* Lecture 09: Datapath and Control Datapath Stages

==
SONGS ABOUT COMPUTER SCIENCE PC (Program Counter)...
Memory...

T . DIGITAL LOGIC Various registers ...
OpICS Written by Emmanuel Schanzer

To the tune of: A Spoonful of Sugar ALU ...

http://www.cs.utexas.edu/users/walter/cs-

- Data path songbook/digital_logic.html

. To get all our programs to run
= X stages performlng There must be compilation done

computation [X=5] Into ones and zer-os:
Seems rather tame.
"y hardware components But how do ones and zeros make
needed Our hardware bump and shake?
Trans-..is-..tor..gates!

u Combinational and It won't be hard to see.

We Use...

rd
rs
rt

LA A 7
registers

Instruction

Sequential logic Digital logic: i i

igital logic: inputs, switches...and grounds.
. inputs, switches...and grounds. Stage 4 OR Stage 5
L] LOglC Gates inputs, switches...and grounds. > € > €/ —>

Just by abstracting voltage, into zer-o's and ones.

We can hack all night and day. 1. Fetch 2. Decode 3. ALU 4. Mem 5. Reg

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 5

Five components of a Computer Datapath Stages: 1

= There is a wide variety of MIPS instructions: what
Processor Devices general steps do they have in common?

Stage 1: Instruction Fetch

PC=PC+4

instruction

= Processor (CPU):

« Datapath: Elements that process data and addresses in the CPU
[e.g. registers, ALUs, ...]

Read address
« Control: Determines which computation is performed [e.g. Instruction
Routes data thru datapath (which regs, which ALU op) Instruction

memory

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au 2 Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

Connection and Communication via Bus Datapath Stages: 2

Stage 2: Instruction Decode [0x 02324020 --- refer to ‘instruction
decoding.pdf’ in materials folder]

0x 02324020 - what MIPS instruction is it
4|

0 0jof1i0

ETEs] T6i15{141 13

Processor Devices
| | L

-m 0
op s | n | rd mt fun
0 0 0 00 0/7 000 1[1 00 T 0[0 T 00 0[/00000[T 000
76 16 P - T e 3207 hex 20
Datapath m Rfjpeinsiruction | Ri7=8s1 | Rig=%s2 | RESS0 | notused by "add” 3dd
ANSVIFR 2dd 38, 517, $18 == add 510, 351, 52|, add d, 1s, t

1’ 1’ 1’

Read register

A Bus is a shared communication link)
register operands eg number 1 Read

Single set of wires used to connect multiple subsystems rd Regno. 5| e !
j P 0|0 1 00 0]0 number 2

A Bus is also a fundamental tool for composing large, Wi Regiterfie

5-bit decoder: register

complex systems specifies wite o s

= ... this topic is fully covered in Computer Architecture course... registers 0 - 31 data___ Write

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Datapath concept Datapath Stages: 3

Possible approach: build a single block to “execute an instruction”, R bt Read
which designed to perform all necessary operations starting from €g no. Read register !
i H i number 2
fetching the instruction e et e
= Possible, but too bulky, inefficient and inflexible register rend

—’ Write data 2

_ - 5B
ey

Modular approach: break up the process of “executing an
instruction” into stages, then connect stages... datapath is born! Stage 3: ALU (Arithmetic-Logic Unit)
= Advantages: .
=« smaller, easier to understand and easier design blocks = Perform arithmetic/logical operation
= easier to optimise: one block can be changed without -
affecting the others

Elements that process

Fetch Decod Exec Qata and addresses
= = = in the CPU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Datapath Stages: 4 and 5

Stage 4: Memory Access (load/store data)

SW ‘ MemWrite

Calculate memory address

— | Address Fioad

data

Data

Write memory

data

0x 0040003c|

IW ‘ MemRead

Stage 5: Register Write

Read register

number 1 Read

data 1

Read register

number 2

Wiite Register file

register
Read

Write data 2

data Write

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Branch Instructions

= Read register operands
= Compare operands
= Use ALU, subtract and check Zero output
» Calculate target address rc+4 from instruction datapatn
address words Z’rag"ef"

H Read
bne $s0, $s1, Exit ! register 1 ALU operation

Instruction |
Read
register 2
&l ALU Zero To branch

wite Registers control logic
register

Write
data

RegWrite

bi-directional

Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au

Datapath Instruction Example

reg[1]
+
reg[l_’] eq[2]

&
€

> ALU

Y V.V
registers

reg[ZJ

instruction

S
>

look at a sample instruction add: add $r3, $r1, $r2 # r3 = r1+r2

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au 10

Combinational and Sequential Circuits

= A complex functional component is implemented using lower level
components - there are two classes of logic circuits:

COMBINATIONAL circuits SEQUENTIAL/STATE circuits

No memory Have internal memory (or: elements that
contain state)

The output depends only on | = the output depends both on the set of
the input inputs supplied and the value stored in
memory, which is called the state of the
logic block

how to ensure memory element is
updated neither too soon, nor too late?

