
Topics
 Basic I/O operations
 I/O mapped and mem-mapped
 Polls and interrupts

 MIPS coprocessor 0
 Hardware effort

 Kernel/User mode
 Software (OS) support

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 7: I/O and Exceptions

I/O Devices: Examples and Speeds

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Device Behavior Partner
Data Rate

(Kbytes/sec)

Keyboard Input Human 0.01

Mouse Input Human 0.02

Line Printer Output Human 1.00

Floppy disk Storage Machine 50.00

Laser Printer Output Human 100.00

Optical Disk Storage Machine 500.00

Magnetic Disk Storage Machine 10,000.00+

Network‐LAN I or O Machine 100,000.00+

Graphics Display Output Human 50,000.00+(?)

Processor - I/O Speed Mismatch

 500 MHz microprocessor
can execute a 500 million
load or store instructions
per second, or 2,000,000
KB/s data rate

 3 GHz microprocessor –
3,000 million load or
store instructions per
second, etc…

 I/O devices from 0.01 KB/s
to 50,000 KB/s and more

 Input: device may not be
ready to send data as fast
as the processor loads it
 Also, might be waiting for

human to act
 Output: device may not be

ready to accept data as fast
as processor stores it
 What to do?

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Multiple Concurrent Data Transfers

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

What we Need to Make I/O Work?

 A way to connect many types of
Devices to the Proc-Mem
 Old bus standards disappear

(ISA), or are slowly fading
away (USB 1, parallel printer,
AGP) , while new are appearing
(USB 2, 3, improved PCI 3, PCI
Express, etc.)

 A way to control these devices,
respond to them, and transfer data
 Device registers
 Memory mapping
 I/O instructions
 Polling vs. interrupt

 A way to present them to user
programs so they are useful
 API, files

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Interface: Device Registers

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Is the
data

ready?

Read or
Store
data

 Path to device generally has 2 registers:
 One register says its OK to read/write (I/O

ready),
 Another register to contain data,
 Usually called: Control Register and Data

Register [device registers in pairs]
 Processor reads from Control Register in

loop, waiting for device to set Ready-bit in
Control-Reg to signal its OK (0 1)

 Processor then loads from (input) or writes
to (output) Data-register
 Load from Data Register/Store into Data Register
 Reset Ready bit (1 0) of Control Register

yes no

yes

no
done

Operation: I/O mapped vs. Memory mapped

 Instruction Set Architecture for I/O
 Some machines have special Input and Output

instructions
 Alternative model

 Input: simply reads a sequence of bytes
 Output: simply writes a sequence of bytes

 With Memory Mapped I/O
 Memory also a sequence of bytes, so use:

 Loads -> input
 Stores ->output

 When such address is encountered in the program
it is the register which is accessed

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory Mapped Input/Output

 Memory mapped device
 Control and Data registers are assigned

memory addresses; A portion of the address
space dedicated to communication paths to I/O
devices

 When such address is encountered in the
program it is the register which is accessed (not
the memory content)

 Real MIPS processor can support many
devices; SPIM simulates one I/O device:
memory-mapped terminal (keyboard +
display)
 Read from keyboard (receiver); 2 device regs
 Writes to terminal (transmitter); 2 device regs

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory Mapped I/O: SPIM I/O Simulation

 Certain addresses are not regular memory
 Instead: they correspond to registers in I/O devices

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Address 0

0xffffffff

0xffff0000

control reg.
data reg.

