Lecture 7: I/O and Exceptions

Topics

Processor Memory

= Basic I/O operations
= J/O mapped and mem-mapped
= Polls and interrupts
= MIPS coprocessor 0
= Hardware effort
= Kernel/User mode
= Software (OS) support

I/O
System

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

I/O Devices: Examples and Speeds

Data Rate
Device Behavior Partner (Kbytes/sec)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Line Printer Output Human 1.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Optical Disk Storage Machine 500.00
Magnetic Disk Storage Machine 10,000.00+
Network-LAN lor O Machine 100,000.00+
Graphics Display Output Human 50,000.00+(?)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

i Processor - I/O Speed Mismatch

= 500 MHz microprocessor = [/O devices from 0.01 KB/s

can execute a 500 million to 50,000 KB/s and more
load or store instructions = Input: device may not be
per second, or 2,000,000 ready to send data as fast
KB/s data rate as the processor loads it

= 3 GHz microprocessor — = Also, might be waiting for
3,000 million load or human to act
store instructions per = Output: device may not be
second, etc... ready to accept data as fast

as processor stores it
= What to do?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 3

mailto:j.yang@uws.edu.au

Multiple Concurrent Data Transfers

CPU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

i What we Need to Make I/O Work?

A way to connect many types of API Files
Devices to the Proc-Mem

« Old bus standards disappear Operatlng System
(ISA), or are slowly fading / Proc — Mem
away (USB 1, parallel printer,

AGP) , while new are appearing apping
(USB 2, 3, improved PCI 3, PCI
Express, etc.)

= A way to control these devices,
respond to them, and transfer data

= Device registers

= Memory mapping
= I/O instructions

» Polling vs. interrupt

= A way to present them to user
programs so they are useful

= API, files

PCI Bi qc
dat

3

o
_‘u @

@

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 5

mailto:j.yang@uws.edu.au

Interface: Device Registers

= Path to device generally has 2 registers:

= One register says its OK to read/write (I/O Is the
ready), data

= Another register to contain data, ready?
»« Usually called: Control Register and Data

Register [device registers in pairs] yes| no
s Processor reads from Control Register in Read or

loop, waiting for device to set Ready-bit in f,t:t;e
Control-Reg to signal its OK (0 = 1) done
= Processor then loads from (input) or writes no
to (output) Data-register ves
= Load from Data Register/Store into Data Register \

» Reset Ready bit (1 = 0) of Control Register

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Operation: I/O mapped vs. Memory mapped

= Instruction Set Architecture for I/O
= Some machines have special Input and Output

instructions > Y M
. roc em
s Alternative model / / r»l

« Input: simply reads a sequence of bytes e

« Output: simply writes a sequence of bytes data reg.
= With Memory Mapped I/0 N

= Memory also a sequence of bytes, so use: @*z;':

= Loads -> input
= Stores ->output

= When such address is encountered in the program
it is the register which is accessed

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 7

mailto:j.yang@uws.edu.au

Memory Mapped Input/Output

- Proc /.
= Memory mapped device / Mem
= Control and Data registers are assigned @apping
memory addresses; A portion of the address cmd reg.
space dedicated to communication paths to I/O data reg.
devices

= When such address is encountered in the
program it is the register which is accessed (not
the memory content)
= Real MIPS processor can support many
devices; SPIM simulates one I/O device:
memory-mapped terminal (keyboard +
display)
= Read from keyboard (receiver); 2 device regs
= Writes to terminal (transmitter); 2 device regs

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 8

mailto:j.yang@uws.edu.au

Memory Mapped I/O: SPIM I/O Simulation

= Certain addresses are not regular memory
s Instead: they correspond to registers in I/O devices

OXFffffff

Oxffff0000

Address 0

" control reg.

data reg.

one word (4 bytes)

Receiver Control reg
mapped to 0xffff0000

Receiver Datareg
mapped to 0xffff0004

1 1 1 = ;F
Unused (00...00) | |m|2

I 1 1 —
Unused (00...00) R te

1 |

Transmitter Ctrl reg
mapped to Oxffff0008

Transmitter Data reg
mapped to Oxffff000c

Unused (00...00)

