
Topics

 Integer numbers

 MIPS arithmetic and logical instructions

 Bits masking example (lab 7)

 Some textbook references
– PH Ed3: 3.1, 3.2, 3.3, 3.5

– PH Ed4: 3.1, 3.2, 3.3, 3.5

– PH Ed5: 3.1, 3.2, 3.3, 3.5

– PH Ed6: 3.1, 3.2, 3.3, 3.5

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 5: Arithmetic and Logical instructions

There are 10 types of people in the world:
those who understand binary, and those
who don’t.

mailto:j.yang@uws.edu.au

Interpreting bit patterns

 A 32-bit word has no inherent meaning; it can represent
various things:

 ?

 ?

 ?

 Bits in a word always are numbered from right to left

 Least Significant Bit (LSB) - bit 0 (rightmost)

 Most Significant Bit (MSB) - bit 31 (leftmost)

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

7 6 5 4 3 2 1 015 14 13 12 11 10 9 823 22 21 20 19 18 17 1631 30 29 28 27 26 25 24

mailto:j.yang@uws.edu.au

Unsigned binary number

 Representation

 straightforward for natural numbers

 Example

 10110 has a decimal value

 (1 x 24)+(0x23)+(1x22)+(1x21)+(0x20) = 22

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

24 23 22 21 20

1 0 1 1 0

 Given an n-bit number

 Range: 0 to 2n – 1 (2n different numbers)

 Using 3 bits: 0 to 7

 0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

000 001 010 011

0 1 2 3

100 101 110 111

4 5 6 7

mailto:j.yang@uws.edu.au

Signed binary number

 We need both positive numbers and negative numbers

 How do we distinguish between them?

 Turn some UNSIGNED numbers into negative numbers

 Options? [e.g. +8 as 0? +8 as -1? +15 as 0? +15 as -1? …]

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 The obvious solution would be:

 Reserve one bit for sign, then sign and magnitude
representation

 Symmetry around zero

 same number of positive and negative numbers represented

[0000/1000; 0001/1001; 0010/1010; …]

 but we have two zeros [10002 as -0 in the example above]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

mailto:j.yang@uws.edu.au

Bias representation - 1’s complement

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Give up on symmetry

 [0000/1000; 0001/1001; 0010/1010; …]

 Translation of negative range by adding a distance (bias)

 1’s complement

 if we select bias = 2n-1, we get 1’s complement representation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

Binary (x) if 0 x < 2n-1

Binary (bias - |x|) if -2n-1 < x < 0
representation(x) =

mailto:j.yang@uws.edu.au

Bias representation - 1’s complement

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Note

 no value is mapped to ±2n-1; there are two 0s

 pattern of all 1’s is commonly referred to as negative zero

 but we have symmetry

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-7 -6 -5 -4 -3 -2 -1 -0

 Decimal Value of a negative number (e.g. 1010)
 MSB determines the sign

 Invert all bits, get the value for the positive number

1010 -> inverted 0101 -> 5

 Problems
 Arithmetic operations: try (-3) + (-4)

1100
1011 +

10111

mailto:j.yang@uws.edu.au

Bias representation - 2’s complement

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Translation of negative numbers by a distance (bias)

 2’s complement

 if we select bias = 2n, we get 2’s complement representation

 Note

 we can represent a range from -2n-1 to 2n-1 - 1

 results in the simplest (fastest) hardware

 universally accepted in all modern computers (also MIPS)

Binary (x) if 0 x < 2n-1

Binary (bias - |x|) if -2n-1 x < 0
representation(x) =

mailto:j.yang@uws.edu.au

Bias representation - 2’s complement

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Decimal Value of a negative number (e.g. 1010)
 MSB determines the sign

 Invert all bits, and add one , get the value for the positive number

1010 -> inverted 0101 (5) -> 5 + 1 = 6

 Advantage

 Arithmetic operations work naturally: try (-3) + (-4)

