
Topics

 Datapath 

 x stages performing 
computation [x=5]

 y hardware components 
needed

 Combinational and  

Sequential logic

 Logic Gates
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Lecture 09: Datapath and Control

SONGS ABOUT COMPUTER SCIENCE

DIGITAL LOGIC
Written by Emmanuel Schanzer
To the tune of: A Spoonful of Sugar
http://www.cs.utexas.edu/users/walter/cs-
songbook/digital_logic.html

To get all our programs to run
There must be compilation done
Into ones and zer-os:
Seems rather tame.

But how do ones and zeros make
Our hardware bump and shake?
Trans-..is-..tor..gates!
It won't be hard to see.
We Use...

Digital logic: inputs, switches...and grounds.
inputs, switches...and grounds.
inputs, switches...and grounds.
Just by abstracting voltage, into zer-o's and ones.
We can hack all night and day.
… …
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Five components of a Computer
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Processor

Control

Datapath

Memory

Devices

Output

Input

 Processor (CPU):

 Datapath:

 Control:

Elements that process data and addresses in the CPU 

[e.g. registers, ALUs, …]

Determines which computation is performed [e.g. 

Routes data thru datapath (which regs, which ALU op)
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Connection and Communication via Bus
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Processor

Control

Datapath

Memory

Devices

Output

Input

 A Bus is a shared communication link

 Single set of wires used to connect multiple subsystems

 A Bus is also a fundamental tool for composing large, 
complex systems

 … this topic is fully covered in Computer Architecture course…
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Datapath concept

 Possible approach: build a single block to “execute an instruction”, 
which designed to perform all necessary operations starting from 
fetching the instruction

 Possible, but too bulky, inefficient and inflexible
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 Modular approach: break up the process of “executing an 
instruction” into stages, then connect stages… datapath is born!

 Advantages:

 smaller, easier to understand and easier design blocks

 easier to optimise: one block can be changed without 
affecting the others

Elements that process 
data and addresses
in the CPU

Fetch Decode Exec
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Datapath Stages
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 PC (Program Counter)…

 Memory…

 Various registers ...

 ALU …

1. Fetch 2. Decode 3. ALU 4. Mem 5. Reg
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Datapath Stages: 1

 There is a wide variety of MIPS instructions: what 
general steps do they have in common? 
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Stage 1: Instruction Fetch

PC=PC+4
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Datapath Stages: 2
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Stage 2: Instruction Decode [0x 02324020 --- refer to ‘instruction 

decoding.pdf’ in materials folder]

5-bit decoder:
specifies 
registers 0 - 31

register operands

555
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Datapath Stages: 3
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Stage 3: ALU (Arithmetic-Logic Unit)

 …

 Perform arithmetic/logical operation

 …
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Datapath Stages: 4 and 5
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Stage 5: Register Write

Stage 4: Memory Access (load/store data)

Calculate memory address 
sw

lw

0x 0040003c
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Datapath Instruction Example
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3 1 2

reg[1]

reg[2]

reg[1]
+

reg[2]

look at a sample instruction add: add $r3, $r1, $r2 # r3 = r1+r2
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Role of Controller
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 Controller causes the right transfers to happen.
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opcode, funct
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R-Format Instructions
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 Read two register operands

 Perform arithmetic/logical operation

 Write register result
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Branch Instructions
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 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

bne $s0, $s1, Exit

bi-directional

address words 
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Combinational and Sequential Circuits
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 A complex functional component is implemented using lower level 
components - there are two classes of logic circuits:

COMBINATIONAL circuits SEQUENTIAL/STATE circuits

No memory Have internal memory (or: elements that 
contain state)

The output depends only on 
the input

 the output depends both on the set of 
inputs supplied and the value stored in 
memory, which is called the state of the 
logic block

 how to ensure memory element is 
updated neither too soon, nor too late?

Truth Tables, Boolean Algebra Finite state machine (Mealy, Moore)

 …more on sequential circuits later, first: combinational logic…
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Truth Tables, Boolean Algebra
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 Combinational logic does not have memory, so it’s described by 
defining the values of the outputs for each possible set of input 
values, as in truth tables.

 Another approach: one can express the logic function with logic 
equations with the use of Boolean algebra. 

Main Boolean algebra laws: [“+” is operator OR, and “●” is 
operator AND]

Identity law A+0=A and A ● 1=A

Zero and One laws A+1=1 and A ● 0=0

Inverse laws A+Ā=1 and A ● Ā=0

Commutative laws A+B=B+A and A ● B= B ● A

Associative laws A+(B+C)=(A+B)+C  and  A ● (B ● C)=(A ● B) ● C

Distributive laws A ● (B+C)=(A ● B)+ (A ● C) and 

A+(B ● C)=(A+B) ● (A+C)
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Logic Gates, Inverter and Multiplexor (Mux)
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1. AND gate (c = a ● b)

2. OR gate (c = a + b)

3. Inverter (c = a)

4. Multiplexor (Mux)

(if d = = 0, c = a;

else c = b)
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Selector (Decoder)
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 Only one output is asserted for each input combination

 For example:

if inputs In0, In1, In2 are: 1 0 0 (decimal 4):

Out4 = 1, all other outputs are 0

Out0
Out1
Out2
Out3
Out4
Out5
Out6
Out7

3-bit decoder:
inputs In0, In1, In2

0

0

0

0

1

0

0

0

Convert one bit-pattern to another bit-pattern
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Universal Gates [Exercise]
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 In fact ALL logic functions can be constructed with only a single 
gate type, if it is inverting. 

