
Topics

 Datapath

 x stages performing
computation [x=5]

 y hardware components
needed

 Combinational and

Sequential logic

 Logic Gates

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 09: Datapath and Control

SONGS ABOUT COMPUTER SCIENCE

DIGITAL LOGIC
Written by Emmanuel Schanzer
To the tune of: A Spoonful of Sugar
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

To get all our programs to run
There must be compilation done
Into ones and zer-os:
Seems rather tame.

But how do ones and zeros make
Our hardware bump and shake?
Trans-..is-..tor..gates!
It won't be hard to see.
We Use...

Digital logic: inputs, switches...and grounds.
inputs, switches...and grounds.
inputs, switches...and grounds.
Just by abstracting voltage, into zer-o's and ones.
We can hack all night and day.
… …

mailto:j.yang@uws.edu.au

Five components of a Computer

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Control

Datapath

Memory

Devices

Output

Input

 Processor (CPU):

 Datapath:

 Control:

Elements that process data and addresses in the CPU

[e.g. registers, ALUs, …]

Determines which computation is performed [e.g.

Routes data thru datapath (which regs, which ALU op)

mailto:j.yang@uws.edu.au

Connection and Communication via Bus

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Control

Datapath

Memory

Devices

Output

Input

 A Bus is a shared communication link

 Single set of wires used to connect multiple subsystems

 A Bus is also a fundamental tool for composing large,
complex systems

 … this topic is fully covered in Computer Architecture course…

mailto:j.yang@uws.edu.au

Datapath concept

 Possible approach: build a single block to “execute an instruction”,
which designed to perform all necessary operations starting from
fetching the instruction

 Possible, but too bulky, inefficient and inflexible

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Modular approach: break up the process of “executing an
instruction” into stages, then connect stages… datapath is born!

 Advantages:

 smaller, easier to understand and easier design blocks

 easier to optimise: one block can be changed without
affecting the others

Elements that process
data and addresses
in the CPU

Fetch Decode Exec

mailto:j.yang@uws.edu.au

Datapath Stages

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

P
C

+4

In
s
tr

u
c
ti

o
n

m
e
m

o
ry

re
g
is

te
rs

D
a

ta
m

e
m

o
ry

ALU

stage 4 OR stage 5

1. 2. 3. 4. 5.

rd

rs

rt

imm

 PC (Program Counter)…

 Memory…

 Various registers ...

 ALU …

1. Fetch 2. Decode 3. ALU 4. Mem 5. Reg

mailto:j.yang@uws.edu.au

Datapath Stages: 1

 There is a wide variety of MIPS instructions: what
general steps do they have in common?

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 1: Instruction Fetch

PC=PC+4

in
st

ru
ct

io
n

m
e
m

o
ry

P
C

mailto:j.yang@uws.edu.au

Datapath Stages: 2

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 2: Instruction Decode [0x 02324020 --- refer to ‘instruction

decoding.pdf’ in materials folder]

5-bit decoder:
specifies
registers 0 - 31

register operands

555

mailto:j.yang@uws.edu.au

Datapath Stages: 3

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 3: ALU (Arithmetic-Logic Unit)

 …

 Perform arithmetic/logical operation

 …

mailto:j.yang@uws.edu.au

Datapath Stages: 4 and 5

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stage 5: Register Write

Stage 4: Memory Access (load/store data)

Calculate memory address
sw

lw

0x 0040003c

mailto:j.yang@uws.edu.au

Datapath Instruction Example

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

+4

in
st

ru
ct

io
n

m
e
m

o
ry

re
g
is

te
rs

D
a
ta

m
e
m

o
ry

ALUP
C

rd

rs

rt

imm

3 1 2

reg[1]

reg[2]

reg[1]
+

reg[2]

look at a sample instruction add: add $r3, $r1, $r2 # r3 = r1+r2

mailto:j.yang@uws.edu.au

Role of Controller

11
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Controller causes the right transfers to happen.

