

There are 10 types of people in the world: those who understand binary, and those who don't.

Topics

- Integer numbers
- MIPS arithmetic and logical instructions
- Bits masking example (lab 7)
- Some textbook references

- PH Ed3: 3.1, 3.2, 3.3, 3.5
- PH Ed4: 3.1, 3.2, 3.3, 3.5
- PH Ed5: 3.1, 3.2, 3.3, 3.5
- PH Ed6: 3.1, 3.2, 3.3, 3.5

3-bit		Decimal Valu	es
Binary pattern	Sign Magnitude	1's Complement •if MSB=0, positive value •if MSB=1, invert bits, assume negative	2's Complement •if MSB=0, positive value •if MSB=1, invert bits, add 1, assume negative
000	+0	+0	+0
001	+1	+1	+1
010	+2	+2	+2
011	+3	+3	+3
100	-0	-3	-4
101	-1	-2	-3
110	-2	-4	-2
111	-3	-0	-1

Bias representation - 1's complement

- Give up on symmetry
 - **-** [0000/1000; 0001/1001; 0010/1010; ...]
- Translation of negative range by adding a distance (bias)

$$\text{representation(x)} = \begin{cases} \text{Binary (x)} & \text{if } 0 \le x < 2^{n \cdot 1} \\ \text{Binary (bias - |x|)} & \text{if } -2^{n \cdot 1} < x < 0 \end{cases}$$

- 1's complement
 - if we select **bias** = **2**ⁿ**-1**, we get 1's complement representation

Interpreting bit patterns

- A 32-bit word has no inherent meaning; it can represent various things:
 - ?
 - ?
- Bits in a word always are numbered from right to left
 - Least Significant Bit (LSB) bit 0 (rightmost)
 - Most Significant Bit (MSB) bit 31 (leftmost)

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bias representation - 1's complement

- Note
 - no value is mapped to $\pm 2^{n-1}$; there are two 0s
 - pattern of all 1's is commonly referred to as negative zero
 - but we have symmetry
- Decimal Value of a negative number (e.g. 1010)
 - MSB determines the sign
 - Invert all bits, get the value for the positive number 1010 -> inverted 0101 -> 5
- Problems 1100 Arithmetic operations: try (-3) + (-4) 1011 +

Computer Organisation COMP2008, Jamie Yang: j.yar

Unsigned binary number

- Representation
 - straightforward for natural numbers
- Example
 - 10110 has a decimal value
 - $(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 22$

24	2 ³	2 ²	2 ¹	2 ⁰
1	0	1	1	0

- Given an n-bit number
 - Range: 0 to **2**ⁿ − **1** (2ⁿ different numbers)
 - Using 3 bits: 0 to 7

000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7

 $X = X_{n-1}2^{n-1} + X_{n-2}2^{n-2} + \cdots + X_{1}2^{1} + X_{0}2^{0}$

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Bias representation - 2's complement

Translation of negative numbers by a distance (bias)

representation(x) =
$$-\begin{bmatrix} Binary\ (x) & \text{if } 0 \le x < 2^{n-1} \\ Binary\ (\textbf{bias} - |x|) & \text{if } -2^{n-1} \le x < 0 \end{bmatrix}$$

- 2's complement
 - if we select bias = 2^n , we get 2's complement representation
- Note
 - we can represent a range from -2ⁿ⁻¹ to 2ⁿ⁻¹ 1
 - results in the simplest (fastest) hardware
 - universally accepted in all modern computers (also MIPS)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu

Signed binary number

- We need both positive numbers and negative numbers
- How do we distinguish between them?
 - Turn some UNSIGNED numbers into negative numbers
 - Options? [e.g. +8 as 0? +8 as -1? +15 as 0? +15 as -1? ...]
- The obvious solution would be:
 - Reserve one bit for sign, then sign and magnitude representation
 - Symmetry around zero
 - same number of positive and negative numbers represented [0000/1000; 0001/1001; 0010/1010; ...]
 - but we have two zeros [1000₂ as -0 in the example above]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Bias representation - 2's complement