1101
1100 +

11001
 Sign extension

 When moving n bits into an n+m bits container, it’s safe to
extend the sign bit to the leftmost

0 1 0 1

1 1 0 1

0 1 0 1

1 1 0 1

0 1 0 1

1 0 1

mailto:j.yang@uws.edu.au

Bias representation - 2’s complement

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 2’s complement negation
 Given x -> obtain -x

 invert the number (turn every 0 to 1, and 1 to 0) ~x

 Then add 1, that is -x = ~x + 1

 Two's complement operations: Addition & Subtraction
 addition the same as for unsigned numbers

0101

+1010

1111

 subtraction using addition of negative numbers

0101 0101

- 1010 + 0110

1111

5
+ (-6)

-1

5
+ 6

11

mailto:j.yang@uws.edu.au

Overflow [Read more from the textbook]

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Overflow (result too large for finite computer word):

 e.g., adding two n-bit numbers does not yield an n-bit number

 the computer word is finite

 Arithmetic operations can create a number which cannot
be represented 0 111

+ 0 001
1 000

1 111
+ 1 110

1 101

7
+ 1

8

(-1)
+ (-2)

-3

 Two choices:

 ignore overflow: for example in address arithmetic

 detect and handle overflow in hardware

 set a flag (overflow register)

 or exception in the execution of the program

mailto:j.yang@uws.edu.au

Handling overflow

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Detecting Overflow

 No overflow is possible when

 Addition: a positive and a negative number

 Subtraction: signs are the same

 Overflow occurs when the value affects the sign

 adding two positives yields a negative

 adding two negatives gives a positive

 subtract a negative from a positive and get a negative

 subtract a positive from a negative and get a positive

 Handling overflow

 Overflow register

 not in modern RISC architectures (MIPS there is no such a register)

 An exception is triggered by hardware

 in MIPS a special purpose register EPC (Exception Program
Counter) can be used (details later)

mailto:j.yang@uws.edu.au

Ignoring overflow

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 We don't always want to detect overflow

 When running unsigned operations

 MIPS instructions: addu, addiu, subu, sltu, …

 Note:

 With addu, the "u" means "don't trap overflow"

 addiu and sltiu still sign-extend

 sltu for unsigned comparisons

mailto:j.yang@uws.edu.au

Summary of Representations

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3-bit

Binary
pattern

Decimal Values

Sign
Magnitude

1’s Complement

•if MSB=0, positive value

•if MSB=1, invert bits,
assume negative

2’s Complement

•if MSB=0, positive value

•if MSB=1, invert bits, add
1, assume negative

000 +0 +0 +0

001 +1 +1 +1

010 +2 +2 +2

011 +3 +3 +3

100 -0 -3 -4

101 -1 -2 -3

110 -2 -1 -2

111 -3 -0 -1

mailto:j.yang@uws.edu.au

Unsigned and signed instructions

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A number can be interpreted by hardware as signed or
unsigned

 A byte may be an ASCII character, or of some other meaning

 it depends only on the instruction operating on the number

 MIPS provides instructions for signed and unsigned
numbers

Signed Unsigned

arithmetic add, addi, sub, mult, div addu, addiu, subu, multu, divu

comparison slt, slti sltu, sltiu

load lb, lh lbu, lhu

 Answer these questions:

 why don’t we have two versions of the lw instruction?

 why don’t we have two versions of the store byte sb instruction?

mailto:j.yang@uws.edu.au

Unsigned and signed instructions

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 example:

 $s0: 1111 1111 1111 1111 1111 1111 1111 1111

 $s1: 0000 0000 0000 0000 0000 0000 0000 0001

 Answer these questions:

 what is the value of $t0 and $t1?

