Topics

= Integer numbers
= MIPS arithmetic and logical instructions
= Bits masking example (lab 7)

= Some textbook references

—PHEd3: 3.1,3.2,3.3,3.5 |onm
— PH Ed4: 3.1, 3.2, 3.3, 3.5
— PH Ed5: 3.1, 3.2, 3.3, 3.5
— PH Ed6: 3.1, 3.2, 3.3, 3.5 e

Lecture 5: Arithmetic and Logical instructions

There are 10 types of people in the world:

those who understand binary, and those

who don’t.

3-bit

Decimal Values

pattern

Sign
Magnitude

1's Complement
«If MSB=0, positive value

fMSB=1, invert bits,
assume negative

2's Complement
*iIf MSB=0, positive value

it MSB=1, invert bits, add
1, assume negative

+0

+0

+0

001

+1

+1

+1

+2

+2

+2

+3

+3

+3

100 -0 -3 -4
101 -1 =2 -3
110 -2 = =2
111 -3 -0 =1

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Interpreting bit patterns

= A 32-bit word has no inherent meaning; it can represent
various things:

= Bits in a word always are numbered from right to left
» Least Significant Bit (LSB) - bit 0 (rightmost)
= Most Significant Bit (MSB) - bit 31 (leftmost)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 2

mailto:j.yang@uws.edu.au

Unsigned binary number

s Representation

» straightforward for natural numbers

= Example
10110 has a decimal value

(1 X 24)+(0x23)+(1x22)+(1x21) +(0x20) = 22

24 23 22 1 20
1 0 1 1 0
s Given an n-bit number
Range: 0 to 2" — 1 (2" different numbers)
Using 3 bits: 0t0 7 500001 [010 | 012 | 100 | 101 | 110 | 111
0 1 2 3 4 5 6 4

X=X, 2" " +Xx, ,2"% +---+x,2"+x,2°

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Signed binary number

01 23 4 56 7 8 910 1112 13 1415

0000 0010 0100 0110 1000 1010 1100 1110
0001 0011 0101 0111 1001 1011 1101 1111

= We need both positive numbers and negative numbers

= How do we distinguish between them?
« Turn some UNSIGNED numbers into negative numbers
= Options? [e.g. +8 as 0? +8 as-1? +15as 0? +15as -1? ...]

s [he obvious solution would be:

= Reserve one bit for sign, then sign and magnitude
representation
= Symmetry around zero
= Same number of positive and negative humbers represented
[0000/1000; 0001/1001; 0010/1010; ...]
= but we have two zeros [1000, as -0 in the example above]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 4

mailto:j.yang@uws.edu.au

Bias representation - 1's complement

01 23 4 56 7 8 910 1112 13 1415

0000 0010 0100 0110 1000 1010 1100 1110
0001 0011 0101 0111 1001 1011 1101 1111

= Give up on symmetry
= [ranslation of negative range by adding a distance (bias)

Binary (x) if 0<x< 2

CRIEEENENN0Y = e 0 ey 7 o e el

s 1's complement
= if we select bias = 2"-1, we get 1's complement representation

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 5

mailto:j.yang@uws.edu.au

Bias representation - 1's complement

.7 -6 -5 4 -3-2 -1-0
01 23 456 7 8 9101112 13 1415

0000 0010 0100 0110 1000 1010 1100 1110
0001 0011 0101 0111 1001 1011 1101 1111

s Note
= no value is mapped to £2"!: there are two 0s
= pattern of all 1's is commonly referred to as negative zero
= but we have symmetry

= Decimal Value of a negative number (e.g. 1010)
= MSB determines the sign
= Invert all bits, get the value for the positive number
1010 -> inverted 0101 -> 5

= Problems 1100
= Arithmetic operations: try (-3) + (-4) 1011 +
10111

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 6

mailto:j.yang@uws.edu.au

Bias representation - 2's complement

= [ranslation of negative numbers by a distance (bias)
Binary (x) if 0<x< 2l

representation(x) = Binary (bias - [x|) if -2"1<x < 0

s 2's complement
= if we select bias = 2", we get 2's complement representation

s Note
= We can represent a range from -2"1to 2n1 -1
= results in the simplest (fastest) hardware
= universally accepted in all modern computers (also MIPS)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Bias representation - 2's complement