- Decimal Value of a negative number (e.g. 1010)
 - MSB determines the sign
 - Invert all bits, and add one , get the value for the positive number 1010 -> inverted 0101 (5) -> 5 + 1 = 6
- Advantage
 - Arithmetic operations work naturally: try (-3) + (-4) 1101 1100 +11001
 - Sign extension
 - When moving n bits into an n+m bits container, it's safe to extend the sign bit to the leftmost

Bias representation - 2's complement

- 2's complement negation
 - Given x -> obtain -x
 - invert the number (turn every 0 to 1, and 1 to 0) ~x
 - Then add 1, that is $-x = \sim x + 1$
- Two's complement operations: Addition & Subtraction
 - addition the same as for unsigned numbers

subtraction using addition of negative numbers

Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au

Summary of Representations

3-bit		Decimal Value	es		
Binary	Sign	1's Complement	2's Complement		
pattern	Magnitude	•if MSB=0, positive value	•if MSB=0, positive value		
		•if MSB=1, invert bits, assume negative	•if MSB=1, invert bits, add 1, assume negative		
000	+0	+0	+0		
001	+1	+1	+1		
010	+2	+2	+2		
011	+3	+3	+3		
100	-0	-3	-4		
101	-1	-2	-3		
110	-2	-1	-2		
111	-3	-0	-1		

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

13

Overflow [Read more from the textbook]

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 - the computer word is finite
- Arithmetic operations can create a number which cannot be represented
 O 111
 O 111
 O 1 111
 O 1 111

- Two choices:
 - ignore overflow: for example in address arithmetic
 - detect and handle overflow in hardware
 - set a flag (overflow register)
 - or exception in the execution of the program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Unsigned and signed instructions

- A number can be interpreted by hardware as signed or unsigned
 - A byte may be an ASCII character, or of some other meaning
- it depends only on the instruction operating on the number
- MIPS provides instructions for signed and unsigned numbers

	Signed	Unsigned
arithmetic	add, addi, sub, mult, div	addu, addiu, subu, multu, divu
comparison	slt, slti	sltu, sltiu
load	lb, lh	lbu, lhu

- Answer these questions:
 - why don't we have two versions of the lw instruction?
 - why don't we have two versions of the store byte sb instruction?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1

Handling overflow

- Detecting Overflow
 - No overflow is possible when
 - Addition: a positive and a negative number
 - Subtraction: signs are the same
 - Overflow occurs when the value affects the sign
 - adding two positives yields a negative
 - adding two negatives gives a positive
 - subtract a negative from a positive and get a negative
 - subtract a positive from a negative and get a positive
- Handling overflow
 - Overflow register
 - not in modern RISC architectures (MIPS there is no such a register)
 - An exception is triggered by hardware
 - in MIPS a special purpose register EPC (Exception Program Counter) can be used (details later)

Computer Organisation COMP2008, Jamie Yang: <u>i.yanq@westernsydney.edu.au</u>

Unsigned and signed instructions

- example:
- Answer these questions:
 - what is the value of \$t0 and \$t1?slt \$t0,\$s0,\$s1 #sltu \$t1,\$s0,\$s1 #

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.

1

Ignoring overflow

- We don't always want to detect overflow
 - When running unsigned operations
 - MIPS instructions: addu, addiu, subu, sltu, ...
- Note:
 - With addu, the "u" means "don't trap overflow"
 - addiu and sltiu still sign-extend
 - **sltu** for unsigned comparisons

MULTIPLY in MIPS: Instructions

- MIPS registers
 - two special purpose registers hi and lo
 - hi: high-order word of product
 - **Io**: low-order word of product
- MIPS instructions

```
mult rs1, rs2 # (hi, lo) = rs1 * rs2 ; signed
multu rs1, rs2 # (hi, lo) = rs1 * rs2 ; unsigned
mfhi rd # move from hi to rd
mflo rd # move from lo to rd
```

Pseudo instructions

```
mul $t0,$s1,$s2
mulo $t0,$s1,$s2
```


DIVIDE in MIPS: Instructions

 all divide instructions put Remainder into hi register, and Quotient into lo register