Unused (00...00)

Transmitted
Byte

byte

[1 I
" byte " byte : byte

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 9

mailto:j.yang@uws.edu.au

Memory Mapped I/O: SPIM I/O Simulation

= Control register rightmost bit (bit-0): Ready
» It cannot be changed by processor (just like $0)

= Receiver: Ready==1 means character in Data Register arrived
but not yet been read;

1 = 0 when data is read from Data Register

« Transmitter: Ready==1 means transmitter is ready to accept
a hew character;

0 = Transmitter still busy writing last char
= Data register rightmost byte has data

= Receiver: last char from keyboard; rest = 0

« Transmitter: when rightmost byte written, writes character to
display

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 10

mailto:j.yang@uws.edu.au

Polling (or programmed I/0O):
Processor Checks Status before Acting

Processor reads from mapped) b 100D:
Control Reg in loop, waiting for Is the usy wart 100p,
device to set Ready-bit in Control data TiE &1 efﬁge?:tp
Reg to signal its OK (0 = 1) ready? szlégsutshzt d:viceu
Processor then loads from (input) is very fast!
or writes to (output) mapped no
Data Reg YES
Reset Ready bit (1 = 0) of Read or
Control Register Sdt:t? checkg for 1/O
completion can be
Advantage: done dispersed among
= Simple: processor is totally in no computation
control and does all ves intensive code
Disadvantage:

« Polling overhead can consume
a lot of CPU time

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 11

mailto:j.yang@uws.edu.au

Implementation: I/O Polling Example

= Input: Read from keyboard into $vO0

Waitloopl:

lui St0,O0xffff # ££££0000

1w $t1,0(St0) # receiver control
andi $tl1,$tl1,0x0001

beqg S$tl, $zero,Waitloopl

lw $Sv0, 4($t0) # receiver data

= Output: Write to display from $a0

WaitloopZ2:

lui $t0,Oxffff # ££££0000

lw $tl1,8(St0) # transmitter control
andi $tl,$tl,0x0001

beqg S$tl, $zero,Waitloop?2

sw $al0, 12($St0) # transmitter data

= Processor waiting for I/O called “Polling”

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

12

mailto:j.yang@uws.edu.au

Performance: Cost of Polling?

= Assume for a processor with a 1 GHz clock, it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning). Determine
% of processor time for polling.

Mouse Polled 30 times/second (polling frequency) so as not to
miss user movement

Floppy disk | Transfers data in 2-byte units (2-bytes/poll) and has a
data rate of 50 KB/second. No data transfer can be
missed.

Hard disk | Transfers data in 16-byte chunks (16-bytes/poll) and can
transfer at 16 MB/second (data rate). Again, no transfer
can be missed.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 13

mailto:j.yang@uws.edu.au

% of processor time for polling

= Mouse Polling
= In clocks/sec : 30 [polls/sec] * 400 [clocks/poll] = 12000 clocks/sec
= % Processor for polling:
12*103 (clocks/sec) / 1*10° [clocks/sec] = 0.0012%

=Polling mouse little impact on processor

= Hard Disk Polling
» Polling frequency (polls/sec) = 16 [MB/s] /16 [Bytes/poll] = 1M polls/sec
= In clocks/sec: 1M * 400 = 400,000,000 clocks/sec
= % Processor for polling: 40*107/1*10° = 40%
= = At 40% processor time cost? Definitely NOT acceptable!

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 14

mailto:j.yang@uws.edu.au

i What is the alternative to polling?

= Wasteful to have processor spend most of its time
“spinwaiting” for I/O to be ready
= Wish we could have an unplanned (un-programmed) procedure
call that would be invoked only when I/O device is ready...
= Use exception mechanism (as in arithmetic overflow)!