2

Truth Tables, Boolean Algebra | Finite state machine (Mealy, Moore)

= ..Mmore on sequential circuits later, first: combinational logic...
Computer Organisation COMP2008, Jamie Yang: i.vang@westernsydney.edu.au

Role of Controller

= Controller causes the right transfers to happen.

registers ’(—

Y VY

instruction

opcode, funct

L

Controller

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Truth Tables, Boolean Algebra

= Combinational logic does not have memory, so it’s described by
defining the values of the outputs for each possible set of input
values, as in truth tables.
Another approach: one can express the logic function with logic
equations with the use of Boolean algebra.

Main Boolean algebra laws: ["+" is operator OR, and “." is
operator AND]

Identity law A+0=Aand A e 1=A

Zero and One laws | A+1=1and A e 0=0

Inverse laws A+A=1and A e A=0

Commutative laws |A+B=B+Aand Ae B=Be A

Associative laws A+(B+C)=(A+B)+C and A« (BeC)=(AeB)«C

Distributive laws A e (B+C)=(A e B)+ (A o C) and
A+(B e C)=(A+B) e (A+C)

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

R-Format Instructions

= Read two register operands
= Perform arithmetic/logical operation
= Write register result

5 _|Read ALU operation
register 1

Register Read
numbers register 2

Write Registers

register Read
Write data 2
Data

RegWrite

Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

Logic Gates, Inverter and Multiplexor (Mux)

AND gate (c = a « b) a_'D—- ¢

ORgate (c=a+b)

Inverter (c = a)

Multiplexor (Mux)
(ifd==0,c=a;
else c = b)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Selector (Decoder)

= Only one output is asserted for each input combination
= For example:
if inputs In0, In1, In2 are: 1 0 O (decimal 4):
Out4 = 1, all other outputs are 0

— Out0 [°|
— Outl E
3-bit decoder: 3 :: 83:;1; [o]
inputs In0, In1, In2 ——x—| Decoder | out4
L+ Outs5 [9]
|, Out6 [0]
|, out7 [

Convert one bit-pattern to another bit-pattern

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Multiplexor implementation [Exercise]

= How to construct Multiplexor (Mux)?

S
0
1

Ordinary Implementation Universal Implementation

A

B
S (Select)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Universal Gates [Exercise]

In fact ALL logic functions can be constructed with only a single
gate type, if it is inverting.

Common inverting gates are NOR (inverted OR) and NAND
(inverted AND).

NOR and NAND are called universal gates.

A A
T O
Exercise: B B
prove the above by implementing

1. using only NOR gates,
2. using only NAND gates.

A
AND, OR and NOT:)
0
1
1

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Arrays of logic elements

= Used when combinational operations need to be performed on
entire word (32 bits)

= for example when the result of an instruction that is written
into a register can come from one of two sources

Select

Select
M
B u c31
B, ™M
32-bit wide 2-to-1 multiplexor i
:M]
u co

BO—»

array of 32 1-bit multiplexors
=

32-bit wide multiplexor is an

Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

22

Universal Gates [Exercise]

Exercise:

prove the above by implementing AND, OR and NOT:
1. using only NOR gates,
2. using only NAND gates.

A

AND] NOT
X -
g
T pEps

B A
A

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Programmable Logic Array (PLA)

= Two-levels sum of products representation
= the 1st stage: array of AND gates that forms a set of product
terms (also known as miniterms),

the 2nd stage: array of OR gates each of which forms a
logical sum of any number of the product terms.

1st stage

Inputs 1 AND gates

Ponterme— TTTTTTTI

2nd stage

OR gates Outputs

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

XOR implementation [Exercise]

= How to construct eXclusive OR (XOR)?

Vo>

Ordinary Implementation Universal Implementation

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Sample PLA 1/2

= Implements logic from page C-13 in the textbook (three inputs,
three outputs)
Inputs
A

B
C

1st stage [K
- : O
A.B.C —D_D

See a simplified drawing in next slide 2nd stage

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Sample PLA 2/2

= As before, simplified drawing shows AND and OR planes.

= Note inputs A, B and C run the width of AND plane in both
true and complement form.