slt $t0,$s0,$s1 #

sltu $t1,$s0,$s1 #

mailto:j.yang@uws.edu.au

MULTIPLY in MIPS: Instructions

 MIPS registers

 two special purpose registers hi and lo

 hi: high-order word of product

 lo: low-order word of product

 MIPS instructions

mult rs1, rs2 # (hi, lo) = rs1 * rs2 ;signed

multu rs1, rs2 # (hi, lo) = rs1 * rs2 ;unsigned

mfhi rd # move from hi to rd

mflo rd # move from lo to rd

 Pseudo instructions

mul $t0,$s1,$s2

mulo $t0,$s1,$s2

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

DIVIDE in MIPS: Instructions

 all divide instructions put Remainder into hi register, and
Quotient into lo register

div rs1, rs2 # divide rs1 by rs2; signed

quotient in lo, remainder in hi

divu rs1, rs2 # divide rs1 by rs2; unsigned

 Overflow and division by 0 are NOT detected by
hardware

 software takes responsibility

 assembly language programmer or compiler

 Pseudo instructions

div $t0,$s1,$s2

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Logical operations

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we may want to interpret a word

 as fields of bits of various lengths

 including a series of single bits

 instructions for operating on bit fields

 shifts logical operations

 bitwise logical operations

op rs rt rd shamt funct$s1

mailto:j.yang@uws.edu.au

Shifts (Logical shifts, Arithmetic shift)

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Logical shifts

 move all the bits in the register to the left or to the right filling
the empty space with zeros

 bits “shifted-out” are lost

 shamt (shift amount): constant

 Put the result in register rd:

sll rd,rt,shamt # shamt is a constant

sllv rd,rt,rs # Shift left logical variable

srl rd,rt,shamt #

srlv rd,rt,rs #

mailto:j.yang@uws.edu.au

Shifts (Logical shifts, Arithmetic shift)

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Arithmetic shift

 shift to the right with sign extension

 Answer this question:

 why no arithmetic shift to the left?

 Rotation

 ror, rol

 pseudoinstructions to rotate the register to left or right by a
number of bits

 no bits lost, bits “falling off” one end fed into the other end

sra rd,rt,shamt # shamt is a constant

#

srav rd,rt,rs # sra by a variable number of bits

mailto:j.yang@uws.edu.au

Arithmetic by shifting

 For a base n representation

 a shift to the left is like multiplying by n

sll rd, rs, 2

 a shift to the right is like dividing by n

 PITFALLS

 multiplying numbers by shifting left may result in overflow

 but can be used with caution for small integers, for example

 division by arithmetic (not logical) right shift

 positives rounded down

 negatives? also rounded down?

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1 0 0 1

9

1 0 0 1

mailto:j.yang@uws.edu.au

Logical bitwise operations

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 performed bit by bit, so called bitwise operations

 general format like addition

 log-op rd, rs1, rs2 # R-type instruction

 log-opi rd, rs, constant # I-type instruction

 instructions available in MIPS (examples will follow)

 logical AND

 logical OR

 logical NOR

 logical XOR

exercise: think about this:
…why don’t we have unsigned logical instructions?

1 1 1 11 1 1 10 0 1 10 0 0 00 0 0 00 0 0 0 0 0 0 00 0 0 00 01 1 1 11 1 1 11 1 0 0

mailto:j.yang@uws.edu.au

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 “cutting” out bit fields from a word

 a mask is a word (a constant or register contents)

 with “1” for bits we want to keep

 with “0” for bits we want to discard

 a logical AND on the mask and a word

 leaves only the bits we selected in the mask

 all other bits are cleared (replaced with zeros)