= interrupt program when I/O ready,
= return when done with data transfer

= An I/O interrupt is just like the exceptions except:
= More information needs to be transferred

= An I/O interrupt is asynchronous with respect to instruction
execution
= It does not prevent any instruction from completion

= Pick convenient point to take an interrupt, let the current
instruction complete

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

15

mailto:j.yang@uws.edu.au

Interrupt-Driven I/0O

(1) I/O

interrupt \

(2) Save PC —

\’
(3) Interrupt
service address

I

(4)

(5)

Memory

add

sub

and

or

read

store

jr

user
program

interrupt
service
routine

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

16

mailto:j.yang@uws.edu.au

i Benefit of Interrupt-Driven I/O

= 500 clock cycle overhead for each transfer, including
interrupt. Find the % of processor consumed if the hard
disk is only active 5% of the time.

= Interrupt rate [= Polling rate]
= Disk Interrupts/sec = 8 MB/s /16B = 500K interrupts/sec
= Disk Polling Clocks/sec = 500K * 500 = 250,000,000 clocks/sec
= % Processor for during transfer: 250*106/500*106= 50%

s Disk active 5% = 5% * 50% = 2.5% busy

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 17

mailto:j.yang@uws.edu.au

Hardware
Su pport For I/O InterrUpt |: gsstruction set:l

Save the PC (Program Counter) for return

=« But where?
Where go when interrupt occurs?

= MIPS defines location: 0x80000180 (used to be 0x80000080)
Determine the cause of interrupt?

= MIPS has Cause Register, 4-bit field (bits 5 to 2) gives cause of
exception

Identify I/O device which caused exception?
= Convey the identity of the device generating the interrupt
How to avoid interrupts during the interrupt routine?
= What if more important interrupt occurs while servicing this
interrupt?
Who keeps track of status of all the devices, handle errors, know
where to put/supply the I/O data?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

18

mailto:j.yang@uws.edu.au

Hardware support For I/O Interrupt

T O OO
— Memory
I
CPU Coprocessor 1 (FPU)
Registers Registers
$0 $0
r $31 —‘ $31
Arithmetic Multiply
unit divide
Arithmetic
[Lo | [Hi | L
o —>g__ Portion of MIPS
Coprocessor O (traps and memory) -
Registers architecture for
BadVAddr Cause interrupts called
Status EPC A\ /4
_~ coprocessor 0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 19

mailto:j.yang@uws.edu.au

Instruction Set Support for I/O Interrupt

[Coprocessor 0 Interface] [

BadV Addr Cause
Status EPC

Portion of MIPS architecture for interrupts called “coprocessor 0”
Coprocessor 0 Registers:

Name No. Usage

BadVAddr | $8 | Memory address (e.g. unaligned memory access)
where exception occurred

Status $12 | Controls which interrupts are enabled
Cause $13 | Exception type, and pending interrupts
EPC $14 | PC (address of instruction) that caused exception

Coprocessor 0 Instructions
» Data transfer: lwc0, swcO [cO::reg ---- mem]
« Move: (from) mfc0, (to) mtcO [reg ---- c0::reg]
A few examples: Iwc0 $8, 0($a0)
« mfcO $k0, $14 # $k0 < c0::$14, move contents of EPC to register $k0
= mtcO $0, $13 # $0 = c0::$13, clears cause register (c0::$13 gets 0).

For more see lab 10: exception handler code, and additional notes.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 20

mailto:j.yang@uws.edu.au

OS Support For I/O Interrupt

OS - I/O Communication Requirements

= The OS must be able to prevent:

« The user program from communicating with the I/O device
directly, rather through controller interface

= If user programs could perform I/O directly, no protection to
the shared 1I/0O resources

s 3 types of communication are required:

= The OS must be able to give commands to the I/O devices

= The I/O device must be able to notify OS when the I/O device
has completed an operation or an error occurred

=« Data must be transferred between memory and I/O device
OS
7 \
I[/O0 «——— Memory

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

= Turn off interrupts during interrupt routine

Handling a Single Interrupt

» IE bitin $12 determines whether or not interrupts enabled:
= Interrupt Enable bit (IE) (0 = off, 1 = on)
Prevent user program from turning off interrupts
»« KU bit determines whether in User mode or OS (Kernel) mode:
= Kernel/User bit (KU) (0 = kernel, 1 = user)

(described later)

KU|IE

Put ExcCode into bits 2 to 5 of Cause $13

(described later)