= Decimal Value of a negative number (e.g. 1010)
= MSB determines the sign

= Invert all bits, and add one, get the value for the positive humber
1010 -> inverted 0101 (5)->5+1=6

= Advantage

= Arithmetic operations work naturally: try (-3) + (-4)

1101
1100 +

11001

= Signh extension

= When moving n bits into an n+m bits container, it’s safe to
extend the sign bit to the leftmost

0[1)0[1 0| Of O] O] O| Of Of Of O O] O] Of O] O] O] Of O O] O] Of O] O] Oy Of O] OO Of O] 1] 0O

111/0[1 a1 1fafyypyyafqafayaf1f11f1111{1110

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Bias representation - 2's complement

s 2's complement negation
= Given x -> obtain -x
= invert the number (turn every 0 to 1, and 1 to 0) ~x
= Thenadd 1, thatis-x = ~x + 1
= Two's complement operations: Addition & Subtraction
» addition the same as for unsigned numbers

0101 5
+1010 + (-6)
1111 -1
= Subtraction using addition of negative humbers
0101 0101 5
- 1010 + 0110 + 6

1111 11

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Overflow [Read more from the textbook]

= Overflow (result too large for finite computer word):
= €.g., adding two n-bit numbers does not yield an n-bit number
» the computer word is finite

= Arithmetic operations can create a number which cannot

be represented ; 114 7 1 111 (-1)
+0 001 +1 + 1 110 + (-2)
1 000 8 1 101 -3

= [wo choices:
= ignore overflow: for example in address arithmetic
= detect and handle overflow in hardware
= Set a flag (overflow register)
= Or exception in the execution of the program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 10

mailto:j.yang@uws.edu.au

Handling overflow

Detecting Overflow
= No overflow is possible when
= Addition: a positive and a negative number
= Subtraction: signs are the same
» Overflow occurs when the value affects the sign
= adding two positives yields a negative
= adding two negatives gives a positive
= Subtract a negative from a positive and get a negative
= Subtract a positive from a negative and get a positive
Handling overflow
= Overflow register
= not in modern RISC architectures (MIPS there is no such a register)
= An exception is triggered by hardware

= in MIPS a special purpose register EPC (Exception Program
Counter) can be used (details later)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 11

mailto:j.yang@uws.edu.au

Ignoring overflow

= We don't always want to detect overflow
= When running unsigned operations
= MIPS instructions: addu, addiu, subu, sltu, ...

= Note:
« With addu, the "u" means "don't trap overflow"
= addiu and sltiu still sign-extend
= sltu for unsigned comparisons

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

12

mailto:j.yang@uws.edu.au

Summary of Representations

3-bit Decimal Values
Binary Sign 1’s Complement 2's Complement
pattern | Magnitude | .jt MSB=0, positive value | «if MSB=0, positive value
if MSB=1, invert hits, if MSB=1, invert bits, add
assume negative 1, assume negative
000 +0 +0 +0
001 +1 +1 +1
010 +2 +2 +2
011 +3 +3 +3
100 -0 -3 -4
101 -1 -2 -3
110 -2 -1 -2
111 -3 -0 -1

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

13

mailto:j.yang@uws.edu.au

Unsigned and signed instructions

= A number can be interpreted by hardware as signed or
unsigned

= A byte may be an ASCII character, or of some other meaning
= it depends only on the instruction operating on the number

= MIPS provides instructions for signed and unsigned
numbers

Signed Unsigned
arithmetic | add, addi, sub, mult, div | addu, addiu, subu, multu, divu
comparison | slt, slti sltu, sltiu
load Ib, Ih lbu, lhu

= Answer these questions:
= why don’t we have two versions of the Iw instruction?
= why don’t we have two versions of the store byte sb instruction?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 14

mailto:j.yang@uws.edu.au

Unsigned and signed instructions

= example:

$s0: 1111 111111111111 111111111111 1111
$s1: 0000 0000 0000 0000 0000 0000 0000 0001

= Answer these questions:

what is the value of $t0 and $t17?
slt $t0,$s0,%$s1 #
sltu $t1,$s0,$s1 #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