Receiver Control reg
mapped to 0xffff0000

Receiver Data reg
mapped to 0xffff0004

Transmitter Ctrl reg
mapped to 0xffff0008

Transmitter Data reg
mapped to 0xffff000c

Memory Mapped I/O: SPIM I/O Simulation

 Control register rightmost bit (bit-0): Ready
 It cannot be changed by processor (just like $0)
 Receiver: Ready==1 means character in Data Register arrived

but not yet been read;
1 0 when data is read from Data Register

 Transmitter: Ready==1 means transmitter is ready to accept
a new character;
0 Transmitter still busy writing last char

 Data register rightmost byte has data
 Receiver: last char from keyboard; rest = 0
 Transmitter: when rightmost byte written, writes character to

display

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Polling (or programmed I/O):
Processor Checks Status before Acting

 Processor reads from mapped
Control Reg in loop, waiting for
device to set Ready-bit in Control
Reg to signal its OK (0 1)

 Processor then loads from (input)
or writes to (output) mapped
Data Reg
 Reset Ready bit (1 0) of

Control Register
 Advantage:

 Simple: processor is totally in
control and does all

 Disadvantage:
 Polling overhead can consume

a lot of CPU time
11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

busy wait loop;
not an efficient

way to use the CPU
unless the device

is very fast!

checks for I/O
completion can be
dispersed among

computation
intensive code

Is the
data

ready?

Read or
Store
data

yes no

yes

no
done

Implementation: I/O Polling Example

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

lui $t0,0xffff # ffff0000
Waitloop1: lw $t1,0($t0) # receiver control

andi $t1,$t1,0x0001
beq $t1,$zero,Waitloop1
lw $v0, 4($t0) # receiver data

 Input: Read from keyboard into $v0

 Output: Write to display from $a0
lui $t0,0xffff # ffff0000

Waitloop2: lw $t1,8($t0) # transmitter control
andi $t1,$t1,0x0001
beq $t1,$zero,Waitloop2
sw $a0, 12($t0) # transmitter data

 Processor waiting for I/O called “Polling”

Performance: Cost of Polling?

 Assume for a processor with a 1 GHz clock, it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning). Determine
% of processor time for polling.

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mouse Polled 30 times/second (polling frequency) so as not to
miss user movement

Floppy disk Transfers data in 2-byte units (2-bytes/poll) and has a
data rate of 50 KB/second. No data transfer can be
missed.

Hard disk Transfers data in 16-byte chunks (16-bytes/poll) and can
transfer at 16 MB/second (data rate). Again, no transfer
can be missed.

% of processor time for polling

 Mouse Polling
 In clocks/sec : 30 [polls/sec] * 400 [clocks/poll] = 12000 clocks/sec
 % Processor for polling:

12*103 (clocks/sec) / 1*109 [clocks/sec] = 0.0012%
Polling mouse little impact on processor

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Hard Disk Polling
 Polling frequency (polls/sec) = 16 [MB/s] /16 [Bytes/poll] = 1M polls/sec
 In clocks/sec: 1M * 400 = 400,000,000 clocks/sec
 % Processor for polling: 40*107/1*109 = 40%
 At 40% processor time cost? Definitely NOT acceptable!

What is the alternative to polling?

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Wasteful to have processor spend most of its time
“spinwaiting” for I/O to be ready
 Wish we could have an unplanned (un-programmed) procedure

call that would be invoked only when I/O device is ready…
 Use exception mechanism (as in arithmetic overflow)!

 interrupt program when I/O ready,
 return when done with data transfer

 An I/O interrupt is just like the exceptions except:
 More information needs to be transferred
 An I/O interrupt is asynchronous with respect to instruction

execution
 It does not prevent any instruction from completion

 Pick convenient point to take an interrupt, let the current
instruction complete

Interrupt-Driven I/O

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

interrupt
service
routine

(3) Interrupt
service address

(1) I/O
interrupt

(2) Save PC

(5)

(4)

add
sub
and
or

read
store
…
jr

user
program

Memory

Benefit of Interrupt-Driven I/O

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 500 clock cycle overhead for each transfer, including
interrupt. Find the % of processor consumed if the hard
disk is only active 5% of the time.