ExcCode

Status Register $12

Cause Register $13

Copy PC into EPC ($14); PC is set to 0x80000180

Checks ExcCode in $13 and jumps to portion of interrupt handler
which handles the current exception

When the interrupt is handled, call instruction eret/rfe to return.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 22

mailto:j.yang@uws.edu.au

Normal Run

R po4000 P = gooooooao Cause = Jooooooo BadVaddr= 00000000
| Status oooff£10 HI = Qooooooo LO = Qooooooog
| General Registers
R0 (r0) = 00000000 EB (t0) = 00000000 Rle (=0 = 00O0DOOOO RzZ4 (£8) = 00000000
|1 {at) = 000000OOD RBEY (tl) = 00000DOOO R17 (=1 = 00O0OOOOO ER2Z5 (t9) = 00000000
R2 (w0) = 00000000 R10 (£2) = 00000000 R18 (=sZ) = 00000000 RZe (kO) = 00000000
B3 (v1) = 00000000 ER11 (t3) = 00000000 R19 (=3 = 00O000O0DO EZ7 (kl) = D0OOODOOOO
FE4 (a0} = 00000000 R1Z (t4) = 00000000 R20 (=4) = 00000000 RZ28 (grp) = 10003000
RS (al) = 7fff£f000 R13 (t£5) = 00000000 RZ21 (s5) = 00000000 REZ9 (sp) = Yfffeffc
|R6 (a2) = 7ffffo004 R14 (te) = 00000000 RZ22 (s6) = 00000000 R30 (s8) = 00000000
iR? (23) = 00000000 R1S (£¥) = 00000000 RZ23 (s7) = 00000000 R31 (ra) = 00400018
| FIR = 00009500 FCZR = gooooooo FCCR = gooooooo FEXR = Qooooooo
| [0=00400000] Oxz&8fa40000 1w S4, 0(529) ; 174: 1w Sal 0(%Ssp)
|[DXDD4DDDD4] 0x2¥%a50004 addiu 55, $29, 4 : 175: addiu 5al Ssp 4
[0xz00400008] OxZ24a60004 addiu 56, S5, 4 ; 176: addiu S5a2 Sal 4
| [0x0040000¢] Oxz00041080 =11 32, S4, 2 ;177 511 S5+0 Sal 2
|[0=z00400010] 0x00z:23021 addu 6, S6, 52 ; 178: addu Sa2 SaZ2 Svl
[0xz00400014] Ox0z100009 jal 0x004000%Z4 [main] : 179: jal main
|[0x00400018] Dz00000000 nop ; 180: nop
|[0xz0040001¢] 0x3402000a ori $2,. S0, 10 : 182: 1i w0 10
[OzDO0400020] Oz0000000c syscall ; 183: svscall
| [0x00400024] O0z000050Z20 add $10, 50, 50 : 14: add St2, 20, 50 # sun
(132 Ll eidelsleleeiief=] EpEIRI NN TR = o] ;3 15: add Stl, SO, 30 # Bet
T Ox0040002c dZLUUE4 BS99 : 16: 1w St4d,. 84(5t1) # Corn
[Oz T rrrere-ss CLaLo) T ;17 1w St0,. 88(5tl) # Con
|
DATE
[Oxz10000000]...[0x1001000&] Oxz00000000