15

mailto:j.yang@uws.edu.au

MULTIPLY in MIPS: Instructions

= MIPS reqisters

= two special purpose registers hi and lo
= hi: high-order word of product
* |o: low-order word of product

MIPS instructions

mult rsl, rs2 # (hi, lo) = rsl * rs2 ;signed
multu rsl, rs2 # (hi, lo) = rsl * rs2 ;unsigned
mfhi rd # move from hi to rd

mflo rd # move from lo to rd

Pseudo instructions
mul $t0, Ssl, $s2
mulo $t0, Ssl, $s2

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

16

mailto:j.yang@uws.edu.au

DIVIDE in MIPS: Instructions

all divide instructions put Remainder into hi register, and
Quotient into lo register

div rsl, rs2 # divide rsl by rs2; signed
quotient in lo, remainder in hi

divu rsl, rs2 # divide rsl by rs2; unsigned

Overflow and division by 0 are NOT detected by
hardware

= software takes responsibility
= assembly language programmer or compiler

Pseudo instructions
div $t0,S$sl, S$s2

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 17

mailto:j.yang@uws.edu.au

Logical operations

= we may want to interpret a word
= as fields of bits of various lengths
» including a series of single bits

$s1 op rs rt rd shamt funct

= instructions for operating on bit fields
« shifts logical operations
= bitwise logical operations

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Shifts (Logical shifts, Arithmetic shift)

= Logical shifts

« move all the bits in the register to the left or to the right filling
the empty space with zeros

» bits “shifted-out” are lost
» shamt (shift amount): constant
« Put the result in register rd:

sll rd, rt, shamt # shamt is a constant

sllv rd,rt,rs # Shift left logical wvariable

srl rd, rt, shamt it
srlv rd,rt,rs it

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 19

mailto:j.yang@uws.edu.au

Shifts (Logical shif

a Arithmetic shift

s, Arithmetic shift)

» shift to the right with sign extension

sra rd,rt, shamt # shamt is a constant
#
srav rd,rt,rs # sra by a variable number of bits

= Answer this question:

= Why no arithmetic shift to the left?

s Rotation
= ror, rol

= pseudoinstructions to rotate the register to left or right by a

number of bits

= NO bits lost, bits “falling off” one end fed into the other end

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 20

mailto:j.yang@uws.edu.au

Arithmetic by shifting

= For a base n representation
= a shift to the left is like multiplying by n
sll rd, rs, 2
= a shift to the right is like dividing by n

= PITFALLS

« multiplying numbers by shifting left may result in overflow
= but can be used with caution for small integers, for example

« division by arithmetic (not logical) right shift
= positives rounded down

9
1/ 0] of 1

= Nhegatives? also rounded down?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Logical bitwise operations

= performed bit by bit, so called bitwise operations

= general format like addition
= log-op rd, rsi, rs2 # R-type instruction
« log-opi rd, rs, constant # I-type instruction

= instructions available in MIPS (examples will follow)
= logical AND

= logical OR

= logical NOR

llogicaIXOR olof 2] 2§ 2/ 2] 2| 2| 1] 1| 2| 2] 0]0|O0]JO0]joO0]O]OfO

exercise: think about this:
... why don’t we have unsigned logical instructions?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Masking

= cutting” out bit fields from a word

= a mask is a word (a constant or register contents)
= With “1” for bits we want to keep
« Wwith “0” for bits we want to discard

= a logical AND on the mask and a word

= |leaves only the bits we selected in the mask
» all other bits are cleared (replaced with zeros)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

23

mailto:j.yang@uws.edu.au

Extracting fields in an instruction

ASSUME: register $s1 contains a R-type instruction
TASK: extract the register numbers rs, rt, rd used in the instruction

and save them in registers $s2, $s3, $s4 respectively

$s1 op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

= [wo approaches
= Shift first, mask second
= Mmask first, shift second

s We will mask first
= mask for rs: 0x03e0 0000=0000 0011 1110 0000 0000 0000 0000 0000

=« mask for rt: 0x001f 0000=0000 0000 0001 1111 0000 0000 0000 0000
« mask for rd: 0x0000 f800=0000 0000 0000 0000 1111 1000 0000 0000