 Interrupt rate [= Polling rate]
 Disk Interrupts/sec = 8 MB/s /16B = 500K interrupts/sec
 Disk Polling Clocks/sec = 500K * 500 = 250,000,000 clocks/sec
 % Processor for during transfer: 250*106/500*106= 50%

 Disk active 5% 5% * 50% 2.5% busy

Support For I/O Interrupt

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Save the PC (Program Counter) for return
 But where?

 Where go when interrupt occurs?
 MIPS defines location: 0x80000180 (used to be 0x80000080)

 Determine the cause of interrupt?
 MIPS has Cause Register, 4-bit field (bits 5 to 2) gives cause of

exception
 Identify I/O device which caused exception?

 Convey the identity of the device generating the interrupt
 How to avoid interrupts during the interrupt routine?

 What if more important interrupt occurs while servicing this
interrupt?

 Who keeps track of status of all the devices, handle errors, know
where to put/supply the I/O data?

Hardware
Instruction set
OS

Hardware support For I/O Interrupt

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Portion of MIPS
architecture for
interrupts called
“coprocessor 0”

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Portion of MIPS architecture for interrupts called “coprocessor 0”
 Coprocessor 0 Registers:

Name No. Usage
BadVAddr $8 Memory address (e.g. unaligned memory access)

where exception occurred
Status $12 Controls which interrupts are enabled
Cause $13 Exception type, and pending interrupts
EPC $14 PC (address of instruction) that caused exception

 Coprocessor 0 Instructions
 Data transfer: lwc0, swc0 [c0::reg ---- mem]
 Move: (from) mfc0, (to) mtc0 [reg ---- c0::reg]

 A few examples:
 mfc0 $k0, $14 # $k0  c0::$14, move contents of EPC to register $k0
 mtc0 $0, $13 # $0  c0::$13, clears cause register (c0::$13 gets 0).

 For more see lab 10: exception handler code, and additional notes.

lwc0 $8, 0($a0)

Instruction Set Support for I/O Interrupt
[Coprocessor 0 Interface]

OS Support For I/O Interrupt

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

OS - I/O Communication Requirements
 The OS must be able to prevent:

 The user program from communicating with the I/O device
directly, rather through controller interface

 If user programs could perform I/O directly, no protection to
the shared I/O resources

 3 types of communication are required:
 The OS must be able to give commands to the I/O devices
 The I/O device must be able to notify OS when the I/O device

has completed an operation or an error occurred
 Data must be transferred between memory and I/O device

OS

MemoryI/O

Handling a Single Interrupt

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Put ExcCode into bits 2 to 5 of Cause $13

Status Register $12(described later) KU IEKU IE

 Turn off interrupts during interrupt routine
 IE bit in $12 determines whether or not interrupts enabled:

 Interrupt Enable bit (IE) (0 off, 1 on)
 Prevent user program from turning off interrupts

 KU bit determines whether in User mode or OS (Kernel) mode:
 Kernel/User bit (KU) (0 kernel, 1 user)

 Copy PC into EPC ($14); PC is set to 0x80000180

Cause Register $13(described later) ExcCode

 Checks ExcCode in $13 and jumps to portion of interrupt handler
which handles the current exception

 When the interrupt is handled, call instruction eret/rfe to return.

Normal Run

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Interrupt Routine

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Hardware does all
0x0040002c

interrupt
routine

0x80000180

Example Interrupt Routine

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Interrupt Routine Overview I

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Handler always at address 0x80000180 in kernel memory
 Use the .ktext 0x80000180 and .kdata directives

 Must save and later restore all registers used
 $v0, $a0, $ra, Cause and EPC register
 Including $at – use .set noat to suppress SPIM’s errors
 Can temporarily spill registers to .kdata, or move to $k0 and $k1

(used freely); Should not use stack – may point to invalid
memory

 Parse exception code field from Cause register, and jal via jump
table to appropriate routine based on ExpCode field in Cause (I/O
interrupt, System call, Arithmetic Overflow)
 Mmaintaining a jump table

 Restore saved registers; return control to the user program with
eret (for MIPS32) or rfe (for MIPS-I (R2000))
 Jumps to EPC, and resets Exception level in Status

Multiple Interrupts

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Problem: what if we’re handling an Overflow interrupt and an I/O
interrupt comes in?