Masking

12
1 1 1 11 1 1 10 0 1 10 0 0 00 0 0 00 0 0 0 0 0 0 00 0 0 00 01 1 1 11 1 1 11 1 0 0

mailto:j.yang@uws.edu.au

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Two approaches

 shift first, mask second

 mask first, shift second

 We will mask first
 mask for rs: 0x03e0 0000=0000 0011 1110 0000 0000 0000 0000 0000

 mask for rt: 0x001f 0000=0000 0000 0001 1111 0000 0000 0000 0000

 mask for rd: 0x0000 f800=0000 0000 0000 0000 1111 1000 0000 0000

 all masks happen to be 5-bit long, so we can shift masks

Extracting fields in an instruction

ASSUME: register $s1 contains a R-type instruction

TASK: extract the register numbers rs, rt, rd used in the instruction

and save them in registers $s2, $s3, $s4 respectively

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

$s1

mailto:j.yang@uws.edu.au

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Extracting fields in an instruction

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

$s1

addi $t0,$zero, 0xf800 # mask for rd

and $s4,$s1,$t0 # extract the field

srl $s4,$s4, 11 # right alignment

sll $t0,$t0, 5 # mask for rt

and $s3,$s1,$t0 #

srl $s3,$s3,16 #

sll $t0,$t0,5 # mask for rs

and $s2,$s1,$t0 #

srl $s2,$s2,21 #

mailto:j.yang@uws.edu.au

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 We know:

 the number is 10-bit long

 the number starts at bit position 12

 Strategy

 10-bit mask (for bits 0-9) is 0x0000 03ff

 Left-shift 0x0000 03ff by 12 to generate the mask needed

 Sign extension is needed

Extracting 2’s complement numbers

ASSUME: $s1 contains THREE 10-bit long 2’s complement numbers,

packed in bits 2 to 31

TASK: let’s extract the middle number

$s1

mailto:j.yang@uws.edu.au

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Extracting 2’s complement numbers

addi $t0,$zero, 0x03ff # 10-bit mask (for bits 0-9)

sll $t0,$t0, 12 # Left-shift by 12 to generate

and $s2,$s1,$t0 # the mask needed

#

sll $s2,$s2, 10 # left most to touch MSB

sra $s2,$s2, 22 # sign extension

$s1

mailto:j.yang@uws.edu.au

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Enlarged bit patterns from the previous page

p

m

n

0000 0000 0000 0000 0000 0000 1010 1101 p=173

0000 0000 0000 0000 0000 0000 1111 1000 mask

0000 0000 0000 0000 0000 0000 1010 1000 AND

0000 0000 0000 0000 0000 0000 0001 0101 srl

1010 1000 0000 0000 0000 0000 0000 0000 sll

1111 1111 1111 1111 1111 1111 1111 0101 sra

mailto:j.yang@uws.edu.au

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

LAB 7 help: write procedure “extract”

ASSUME: Numbers entered from keyboard are p, m, n

TASK: Write procedure named “extract" which extracts an n-bit field

starting at bit m from a 32-bit value p

p

m

n

enter p, for example: 173 (use Windows calculator in Scientific mode for Hex-dec-binary conversions)

0000 0000 0000 0000 0000 0000 1010 1101 p is read into a register, say $a2

0000 0000 0000 0000 0000 0000 1111 1000 we can define this mask in our code

task: extract 5 bits starting from bit 3

using the mask to extract the bits 0000 0000 0000 0000 0000 0000 1010 1000 $t2 gets logical AND of p and mask

task: display the extracted bits as unsign and signed integers:

to display as an unsigned integer: 0000 0000 0000 0000 0000 0000 0001 0101 shift right logical, result say into $t3

to display as a signed integer do two shifts:

first shift 1010 1000 0000 0000 0000 0000 0000 0000 shift left logical up to bit 31

second shift -- final result 1111 1111 1111 1111 1111 1111 1111 0101 shift right arithmetic back to bit 0

Refer to maskinghelp.pdf in ‘Extra Materials’ ribbon on vUWS

mailto:j.yang@uws.edu.au

Other Numbers

 What about
 Very large numbers? (seconds/century)

3,155,760,000ten (3.15576ten x 109)

 Very small numbers? (second / nanosecond)

0.000000001ten (1.0ten x 10-9)

 Rationals

2/3 (0.666666666. . .)