= all masks happen to be 5-bit long, so we can shift masks

24

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Extracting fields in an instruction

addi St0, Szero, 0xf800 #
and $s4,S$s1,5t0 #
srl Ss4,%s4, 11 #
s11l $St0,st0, 5 #
and $s3,$s1,5t0 #
#
#
#
#

mask for rd
extract the field
right alignment

mask for rt

srl $s3,5$s3,16
sll $t0,st0,5

and $s2,$s1l,$t0
srl S$s2,S$s2,21

mask for rs

$s1 op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Extracting 2’'s complement numbers

ASSUME: $s1 contains THREE 10-bit long 2’s complement numbers,
packed in bits 2 to 31
TASK: let’s extract the middle number

$s1

= We know:
« the number is 10-bit long
= the number starts at bit position 12

» Strategy
= 10-bit mask (for bits 0-9) is 0x0000 03ff
« Left-shift 0x0000 03ff by 12 to generate the mask needed
= Sign extension is needed

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

26

mailto:j.yang@uws.edu.au

Extracting 2’'s complement numbers

$s1

addi $t0, Szero, 0x03ff # 10-bit mask (for bits 0-9)

sll

and

sll

Sra

$t0,s$t0, 12 # Left-shift by 12 to generate
$s2,%$s1,5t0 # the mask needed

#
Ss2,S$s2, 10 # left most to touch MSB
$s2,$s2, 22 # sign extension

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 27

mailto:j.yang@uws.edu.au

Enlarged bit patterns from the previous page

n

P
m
0000 0000 0000 0000 0000 0000 10101101 p=173
0000 0000 0000 0000 0000 000011111000 mask
0000 0000 0000 0000 0000 0000 10101000 AND

0000 0000 0000 0000 0000 0000 0001 0101

srl

1010 1000 0000 0000 0000 0000 0000 0000

sl|

111117111 71171111711 1711111111111 0101

Sra

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

28

mailto:j.yang@uws.edu.au

LAB 7 help: write procedure “extract”
Refer to maskinghelp.pdf in ‘Extra Materials’ ribbon on vVUWS

ASSUME: Numbers entered from keyboard are p, m, n
TASK: Write procedure named “extract" which extracts an n-bit field
starting at bit m from a 32-bit value p

n

enter p, for example: 173 (use Windows calculator in Scientific mode for Hex-dec-binary conversions)

0000 0000 0000 0000 0000 0000 1010 1101 p is read into a register, say $a2

0000 0000 0000 0000 0000 0000 1111 1000 we can define this mask in our code
task: extract 5 bits starting from bit 3
using the mask to extract the bits 0000 0000 0000 0000 0000 0000 1010 1000 St2 gets logical AND of p and mask
task: display the extracted bits as unsign and signed integers:
to display as an unsigned integer: 0000 0000 0000 0000 0000 0000 0001 0101 shift right logical, result say into $t3
to display as a signed integer do two shifts:
first shift 1010 1000 0000 0000 0000 0000 0000 0000 shift left logical up to bit 31
second shift -- final result 1111111111111111 11211 111111110101 shift right arithmetic back to bit 0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 29

mailto:j.yang@uws.edu.au

Other Numbers

—e

The rest is for self-study
Also refer to

Lecture05 [Supplement]_fpNumbers.pdf

-7-6 -5-49-3-2-1 01 2 3 4 5 6 7
oo o o o o

*—0—0 00 10— o100

N

Real number -2.3

Real number 0.2

= What about

= Very large numbers? (seconds/century)
3,155,760,000,,, (3.15576,., x 10°)

Very small numbers? (second /

0.000000001,, (1.0, X 10)
Rationals

2/3 (0.666666666. . .)
Irrationals

21/2 (1.414213562373. . .)
Transcendentals

e (2.718...), m (3.141...)

nanosecond)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

S
rd

30

mailto:j.yang@uws.edu.au

Scientific Notation for Binary Numbers

(sign, magnitude) (sign, magnitude)
Mantissa exponent
™ 101’b/
11.01tWO X 2
binary point radix (base)

= Normal format: 1.200XXXXXXto ¥ 240

leading digit is always 1, so called
‘hidden’ or ‘implied’ 1, and is
implemented in hardware.
= 1.000exxxX: Mantissa
= XXXXXXXXXX: significand (significant positions)
" yyYyy: exponent