 Options:
 drop any conflicting interrupts: unrealistic, they may be

important
 simultaneously handle multiple interrupts: unrealistic, may not

be able to synchronize them
 queue them for later handling: sounds good

 Problem: how to handle them in order of urgency?
 Options:

 We need to categorize and prioritize interrupts - some
interrupts have higher level of priority

Prioritizing Interrupts
- Interrupt Priority Levels in MIPS

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 MIPS architecture enables 5 levels of HW priorities and 3 levels of
SW priorities, from highest level to lowest level (8 IPLs):
 Bus error
 …
 Illegal Instruction/Address trap
 High priority I/O Interrupt (fast response)
 Low priority I/O Interrupt (slow response)

(these are the levels of interest now)
 Interrupt Levels in MIPS also differ by applications

 It depends what the MIPS chip is inside of:
 PalmPC, Sony Playstation 3, PSP, HP LaserJet printer, etc.

Status $12

MIPS Handling Prioritised Interrupts

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Processor always executing at one IPL
 Interrupt handlers and device drivers pick IPL to run at, this gives

faster response for some interrupts
 Crisp cases

 If processor runs at lowest IPL level: any interrupt accepted
 If processor runs at highest IPL level: all interrupts ignored

 Soft cases
 If processor runs at some IPL level: an interrupt accepted only if IE==1 and

Interrupt Mask (IM) bit == 1 for its level (that no higher priority interrupts.)
 If an interrupt occurs when Mask bit is off: don’t ignore, but pending. Cause

register has a field - Pending Interrupts (PI) bits (bits 15:11) for each of the 5
HW interrupt levels - corresponding bit becomes 1 when an interrupt at its level
has occurred but was not yet serviced.

 Interrupt routine checks IM ANDed with PI to decide what to service next.

MIPS Handling Prioritised Interrupts

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 To support interrupts of interrupts (Reentrant Interrupt
Routine) , there are 3 deep stack in Status for IE,KU bits:

Old (5:4) - Previous (3:2) - Current (1:0)

Status Register $12KU IEKU IEKU IEIM
O P C

 Problem: When an interrupt comes in, EPC and Cause get
overwritten immediately by hardware. Avoid information lost?

 Options: Modify interrupt handler. When next interrupt comes in:
 disable interrupts (in Status Register)
 save EPC, Cause, Status and Priority Level on Exception Stack
 determine whether new one preempts old one

 if no, re-enable interrupts and continue with old one
 if yes, may have to save state for the old one, then re-enable

interrupts, then handle new one

Interrupt Routine Overview II

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Handler always at address 0x80000180 in kernel memory
 Use the .ktext 0x80000180 and .kdata directives

 Get EPC and Cause Register and Save EPC, CR, $ra
 and some general registers in memory for use in interrupt

routine
 If I/O, Cause Register PI field ANDed to Status Register IM field to

find unmasked interrupts (maybe several); pick the highest
 Change IM of Status Register to inhibit current level and lower

priority interrupts
 Change Current IE of Status Register to enable interrupts

 only higher priority interrupts will get through
 Jump to appropriate interrupt routine (using jump table)
 On Return, restore saved registers, return control to the user

program with eret / rfe
 Jumps to EPC, and resets Exception level in Status

Revision and quiz

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Device registers are a good abstraction to represent devices in
memory-mapped I/O organisation:
1) True 2) False

 Why I/O Polling is less efficient than I/O Interrupt?

 What do the following instructions preform respectively?
mfc0 $k0, $14 #

mtc0 $0, $13 #

 For more see lab 10: exception handler code, and additional notes.

Recommended readings

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