rMM-==10ninnns1 MN-=0nnnnnni M==MOAnnnmn

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 23

mailto:j.yang@uws.edu.au

Interrupt Routine

Hardware does all

—
y EC = @oooolso EpC = 0040002c Cause 000000 1e BadVaddr= 00000054
| Status = 3000fF£12 HI = 0ooooooon L0 ooooooon
Teneral HEE{IS 2=
RO (r"* - nnononnnf o= s+ = 00000000 R16 (s0) = 00000000 R24 (t8) = 00000000
Rl [a 1) = 00000000 R17 (s1) = 00000000 R25 (t9) = 00000000
Rz (v 0X80000180 21 = 00000000 R18 (s2) = 00000000 REZ6 (kO) = 00000000
E3 (v., - wuouwoowe na. o o3) = 00000000 R19 (s3) = 00000000 R27 (k1) = 00000000
R4 (al) O0oooo0o0 R12 (t4) = 00000000 R20 (s4) = 00000000 R2Z8 (gp) = 10008000
RS (al) = FffffO00 R13 (t5) = 00000000 R21 (s5) = 00000000 R29 (sp) = 7fffeffc
RE (a2) = 7f£Ef004 R14 (t6) 0o0oo0o00 R22 (se) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (£7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 00400018
FIR = 00009800 FOSRE = Qooooooo FCCOR = Qooooooo FEXE = Qooooooo
[0xz00400078] 08240000 1w S4,. 0(S1) [sum]
[0=z0040007] 0z0000000z syvscall ; 36: syscall
[0xz00400080] Ox03e00008 jr 31 : 37: jr Sra # ret
2004000841 Oz00000020 add S0, S0, S0 : 38: add 50, S0, 50 # nog
addu 51 52: move Skl S # San
Sl = . = I : 84: sw Swl sl # Mot
OxzacZZ20200 sw S2. S1a =
[0x8000018e] 0x3c019000 lui S1, -28672 | Interrupt ; 85: sw Sal =2 # But
[0x30000190] Oxac240204 =sw S4, S16(S1) -
[0x30000194] Ox401a6800 mfeld 26, 513 | r()l|t|[|(3 : 87: mfel Sk0O S13 # Cax
[0x30000198] 0x001a2082 srl sS4, 526, 2V : 88: srl Sal Sko 2 # Ext
DATR
[0x10000000]. .. [Ox10010008] Oz00000000
[0x10010008] Ox00000001 0Ox00000002
[0x10010010] 0x000000032 0x00000004 Ox0000000% Ox00000006
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 24

mailto:j.yang@uws.edu.au

Example Interrupt Routine

Place at 0x80000180

ktext 0x80000180
mfcO $k0,$13 # $13 1s Cause reg
mfcO $k1,$14 ¥ $14 is EPC reg

Exception field is bits 5 to 2; 0000 = I/O

andi $kO0, $k0, 0x003c # select 5-2
bne $k0,$zero, OtherException

Read byte

sw $ra, save0 ($0) # save old $31
jal ReadandStoreByte

lw $ra, save0 ($0) # restore $31

jr $kl

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

25

mailto:j.yang@uws.edu.au

Interrupt Routine Overview I

Handler always at address 0x80000180 in kernel memory
= Use the .ktext 0x80000180 and .kdata directives
Must save and later restore all registers used
« $V0, $a0, $ra, Cause and EPC register
» Including $at — use .set noat to suppress SPIM’s errors
= Can temporarily spill registers to .kdata, or move to $k0 and $k1

(used freely); Should not use stack — may point to invalid
memory

Parse exception code field from Cause register, and jal via jump

table to appropriate routine based on ExpCode field in Cause (I/O
interrupt, System call, Arithmetic Overflow)

= Mmaintaining a jump table

Restore saved registers; return control to the user program with
eret (for MIPS32) or r£e (for MIPS-I (R2000))

« Jumps to EPC, and resets Exception level in Status

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 26

mailto:j.yang@uws.edu.au

Multiple Interrupts

= Problem: what if we're handling an Overflow interrupt and an I/O
interrupt comes in?

= Options:

= drop any conflicting interrupts: unrealistic, they may be
important

« Simultaneously handle multiple interrupts: unrealistic, may not
be able to synchronize them

= queue them for later handling: sounds good
= Problem: how to handle them in order of urgency?
= Options:

= We need to categorize and prioritize interrupts - some
interrupts have higher level of priority

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 27

mailto:j.yang@uws.edu.au

Prioritizing Interrupts
- Interrupt Priority Levels in MIPS

= MIPS architecture enables 5 levels of HW priorities and 3 levels of
SW priorities, from highest level to lowest level (8 IPLs):

s BUS error

« Illegal Instruction/Address trap
» High priority I/O Interrupt (fast response)
= Low priority I/O Interrupt (slow response)
(these are the levels of interest now)
= Interrupt Levels in MIPS also differ by applications
» It depends what the MIPS chip is inside of:
« PalmPC, Sony Playstation 3, PSP, HP LaserJet printer, etc.