Inputs 410

complement
B

AND plane

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SR (set-reset) Latch, unclocked

SR-latch implemented with NOR Gates
Output depends on both inputs and values stored (previous state)
= S=1andR =1 not allowed
= R=S=0 (removal of the input combination of 0's and 1's), output will
not change (NC) -- depends on the values in previous state
= Otherwise output copying input (set or reset action)

R (reset) ? > .
]
reminder:
NOR gate:
A
>

B

S=1 asserted, set Q=1 asserted;

R asserted, Q deasserted.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Clock

» Clock: free running signal with fixed cycle time (clock period)

high (1)

low (0) I

period : rising edge falling edge

» Clock determines when to write memory element
= level-triggered — act (store) on clock high (or low)
= edge-triggered — act (store) only on clock edge

= We will consider here only negative (falling) edge-triggered
clocking methodology

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

D Latch (clocked), or: Delay Flip-Flop

When the clock C is asserted, the latch is opened, and the output
Q immediately assumes the value of the D input

Sometimes called a transparent latch (when the latch opened, Q
changes as D changes)

a clock c—
signal

value to
be stored p

FYI - Electronics Demonstrations:
“Clocked SR Flip-Flop” at
htps://www.falstad.com/circuit/e-clockedsrf.html

Q ?=previousD
when C s 1

Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

C controls the behavior of Q
attempting to learn from D

Clock in MIPS (5 steps of datapath)

= Synchronous (or clocked) combinational circuits
= Single-cycle machine: does everything in one clock cycle
= instruction execution = up to 5 steps
= must complete 5th step before cycle ends
falling clock edge

rising clock edge

1
1
1
clock |
signal 1

1

1

when the
active clock
edge occurs

datapath
instruction execution ystable |

I step 1/step 2/step 3/step 4/step 5 1 1

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

D flip-flop with a falling-edge trigger

Flip-flop: state changes only on a clock edge
= Master: the first latch, when the clock C is asserted Q follows D

= Slave: the second latch, when the clock C falls gets its input
from the output of the master latch.

D Q Q
D

a

FYI - Electronics Demonstrations:
“Master-Slave Flip-Flop” at

https://www.falstad.

[

C controls the behavior of Q
attempting to learn from D

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Sequential logic: memory elements

= All memory element store states:
= The output from any memory element depends BOTH on the
inputs and on the value stored inside the memory element.
= The simplest memory elements are unclocked (see S-R latch
next).

primary inputs

COMBEINATIONAL
LOGIC

feedback inputs

MEMORY

memory-combinational logic feedback loop

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Register File Implementation

Appendix C, C-54

Register: multiple flip-flops forming a single entity with the same
clock signal 3 u o

|
1 bit register
L 1312 11 10
L 9 reg(4)
Q3Q2Q1Q0

1
Q 2 a1 Q0

A register file with two read ports and one write port.

Can be implemented with a decoder for each read or write port and
an array of D flip-flops used as registers.

Read register
number 1

Read register
number 2

Register file
Write

register

Write
data

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Register File Implementation 1/2 (read)

» Implementation of two register read ports for a 32-bit wide register
file
= ‘read register’ signal used as the multiplexor selector signal.

Read register)\
number 1 Register 0
Register 1 M
i u ——»
Register n — x Read data 1
Register n
; - /
Read register 7
number 2 A
|,
I
YT Read data 2
N/
Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au 3

Register File Implementation 2/2 (write)

= Decoder used together with the write signal to determine which
register to write.

» All three inputs will have set-up and hold-time constraints.

Write

? D— Register 0

Register number o1 | - c
g decoder | * D_ Register 1

n—
$3
L e
Registern — 1
Register data iy _ Reastern
Computer Organisation COMP2008, Jamie Yang: i.vang@westernsydney.edu.au 34

Revision

= The following block-diagram demonstrates the branch instruction
processing. Explain what do 'Sign-extend” and *Shift left 2" perform.

PG4 from instruction datapatn ag e

Branch
Sum—~
Add target

ALU operation
4
Road [N
data 1
To branch
ALU 28101 control logic
Road

data 2 1

bne $s0, $s1, Exit nstucion

= The two-stage Programmable Logic Array (PLA)
models its output as “a sum of products”.
What does it mean? P

nputs 4

OR gates. + oupus

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 35

Recommended readings

General Data UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments % |
Extra Materials | ascii_chart,odf | bias ion pdf | HP_AppA Jti-instruction decoding.pdf | masking help.odf | PCSpim.pdf
PCSpim Portable Version | Library materials

PH6: Appendix B: The Basics of Logic Design Text readings are "s_ted in _TeaChing
PHS: Appendix B The Basics of Logic Design Schedule and Learning Guide
PH4: Appendix C: The Basics of Logic Design

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-

journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)

http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 36

