0 (removal of the input combination of 0’s and 1's), output will
not change (NC) -- depends on the values in previous state

= Otherwise output copying input (set or reset action)

R (reset)

o

reminder:
1 NOR gate:
o :

B
? SNF P‘é]C S=1 asserted, set Q=1 asserted; g ‘1] :]
A ERGRE R asserted, Q deasserted. 1o 1o
1]11]0]0 S @ D L B
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D Latch (clocked), or: Delay Flip-Flop

When the clock C is asserted, the latch is opened, and the output
Q immediately assumes the value of the D input

Sometimes called a transparent latch (when the latch opened, Q
changes as D changes)

aclock c—se

signal o | —Q
value to | 5
be stored 4
D FYI - Electronics Demonstrations:
“Clocked SR Flip-Flop” at
https://www.falstad.com/circuit/e-clockedsrff.html
D | I
S -
| C controls the behavior of Q
Q 7 -Prevosst attempting to learn from D
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D flip-flop with a falling-edge trigger

= Flip-flop: state changes only on a clock edge
= Master: the first latch, when the clock C is asserted Q follows D

= Slave: the second latch, when the clock C falls gets its input
from the output of the master latch.

D (] Q D Q) ]
D D

latch latch
Z C Q — O

FYI - Electronics Demonstrations:
“Master-Slave Flip-Flop” at

https://www.falstad.com/circuit/e-masterslaveff.html

D — |
C I

C controls the behavior of Q
q | attempting to learn from D
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Register File Implementation

Appendix C, C-54

Register: multiple flip-flops forming a single entity with the same

I3 12 11 10

> reg(4)

Q3 Q2 Q1 Q0

clock signal i3 2 1 0
4-bit register
- — D e ) —
Q- Q- 5 Qf— _Q
dk | 1_ L_> 1_ [t —|
Q3 Q2 Ql i::ln

A register file with two read ports and one write port.
Can be implemented with a decoder for each read or write port and

an array of D flip-flops used as registers.

Read register
number 1

Read register
number 2

. Register file
Write

register

L[] ]

Write
data

Write

Fead
data 1

Read
data 2

|
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Register File Implementation 1/2 (read)

= Implementation of two register read ports for a 32-bit wide register
file
= ‘read register’ signal used as the multiplexor selector signal.

Read register 1

N
number 1 Register 0

-
Register 1 [——¢—7T1T—»| 1
. 2 ] -
Register n — - | X Read data 1
Registern [—¢ -

Read register 1
number 2 )

"| . [ Read data 2
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Register File Implementation 2/2 (write)

s Decoder used together with the write signal to determine which
register to write.

= All three inputs will have set-up and hold-time constraints.

Write

|

C
Register 0
D

C
Register 1
D

0
1

Register number n-to-1 | - 1

decoder] -

LTI

n— M-
I

T
)_

Registern — 1
D

C

Register n

Register data

D
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Revision

= The following block-diagram demonstrates the branch instruction

processing. Explain what do ‘Sign-extend” and ‘Shift left 2" perform.

PC +4 from instruction datapath —

bne $s0, $s1, Exit Instruction [ |

Read
register 1

Read
register 2

Write
register

Write
data

Registers

Read

Add Sum

data 1

Read

data 2

RegWrite |

16
———

Sign- 32
extend

= The two-stage Programmable Logic Array (PLA) {
models its output as “a sum of products”.

What does it mean?

ALU operation

Branch
target

To branch
control logic

nputsl AND gates
ommterme— LT TTTTT]
OR gates
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Recommended readings

General Data

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials

ascii_chart.pdf | bias_representation.pdf | HP_AppA. nt:lH-lnstructlon decoding.pdf | masking help.pdf | PCSpim.pdf |

PCSpim Portable Version | Library materials

PHG: Appendix B: The Basics of Logic Design
PH35: Appendix B: The Basics of Logic Design
PH4: Appendix C: The Basics of Logic Design

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407

7263/?ISBN=9780124077263
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