P
C

+4

in
st

ru
ct

io
n

m
e
m

o
ry

re
g
is

te
rs

D
a
ta

m
e
m

o
ry

ALU

rd

rs

rt

imm

Controller

opcode, funct

mailto:j.yang@uws.edu.au

R-Format Instructions

12
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

mailto:j.yang@uws.edu.au

Branch Instructions

13
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

bne $s0, $s1, Exit

bi-directional

address words

mailto:j.yang@uws.edu.au

Combinational and Sequential Circuits

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A complex functional component is implemented using lower level
components - there are two classes of logic circuits:

COMBINATIONAL circuits SEQUENTIAL/STATE circuits

No memory Have internal memory (or: elements that
contain state)

The output depends only on
the input

 the output depends both on the set of
inputs supplied and the value stored in
memory, which is called the state of the
logic block

 how to ensure memory element is
updated neither too soon, nor too late?

Truth Tables, Boolean Algebra Finite state machine (Mealy, Moore)

 …more on sequential circuits later, first: combinational logic…

mailto:j.yang@uws.edu.au

Truth Tables, Boolean Algebra

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Combinational logic does not have memory, so it’s described by
defining the values of the outputs for each possible set of input
values, as in truth tables.

 Another approach: one can express the logic function with logic
equations with the use of Boolean algebra.

Main Boolean algebra laws: [“+” is operator OR, and “●” is
operator AND]

Identity law A+0=A and A ● 1=A

Zero and One laws A+1=1 and A ● 0=0

Inverse laws A+Ā=1 and A ● Ā=0

Commutative laws A+B=B+A and A ● B= B ● A

Associative laws A+(B+C)=(A+B)+C and A ● (B ● C)=(A ● B) ● C

Distributive laws A ● (B+C)=(A ● B)+ (A ● C) and

A+(B ● C)=(A+B) ● (A+C)

mailto:j.yang@uws.edu.au

Logic Gates, Inverter and Multiplexor (Mux)

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1. AND gate (c = a ● b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor (Mux)

(if d = = 0, c = a;

else c = b)

mailto:j.yang@uws.edu.au

Selector (Decoder)

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Only one output is asserted for each input combination

 For example:

if inputs In0, In1, In2 are: 1 0 0 (decimal 4):

Out4 = 1, all other outputs are 0

Out0
Out1
Out2
Out3
Out4
Out5
Out6
Out7

3-bit decoder:
inputs In0, In1, In2

0

0

0

0

1

0

0

0

Convert one bit-pattern to another bit-pattern

mailto:j.yang@uws.edu.au

Universal Gates [Exercise]

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 In fact ALL logic functions can be constructed with only a single
gate type, if it is inverting.

 Common inverting gates are NOR (inverted OR) and NAND
(inverted AND).

 NOR and NAND are called universal gates.

Exercise:
prove the above by implementing
AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

mailto:j.yang@uws.edu.au

Universal Gates [Exercise]

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Exercise:
prove the above by implementing AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

AND

OR

NOT

A
Ā

A
Ā

mailto:j.yang@uws.edu.au

XOR implementation [Exercise]

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How to construct eXclusive OR (XOR)?

Ordinary Implementation Universal Implementation

?

mailto:j.yang@uws.edu.au

Multiplexor implementation [Exercise]

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How to construct Multiplexor (Mux)?

Ordinary Implementation Universal Implementation

?

(Select)

S c

0 a

1 b

mailto:j.yang@uws.edu.au

Arrays of logic elements

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Used when combinational operations need to be performed on
entire word (32 bits)

 for example when the result of an instruction that is written
into a register can come from one of two sources

32-bit wide 2-to-1 multiplexor

3
2
-b

it
 w

id
e
 m

u
lt
ip

le
x
o
r

is
 a

n

a
rr

a
y
 o

f
3
2
 1

-b
it
 m

u
lt
ip

le
xo

rs

mailto:j.yang@uws.edu.au

Programmable Logic Array (PLA)

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Two-levels sum of products representation

 the 1st stage: array of AND gates that forms a set of product
terms (also known as miniterms),

 the 2nd stage: array of OR gates each of which forms a
logical sum of any number of the product terms.