- Overflow and division by 0 are NOT detected by hardware
 - software takes responsibility
 - assembly language programmer or compiler
- Pseudo instructions

```
div $t0,$s1,$s2
```

Computer Organisation COMP2008, Jamie Yang: 1.yang@westernsydney.edu.a

17

Arithmetic by shifting

- For a base *n* representation
 - a shift to the left is like multiplying by n sll rd, rs, 2
 - a shift to the right is like dividing by n
- PITFALLS
 - multiplying numbers by shifting left may result in overflow
 - but can be used with caution for small integers, for example
 - division by arithmetic (not logical) right shift
 - positives rounded down

1 0 0 1

1 0 0 1

negatives? also rounded down?

omputer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

21

22

-

Logical operations

- we may want to interpret a word
 - as fields of bits of various lengths
 - including a series of single bits

\$s1 op rs rt rd shamt

- instructions for operating on bit fields
 - shifts logical operations
 - bitwise logical operations

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

18

Logical bitwise operations

- performed bit by bit, so called bitwise operations
- general format like addition
 - log-op rd, rs1, rs2 # R-type instruction
 - log-opi rd, rs, constant # I-type instruction
- instructions available in MIPS (examples will follow)
 - logical AND
 - logical OR
 - logical NORlogical XOR
 - logical XOR

exercise: think about this: ...why don't we have unsigned logical instructions?

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

4

Shifts (Logical shifts, Arithmetic shift)

- Logical shifts
 - move all the bits in the register to the left or to the right filling the empty space with zeros
 - bits "shifted-out" are lost
 - shamt (shift amount): constant
 - Put the result in register rd:

```
sll rd,rt,shamt # shamt is a constant
sllv rd,rt,rs # Shift left logical variable
srl rd,rt,shamt #
srlv rd,rt,rs #
```

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

Masking

- "cutting" out bit fields from a word
- a mask is a word (a constant or register contents)
 - with "1" for bits we want to keep
 - with "0" for bits we want to discard
- a logical AND on the mask and a word
 - leaves only the bits we selected in the mask
 - all other bits are cleared (replaced with zeros)

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

2:

Shifts (Logical shifts, Arithmetic shift)

- Arithmetic shift
 - shift to the right with sign extension

```
sra rd,rt,shamt # shamt is a constant
#
srav rd.rt.rs # sra by a variable number of bits
```

- Answer this question:
 - why no arithmetic shift to the left?
- Rotation
 - ror, rol
 - pseudoinstructions to rotate the register to left or right by a number of bits
 - no bits lost, bits "falling off" one end fed into the other end

4

Extracting fields in an instruction

ASSUME: register \$s1 contains a R-type instruction

TASK: extract the register numbers rs, rt, rd used in the instruction and save them in registers \$s2, \$s3, \$s4 respectively

\$s1	ор	rs	rt	rd	shamt	funct
	6 hitc	E bitc	E bitc	E bitc	E bitc	6 hitc

- Two approaches
 - shift first, mask second
 - mask first, shift second
- We will mask first
- all masks happen to be 5-bit long, so we can shift masks

Extracting fields in an instruction

```
addi $t0,$zero, 0xf800 # mask for rd
and $s4,$s1,$t0
                         # extract the field
srl $s4,$s4, 11
                         # right alignment
sll $t0,$t0, 5
                         # mask for rt
and $s3,$s1,$t0
srl $s3,$s3,16
sll $t0,$t0,5
                         # mask for rs
and $s2,$s1,$t0
srl $s2,$s2,21
         op
                         rt
                5 bits
                       5 bits
                                     5 bits
                                             6 bits
```

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

Extracting 2's complement numbers

ASSUME: \$s1 contains THREE 10-bit long 2's complement numbers, packed in bits 2 to 31

TASK: let's extract the middle number

\$s1

- We know:
 - the number is 10-bit long
 - the number starts at bit position 12
- Strategy
 - 10-bit mask (for bits 0-9) is 0x0000 03ff
 - Left-shift 0x0000 03ff by 12 to generate the mask needed
 - Sign extension is needed