 Irrationals

21/2 (1.414213562373. . .)

 Transcendentals

e (2.718...), π (3.141...)

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

Real number -2.3 Real number 0.2

The rest is for self-study
Also refer to

Lecture05 [Supplement]_fpNumbers.pdf

mailto:j.yang@uws.edu.au

Scientific Notation for Binary Numbers

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1.01two x 2-101b

radix (base)binary point

Mantissa

(sign, magnitude)

exponent

(sign, magnitude)

 Normal format: 1.xxxxxxxxxxtwo * 2yyyy
two

 1.xxxxxxxxxx: Mantissa

 xxxxxxxxxx: significand (significant positions)

 yyyy: exponent

leading digit is always 1, so called
‘hidden’ or ‘implied’ 1, and is
implemented in hardware.

mailto:j.yang@uws.edu.au

IEEE 754 Floating Point Standard

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Word Size (32 bits, 23-bit Significand Single Precision)

 Value:

 Range: Represent numbers as small as 2.0 x 10-38 to
as large as 2.0 x 1038

 if result too large? (> 2.0x1038), Overflow => Exponent larger

than can be represented in 8-bit Exponent field

 if result too small? (>0, < 2.0x10-38), Underflow => Negative

exponent larger than can be represented in 8-bit Exponent field

 Issues: increase range (Exponent field) and accuracy

(no. of significant positions)

031

S Exponent

30 23 22

Significand

1 bit 8 bits 23 bits

(-1)S x Mantissa x 2Exponent [broken into 3 parts]

mailto:j.yang@uws.edu.au

IEEE 754 Floating Point Standard

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Multiple of Word Size (64 bits, 52-bit Significand for

Double Precision)

 Representing Mantissa: If significand bits left-to-right are
s1, s2, s3, ... then, Mantissa: 1.s1s2s3…; the FP value is:

031

S Exponent

30 20 19

Significand

1 bit 11 bits 20 bits

32 bits

Significand (cont’d)

Word 1

Word 2

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Exponent

NOTE: 1.s1s2s3… 1

20

s5

2-5

…s4s3s2s1

…2-42-32-22-1

mailto:j.yang@uws.edu.au

MIPS FPU

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Floating Point Unit

mailto:j.yang@uws.edu.au

MIPS Floating Point Architecture

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Single Precision, Double Precision versions of add,
subtract, multiply, divide, compare
 Single add.s, sub.s, mul.s, div.s, c.lt.s

 Double add.d, sub.d, mul.d, div.d, c.lt.d

 Registers

 Simplest solution: use existing registers

 Normally integer and FP operations on different data, for
performance could have separate registers

 MIPS provides 32 32-bit FP. reg: $f0, $f1, $f2 ...,

 Thus need FP data transfers: lwc1, swc1

 Double Precision? Even-odd pair of registers ($f0#$f1) act as
64-bit register: $f0, $f2, $f4, ...

mailto:j.yang@uws.edu.au

New MIPS FP arithmetic instructions

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

add.s $f0,$f1,$f2 # $f0=$f1+$f2 FP Add (single)

add.d $f0,$f2,$f4 # $f0=$f2+$f4 FP Add (double)

sub.s $f0,$f1,$f2 # $f0=$f1-$f2 FP Subtract (single)

sub.d $f0,$f2,$f4 # $f0=$f2-$f4 FP Subtract (double)

mul.s $f0,$f1,$f2 # $f0=$f1x$f2 FP Multiply (single)

mul.d $f0,$f2,$f4 # $f0=$f2x$f4 FP Multiply (double)

div.s $f0,$f1,$f2 # $f0=$f1÷$f2 FP Divide (single)

div.d $f0,$f2,$f4 # $f0=$f2÷$f4 FP Divide (double)

c.X.s $f0,$f1 # flag1= $f0 X $f1 FP Compare (single)

c.X.d $f0,$f2 # flag1= $f0 X $f2 FP Compare (double)

where X is: eq (equal), lt (less than), le (less than

equal) to tests flag value:

bc1t - floating-point branch true

bc1f - floating-point branch false

mailto:j.yang@uws.edu.au

Example with FP Multiply [Exercise - homework]

37Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

void mm (double x[][], double y[][], double z[][])

{

int i, j, k;

for (i=0; i!=32; i=i+1)

for (j=0; j!=32; j=j+1)

for (k=0; k!=32; k=k+1)

x[i][j] = x[i][j] + y[i][k] * z[k][j];

}

 Starting addresses are parameters in $a0, $a1, and $a2.
Integer variables are in $t3, $t4, $t5. Arrays 32 by 32

 Use pseudoinstructions: li (load immediate), l.d/s.d
(load/store 64 bits)

mailto:j.yang@uws.edu.au

MIPS code for first piece: initilialize, x[][]

38Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mm: ...

li $t1, 32 # $t1 = 32

li $t3, 0 # i = 0; 1st loop

L1: li $t4, 0 # j = 0; reset 2nd

L2: li $t5, 0 # k = 0; reset 3rd

 Initailize Loop Variables

sll $t2,$t3,5 # $t2 = i * 25

addu $t2,$t2,$t4 # $t2 = i*25 + j

 To fetch x[i][j], skip i rows (i*32), add j

sll $t2,$t2,3 # i,j byte addr.

addu $t2,$a0,$t2 # @ x[i][j]

l.d $f4,0($t2) # $f4 = x[i][j]

 Get byte address (8 bytes), load x[i][j]

mailto:j.yang@uws.edu.au

MIPS code for second piece: z[][], y[][]

39Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

L3: sll $t0,$t5,5 # $t0 = k * 25

addu $t0,$t0,$t4 # $t0 = k*25 + j

sll $t0,$t0,3 # k,j byte addr.

addu $t0,$a2,$t0 # @ z[k][j]

l.d $f16,0($t0) # $f16 = z[k][j]

 Like before, but load z[k][j] into $f16

sll $t0,$t3,5 # $t0 = i * 25

addu $t0,$t0,$t5 # $t0 = i*25 + k

sll $t0,$t0,3 # i,k byte addr.

addu $t0,$a1,$t0 # @ y[i][k]

l.d $f18,0($t0) # $f18 = y[i][k]

 Like before, but load y[i][k] into $f18

 Summary: $f4:x[i][j], $f16:z[k][j], $f18:y[i][k]

mailto:j.yang@uws.edu.au

MIPS code for last piece: add/mul, loops

40Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mul.d $f16,$f18,$f16 # y[][]*z[][]

add.d $f4, $f4, $f16 # x[][]+ y*z

 Add y*z to x

addiu $t5,$t5,1 # k = k + 1

bne $t5,$t1,L3 # if(k!=32) goto L3

s.d $f4,0($t2) # x[i][j] = $f4

 Increment k; if end of inner loop, store x

addiu $t4,$t4,1 # j = j + 1

bne $t4,$t1,L2 # if(j!=32) goto L2

 Increment j; middle loop if not end of j

addiu $t3,$t3,1 # i = i + 1

bne $t3,$t1,L2 # if(i!=32) goto L1

jr $ra

 Increment i; if end of outer loop, return

mailto:j.yang@uws.edu.au

Revision quiz

41Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 A binary pattern 1010 in 2’s complement has equivalent decimal

value:

1) -6 2) 10 3) 16

 Is the following statement correct?

A 32-bit word, without specifying a context, has no inherent
meaning. That is, it can represent various things.

 sll $s2, $s1, 1 has the same effect as

1) add $s2, $s1, $s1

2) sub $s2, $s1, $s1

3) muli $s2, $s1, 1

mailto:j.yang@uws.edu.au

Recommended readings

42Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