1st stage

2nd stage

mailto:j.yang@uws.edu.au

Sample PLA 1/2

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Implements logic from page C-13 in the textbook (three inputs,
three outputs)

2nd stage

1st stage

See a simplified drawing in next slide

Ā ● B ● C

mailto:j.yang@uws.edu.au

Sample PLA 2/2

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 As before, simplified drawing shows AND and OR planes.

 Note inputs A, B and C run the width of AND plane in both
true and complement form.

true

complement

Ā ● B ● C

mailto:j.yang@uws.edu.au

Clock

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Clock: free running signal with fixed cycle time (clock period)

 Clock determines when to write memory element

 level-triggered – act (store) on clock high (or low)

 edge-triggered – act (store) only on clock edge

 We will consider here only negative (falling) edge-triggered
clocking methodology

mailto:j.yang@uws.edu.au

Clock in MIPS (5 steps of datapath)

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Synchronous (or clocked) combinational circuits

 Single-cycle machine: does everything in one clock cycle

 instruction execution = up to 5 steps

 must complete 5th step before cycle ends

clock
signal

rising clock edge

falling clock edge

instruction execution

step 1/step 2/step 3/step 4/step 5

datapath
stable

when the
active clock
edge occurs

mailto:j.yang@uws.edu.au

Sequential logic: memory elements

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 All memory element store states:

 The output from any memory element depends BOTH on the
inputs and on the value stored inside the memory element.

 The simplest memory elements are unclocked (see S-R latch
next).

mailto:j.yang@uws.edu.au

SR (set-reset) Latch, unclocked

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 SR-latch implemented with NOR Gates

 Output depends on both inputs and values stored (previous state)

 S = 1 and R = 1 not allowed

 R=S=0 (removal of the input combination of 0’s and 1’s), output will
not change (NC) -- depends on the values in previous state

 Otherwise output copying input (set or reset action)

S=1 asserted, set Q=1 asserted;

R asserted, Q deasserted.

mailto:j.yang@uws.edu.au

D Latch (clocked), or: Delay Flip-Flop

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 When the clock C is asserted, the latch is opened, and the output
Q immediately assumes the value of the D input

 Sometimes called a transparent latch (when the latch opened, Q
changes as D changes)

a clock
signal

value to
be stored

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Clocked SR Flip-Flop” at
https://www.falstad.com/circuit/e-clockedsrff.html

mailto:j.yang@uws.edu.au

D flip-flop with a falling-edge trigger

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Flip-flop: state changes only on a clock edge

 Master: the first latch, when the clock C is asserted Q follows D

 Slave: the second latch, when the clock C falls gets its input
from the output of the master latch.

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Master-Slave Flip-Flop” at
https://www.falstad.com/circuit/e-masterslaveff.html

mailto:j.yang@uws.edu.au

Register File Implementation

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A register file with two read ports and one write port.

 Can be implemented with a decoder for each read or write port and
an array of D flip-flops used as registers.

Appendix C, C-54

 Register: multiple flip-flops forming a single entity with the same
clock signal

mailto:j.yang@uws.edu.au

Register File Implementation 1/2 (read)

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Implementation of two register read ports for a 32-bit wide register
file

 ‘read register’ signal used as the multiplexor selector signal.

Read register
number 1

Read register
number 2

Read data 1

Read data 2

mailto:j.yang@uws.edu.au

Register File Implementation 2/2 (write)

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Decoder used together with the write signal to determine which
register to write.

 All three inputs will have set-up and hold-time constraints.

Write

Register number

Register data

$30

mailto:j.yang@uws.edu.au

Revision

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 The following block-diagram demonstrates the branch instruction
processing. Explain what do ‘Sign-extend’ and ‘Shift left 2’ perform.

 The two-stage Programmable Logic Array (PLA)

models its output as “a sum of products”.

What does it mean?

bne $s0, $s1, Exit

mailto:j.yang@uws.edu.au

Recommended readings

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