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

31

mailto:j.yang@uws.edu.au

IEEE 754 Floating Point Standard

31 30 23 22 0)
|s| Exponent | significand |
1 bit 8 bits 23 bits

Word Size (32 bits, 23-bit Significand Single Precision)

Value: (-1)S x Mantissa x 2xponent [broken into 3 parts]

Range: Represent numbers as small as 2.0 x 1038 to
as large as 2.0 x 1038

= if result too large? (> 2.0x1038), Overflow => Exponent larger
than can be represented in 8-bit Exponent field

= if result too small? (>0, < 2.0x10-38), Underflow => Negative
exponent larger than can be represented in 8-bit Exponent field
Issues: increase range (Exponent field) and accuracy
(no. of significant positions)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 32

mailto:j.yang@uws.edu.au

IEEE 754 Floating Point Standard

31 30 2019
Word1 |s| Exponent | significand |
1 bit 11 bits 20 bits
Word 2 | Significand (cont'd) |

32 hits

= Multiple of Word Size (64 bits, 52-bit Significand for

Double Precision)

= Representing Mantissa: If significand bits left-to-right are

Si, Sy, S3, ... then, Mantissa: 1.s;s,S5...; the FP value is:

(-1)°> X (1+(5;x21)+(5,%272)+(55%273) +...) x 2Bxponent

20

2-1

-2

2-3

-4

2-5

NOTE: 1.s;S,55... 1

Sy

S

S3

S4

Ss

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

33

mailto:j.yang@uws.edu.au

MIPS FPU

| TN T 7 O |
— Memory
Floating Point Unit
| I/
CPU Coprocessor 1 (FPU)
Registers Registers
$0 $0
$31 $31
Arithmetic Multiply
unit divide
|—|—| Arithmetic
| Lo I | Hi | unit

Coprocessor O (traps and memory)
Registers

BadVAddr Cause
Status EPC

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS Floating Point Architecture

= Single Precision, Double Precision versions of add,
subtract, multiply, divide, compare
= Single add.s, sub.s, mul.s, div.s, c.lt.s
= Double add.d, sub.d, mul.d, div.d, c.lt.d

s Registers
« Simplest solution: use existing registers

= Normally integer and FP operations on different data, for
performance could have separate registers

= MIPS provides 32 32-bit FP. reg: $f0, $f1, $f2 ...,

= Thus need FP data transfers: Ilwcl, swcl

= Double Precision? Even-odd pair of registers ($f0#$f1) act as
64-bit register: $f0, $f2, $f4, ...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

35

mailto:j.yang@uws.edu.au

H= FH= H= FH

3
c
|_|
O n o n Qo ®n Qn Qo0

New MIPS FP arithmetic instructions

Sf0,$f1,8f2 # $£f0=$f1+$f2 FP Add (single)
Sf0,Sf2,5f4 # S$Sf0=5f2+$f4 FP Add (double)
$f0,Sfl1,$f2 # $f0=$f1-$f2 FP Subtract (single)
Sf0,$f2,5f4 # Sf0=Sf2-5f4 FP Subtract (double)
Sf0,$f1,Sf2 # $£f0=$f1x$f2 FP Multiply (single)
Sf0,$f2,5f4 # $£f0=$f2x$f4 FP Multiply (double)
$f0,Sfl1,$f2 # $f0=$f1+$f2 FP Divide (single)
$Sf0,$f2,5f4 # $S£f0=S5f2+$f4 FP Divide (double)

X.s $£f0,Sfl # flagl= $f0 X $fl1 FP Compare (single)

X.d $f0,S$f2 # flagl= $f0 X $f2 FP Compare (double)

where X 1s: eq (equal), 1lt (less than), le (less than
equal) to tests flag value:

bclt - floating-point branch true

bclf - floating-point branch false

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 36

mailto:j.yang@uws.edu.au

Example with FP MUltIply [Exercise - homework]

void mm (double x[][], double y[][], double z[][])
{
int i, 3, k;
for (1=0; 1i!=32; i=i1+1)
for (§=0; 3!=32; 3=7+1)
for (k=0; k!=32; k=k+1)
x[1][J] = x[1][3] + yl1][k] * z[k][J];