 Common inverting gates are NOR (inverted OR) and NAND 
(inverted AND).

 NOR and NAND are called universal gates.

Exercise:
prove the above by implementing
AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.
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Universal Gates [Exercise]
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Exercise:
prove the above by implementing AND, OR and NOT:

1. using only NOR gates,
2. using only NAND gates.

AND

OR

NOT

A
Ā

A
Ā
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XOR implementation [Exercise]

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How to construct eXclusive OR (XOR)? 

Ordinary Implementation Universal  Implementation

?
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Multiplexor implementation [Exercise]
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 How to construct Multiplexor (Mux)? 

Ordinary Implementation Universal  Implementation

?

(Select)

S c

0 a

1 b
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Arrays of logic elements
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 Used when combinational operations need to be performed on 
entire word (32 bits)

 for example when the result of an instruction that is written 
into a register can come from one of two sources

32-bit wide 2-to-1 multiplexor
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Programmable Logic Array (PLA)
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 Two-levels sum of products representation

 the 1st stage: array of AND gates that forms a set of product 
terms (also known as miniterms),

 the 2nd stage: array of OR gates each of which forms a 
logical sum of any number of the product terms.

1st stage

2nd stage
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Sample PLA 1/2
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 Implements logic from page C-13 in the textbook (three inputs, 
three outputs)

2nd stage

1st stage

See a simplified drawing in next slide 

Ā ● B ● C
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Sample PLA 2/2
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 As before, simplified drawing shows AND and OR planes.

 Note inputs A, B and C run the width of AND plane in both 
true and complement form.

true

complement

Ā ● B ● C
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Clock
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 Clock: free running signal with fixed cycle time (clock period)

 Clock determines when to write memory element

 level-triggered – act (store) on clock high (or low)

 edge-triggered – act (store) only on clock edge

 We will consider here only negative (falling) edge-triggered
clocking methodology
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Clock in MIPS (5 steps of datapath)
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 Synchronous (or clocked) combinational circuits

 Single-cycle machine: does everything in one clock cycle

 instruction execution = up to 5 steps

 must complete 5th step before cycle ends

clock
signal

rising clock edge

falling clock edge

instruction execution

step 1/step 2/step 3/step 4/step 5

datapath
stable

when the 
active clock 
edge occurs
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Sequential logic: memory elements
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 All memory element store states:

 The output from any memory element depends BOTH on the 
inputs and on the value stored inside the memory element.

 The simplest memory elements are unclocked (see S-R latch 
next).
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SR (set-reset) Latch, unclocked
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 SR-latch implemented with NOR Gates

 Output depends on both inputs and values stored (previous state) 

 S = 1 and R = 1 not allowed

 R=S=0 (removal of the input combination of 0’s and 1’s), output will 
not change (NC) -- depends on the values in previous state

 Otherwise output copying input (set or reset action)

S=1 asserted, set Q=1 asserted;

R asserted, Q deasserted.
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D Latch (clocked), or: Delay Flip-Flop
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 When the clock C is asserted, the latch is opened, and the output 
Q immediately assumes the value of the D input

 Sometimes called a transparent latch (when the latch opened, Q 
changes as D changes)

a clock 
signal

value to 
be stored

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Clocked SR Flip-Flop” at
https://www.falstad.com/circuit/e-clockedsrff.html
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D flip-flop with a falling-edge trigger
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 Flip-flop: state changes only on a clock edge

 Master: the first latch, when the clock C is asserted Q follows D

 Slave: the second latch, when the clock C falls gets its input 
from the output of the master latch.

C controls the behavior of Q
attempting to learn from D

FYI - Electronics Demonstrations:

“Master-Slave Flip-Flop” at 
https://www.falstad.com/circuit/e-masterslaveff.html
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Register File Implementation
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 A register file with two read ports and one write port.

 Can be implemented with a decoder for each read or write port and 
an array of D flip-flops used as registers.

Appendix C, C-54

 Register: multiple flip-flops forming a single entity with the same 
clock signal

mailto:j.yang@uws.edu.au


Register File Implementation 1/2 (read)
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 Implementation of two register read ports for a 32-bit wide register 
file

 ‘read register’ signal used as the multiplexor selector signal.

Read register
number 1

Read register
number 2

Read data 1

Read data 2
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Register File Implementation 2/2 (write)
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 Decoder used together with the write signal to determine which 
register to write.

 All three inputs will have set-up and hold-time constraints.

Write

Register number

Register data

$30
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Revision
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 The following block-diagram demonstrates the branch instruction 
processing. Explain what do ‘Sign-extend’ and ‘Shift left 2’ perform.

 The two-stage Programmable Logic Array (PLA)

models its output as “a sum of products”.

What does it mean?

bne $s0, $s1, Exit
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Recommended readings
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Text readings are listed in Teaching 
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check 
whether eBook available on library site 

PH6: companion materials (e.g. online 
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online 
sections for further readings) 
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263
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