Ko IEoc KUp IEp KUs IEcC Status $12

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 28

mailto:j.yang@uws.edu.au

MIPS Handling Prioritised Interrupts

OFITAAL
m Processor always executing at one IPL

= Interrupt handlers and device drivers pick IPL to run at, this gives
faster response for some interrupts

= Crisp cases
= If processor runs at lowest IPL level: any interrupt accepted
= If processor runs at highest IPL level: all interrupts ignored

m Soft cases

= If processor runs at some IPL level: an interrupt accepted only if IE==1 and
Interrupt Mask (IM) bit == 1 for its level (that no higher priority interrupts.)

» If an interrupt occurs when Mask bit is off: don't ignore, but pending. Cause
register has a field - Pending Interrupts (PI) bits (bits 15:11) for each of the 5
HW interrupt levels - corresponding bit becomes 1 when an interrupt at its level
has occurred but was not yet serviced.

= Interrupt routine checks IM ANDed with PI to decide what to service next.

1> IM © |KU|IE Status Register $12

15 pr Ui ExcCode Cause Register $13

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 29

mailto:j.yang@uws.edu.au

MIPS Handling Prioritised Interrupts |

N

To support interrupts of interrupts (Reentrant Interrupt
Routine) , there are 3 deep stack in Status for IE,KU bits:

Old (5:4) - Previous (3:2) - Current (1:0)

IM KUIEKU/IE| Status Register $12

O P C

Problem: When an interrupt comes in, EPC and Cause get
overwritten immediately by hardware. Avoid information lost?
Options: Modify interrupt handler. When next interrupt comes in:

= disable interrupts (in Status Register)

« Ssave EPC, Cause, Status and Priority Level on Exception Stack

« determine whether new one preempts old one

= if no, re-enable interrupts and continue with old one

= if yes, may have to save state for the old one, then re-enable
interrupts, then handle new one

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 30

mailto:j.yang@uws.edu.au

Interrupt Routine Overview II

Handler always at address 0x80000180 in kernel memory
= Use the .ktext 0x80000180 and .kdata directives
Get EPC and Cause Register and Save EPC, CR, $ra

= and some general registers in memory for use in interrupt
routine

If I/O, Cause Register PI field ANDed to Status Register IM field to
find unmasked interrupts (maybe several); pick the highest

Change IM of Status Register to inhibit current level and lower
priority interrupts

Change Current IE of Status Register to enable interrupts
= only higher priority interrupts will get through
Jump to appropriate interrupt routine (using jump table)

On Return, restore saved registers, return control to the user
program with eret / rfe

« Jumps to EPC, and resets Exception level in Status

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

31

mailto:j.yang@uws.edu.au

Revision and quiz

Device registers are a good abstraction to represent devices in
memory-mapped I/O organisation:

1) True 2) False
Why I/O Polling is less efficient than I/O Interrupt?

What do the following instructions preform respectively?
mfcO $kO, $14 #
mtcO0 $0, $13 #

For more see lab 10: exception handler code, and additional notes.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 32

mailto:j.yang@uws.edu.au

Recommended readings

General Data

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials

PCSpim Portable Version | Library materials

ascii_chart.pdf | bias_representation.pdf | HP ADDATEJdH-iDst\ruction decoding.pdf | masking help.pdf | PCSpim.pdf |

~~

PHE & PH5: instead of putting I/O together into a single chapter, it

t the book

has the I/O related
contents spread throughou
PH6: §4.10: Exceptions (not as detailed as in PH4, so also refer to HP_AppA pdf -» §AT)

PHS: §4.9, P325- P327: Exceptions (not as detailed as in PH4, so also refer to HP_AppA. pdf ->
AT

PH4: §6.6, P586: Interfacing I/O
HP_AppA.pdf -> 5A7 (A-33 to A-38): Exceptions & Interrupts

HP_AppA pdf -> §A.8 (A-38 to A-40): /O

~

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407

7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 33

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