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

26

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au

Extracting 2's complement numbers

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

27

• **1.xxxxxxxxx**: Mantissa

• xxxxxxxxx: significand (significant positions)

• yyyy: exponent

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

4

Enlarged bit patterns from the previous page

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

IEEE 754 Floating Point Standard

	31	30	23 22		0
	S	Exponent		Significand	
1	l bi	t 8 bits		23 bits	

- Word Size (32 bits, 23-bit Significand Single Precision)
 - Value: (-1)^s x Mantissa x 2^{Exponent} [broken into 3 parts]
- Range: Represent numbers as small as **2.0 x 10⁻³⁸** to as large as **2.0 x 10³⁸**
 - if result too large? (> 2.0x10³⁸), Overflow => Exponent larger than can be represented in 8-bit Exponent field
 - if result too small? (>0, < 2.0x10⁻³⁸), Underflow => Negative exponent larger than can be represented in 8-bit Exponent field
- Issues: increase range (Exponent field) and accuracy (no. of significant positions)

- Multiple of Word Size (64 bits, 52-bit Significand for Double Precision)
- Representing Mantissa: If significand bits left-to-right are s_1 , s_2 , s_3 , ... then, Mantissa: $1.s_1s_2s_3$...; the FP value is:

```
(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{Exponent}
  NOTE: 1.s_1s_2s_3..
                                            1
                                                       S_1
                                                                  S_2
                                                                              S_3
                                                                                                    S<sub>5</sub>
```

Computer Organisation COMP2008, Jamie Yang:

Example with FP Multiply [Exercise - homework] void mm (double x[][], double y[][], double z[][]) int i, j, k;
for (i=0; i!=32; i=i+1) for (j=0; j!=32; j=j+1) for (k=0; k!=32; k=k+1) x[i][j] = x[i][j] + y[i][k] * z[k][j];

- Starting *addresses* are parameters in \$a0, \$a1, and \$a2. Integer variables are in \$t3, \$t4, \$t5. Arrays 32 by 32
- Use pseudoinstructions: li (load immediate), l.d/s.d (load/store 64 bits)

Computer Organisation COMP2008, Jamie Yang: j.yang@

MIPS FPU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS code for first piece: initilialize, x[][]

Initailize Loop Variables

```
li $t1, 32
              # $t1 = 32
li $t3, 0
             # i = 0; 1st loop
li $t4, 0
             # j = 0; reset 2
li $t5, 0
              \# k = 0; reset 3rd
```

To fetch x[i][j], skip i rows (i*32), add j

```
$t2,$t3,5
                    # $t2 = i * 2^5
addu $t2,$t2,$t4 # $t2 = i*2^5 + j
```

Get byte address (8 bytes), load x[i][j]

```
sll $t2,$t2,3
                     # i,j byte addr.
addu $t2,$a0,$t2
                     # @ x[i][j]
1.d $f4,0($t2)
                     # $f4 = x[i][j]
```

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS Floating Point Architecture

- Single Precision, Double Precision versions of add, subtract, multiply, divide, compare
 - Single add.s, sub.s, mul.s, div.s, c.lt.s
 - Double add.d, sub.d, mul.d, div.d, c.lt.d
- Registers
 - Simplest solution: use existing registers
 - Normally integer and FP operations on different data, for performance could have separate registers
- MIPS provides 32 32-bit FP. reg: \$f0, \$f1, \$f2 ...,
 - Thus need FP data transfers: lwc1, swc1
 - Double Precision? Even-odd pair of registers (\$f0#\$f1) act as 64-bit register: \$f0, \$f2, \$f4, ...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS code for second piece: **z[][], y[][]**

Like before, but load z[k][j] into \$f16

```
sll $t0,$t5,5
                     # $t0 = k * 25
                     # $t0 = k*25 + j
addu $t0,$t0,$t4
sll $t0,$t0,3
                     # k, j byte addr.
addu $t0,$a2,$t0
                     # @ z[k][i]
1.d $f16,0($t0)
                     \# \$f16 = z[k][j]
```