}

» Starting addresses are parameters in $a0, $al, and $a2.
Integer variables are in $t3, $t4, $t5. Arrays 32 by 32

= Use pseudoinstructions: li (load immediate), 1.d/s.d
(load/store 64 bits)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 37

mailto:j.yang@uws.edu.au

MIPS code for first piece: initilialize, x[1[]

= Initailize Loop Variables

mm: ...
1i s$tl1l, 32 # stl = 32
1i $t3, O # 1 = 0; 1st loop
Ll: 1i st4, O # J = 0; reset 2nrd
L2: 1i $t5, O # k = 0; reset 3rd
= To fetch x[i][j], skip i rows (i*32), add j
sll $t2,5$t3,5 # St2 =1 * 2°

addu St2,5t2,5td # St2 = 1*¥2° + 7

= Get byte address (8 bytes), load x[i][j]

sll $t2,5t2,3 # 1,7 byte addr.
addu $t2,$a0, $t2 # Q@ x[1]1[7]
1.d $£f4,0(St2) # Sfd4 = x[1i][7]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS code for second piece: z[1[1, Y[I[]

= Like before, but load z[k][j] into $f16

L3: sll $t0,S$t5,5 # $t0 = k * 25
addu $t0,$t0,st4 # 5t0 = k*25 + 7
sll $t0,s$t0,3 # k,J byte addr.
addu $t0, $a2, $t0 # Q@ z[k][]]

1.d $Sf16,0($t0) # sflo = z[k][7J]
= Like before, but load y[i][k] into $f18

sll $t0,St3,5 # St0 = 1 * 25

addu $t0, $t0, $t5 # St0 = 1*25 + k

sll $t0,s$t0,3 # 1,k byte addr.

addu $t0, $al, $t0 # Q@ y[i][k]

1.d $£18,0(St0) # $f18 = y[i] [k]

= Summary: $f4:x[i][j], $f16:z[K][j], $f18:y[i][k]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

39

mailto:j.yang@uws.edu.au

MIPS code for last piece: add/mul, loops

= Add y*z to x

mul.d $£16,$£18,$£16 # y[1[1*z[][]
add.d $f4, Sf4, S$f16 # x[]1[1+ y*z

= Increment k; if end of inner loop, store x

addiu $t5,s8t5,1 # k =%k + 1

bne $t5,5$tl1,L3 # 1f(k!=32) goto L3

s.d $£f4,0($t2) # x[1i][J] = $f4
= Increment j; middle loop if not end of j

addiu $t4,st4,1 #J =7 +1

bne $t4,5tl,L2 # 1if(j!=32) goto L2
= Increment i; if end of outer loop, return

addiu $t3,5t3,1 # 1 =1+ 1

bne S$t3,5tl, L2 # 1f£(i!=32) goto L1

jr Sra

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

40

mailto:j.yang@uws.edu.au

Revision quiz

= A binary pattern 1010 in 2’s complement has equivalent decimal
value:
1) -6 2) 10 3) 16

= Is the following statement correct?

A 32-bit word, without specifying a context, has no inherent
meaning. That is, it can represent various things.

m sll S$s2, $sl1, 1 hasthe same effect as
1) add $s2, $s1, $sl
2) sub $s2, $s1, $sl
3) muli S$s2, S$sl1, 1

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

41

mailto:j.yang@uws.edu.au

Recommended readings

General Data UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

PCSpim Portable Version | Library materials

Extra Materials ascii_chart.pdf | bias_representation.pdf | HP ADDATEJdH-iDst\ruction decoding.pdf | masking help.pdf | PCSpim.pdf |

~~

PHG, §31, 832, §3.3, §3.5 MIPS Arithmetic; MIPS FP Architecturs
PH5, 831,832, §3.3, §3.5 [p211-p217 of §3.5]: MIPS Arithmetic; MIPS FP Architecture
PH4, §31, 632, §3.3, 835 [p259-p265 of 3 5]: MIPS Arithmetic; MIPS FP Architecture

HP_AppA pdf -> A-51: Arithmetic and Logical Instructions

~

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 42

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