Like before, but load y[i][k] into \$f18

```
sll $t0,$t3,5
                      # $t0 = i * 25
# $t0 = i*25 + k
addu $t0,$t0,$t5
sll $t0,$t0,3
                       # i,k byte addr.
addu $t0,$a1,$t0
                       # @ v[i][k]
1.d $f18,0($t0)
                       # $f18 = v[i][k]
```

Summary: \$f4:x[i][j], \$f16:z[k][j], \$f18:y[i][k]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

New MIPS FP arithmetic instructions

```
add.s $f0,$f1,$f2 # $f0=$f1+$f2 FP Add (single)
add.d $f0,$f2,$f4 # $f0=$f2+$f4 FP Add (double)
sub.s $f0,$f1,$f2 # $f0=$f1-$f2 FP Subtract (single)
sub.d $f0,$f2,$f4 # $f0=$f2-$f4 FP Subtract (double)
mul.s f0,f1,f2 # f0=f1xf2 FP Multiply (single)
mul.d $f0,$f2,$f4 # $f0=$f2x$f4 FP Multiply (double)
div.s $f0,$f1,$f2 #
                   $f0=$f1÷$f2 FP Divide (single)
div.d $f0,$f2,$f4 # $f0=$f2÷$f4 FP Divide (double)
c.X.s $f0,$f1
                  # flag1= $f0 X $f1 FP Compare (single)
c.X.d $f0,$f2
                 # flag1= $f0 X $f2 FP Compare (double)
# where X is: eq (equal), lt (less than), le (less than
# equal) to tests flag value:
# bclt - floating-point branch true
# bclf - floating-point branch false
```

Computer Organisation COMP2008, Jamie Yang: i.vang@westernsvdne

MIPS code for last piece: add/mul, loops

Add y*z to x

```
mul.d $f16,$f18,$f16 # y[][]*z[][]
add.d $f4, $f4, $f16 # x[][] + y*z
```

Increment k; if end of inner loop, store x

```
addiu $t5,$t5,1
                     # if(k!=32) goto L3
bne $t5,$t1,L3
                     \# x[i][j] = \$f4
s.d $f4,0($t2)
```

Increment j; middle loop if not end of j

```
addiu $t4,$t4,1
                     # j = j + 1
bne $t4,$t1,L2
                     # if(j!=32) goto L2
```

Increment i; if end of outer loop, return

```
addiu $t3,$t3,1
                     # i = i + 1
bne $t3,$t1,L2
                     # if(i!=32) goto L1
jr $ra
```

Computer Organisation COMP2008, Jamie Yang: i.vang@weste

Revision quiz

■ A binary pattern 1010 in 2's complement has equivalent decimal value:

1) -6

2) 10

3) 16

• Is the following statement correct?

A 32-bit word, without specifying a context, has no inherent meaning. That is, it can represent various things.

■ sll \$s2, \$s1, 1 has the same effect as

1) add \$s2, \$s1, \$s1

2) sub \$s2, \$s1, \$s1

3) muli \$s2, \$s1, 1

Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au

Recommended readings

General Data Extra Materials

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments | 6 |
ascil.chart.pdf | bias, representation.pdf | HP. ApoA38ff + Instruction decoding.pdf | masking.help.pdf | PCSpim.pdf |
PCSpim Portable Version | Ubrary materials

PH6, §3.1, §3.2, §3.3, §3.5: MIPS Arithmetic; MIPS FP Architecture PH5, §3.1, §3.2, §3.3, §3.5 [p.211-p.217 of §3.5]: MIPS Arithmetic; MIPS FP Architecture PH4, §3.1, §3.2, §3.3, §3.5 [p.259-p.265 of §3.5]: MIPS Arithmetic; MIPS FP Architecture

HP_AppA.pdf -> A-51: Arithmetic and Logical Instructions

Text readings are listed in Teaching Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check whether eBook available on library site

PH6: companion materials (e.g. online sections for further readings)

https://www.elsevier.com/books-andjournals/book-companion/9780128201091

PH5: companion materials (e.g. online sections for further readings)

Computer Organisation COMP2008, Jamie Yang: j.yanq@westernsydney.edu.au