

Lecture 5 [Supplement]: Floating Point numbers [For Self-Study]

Topics

- Division and multiplication
 - Algorithms
 - MULTIPLY and DIVIDE in MIPS
- Floating point numbers
 - Binary floating point arithmetic
 - Introduction to IEEE Standard 754
 - Real life (and death) examples of floating point errors
 - Floating point support in MIPS

Arithmetic by shifting

- For a base n representation
 - a shift to the left is like multiplying by n

PITFALLS

- multiplying numbers by shifting left may result in overflow
 - but can be used with caution for small integers, for example
- division by arithmetic (not logical) right shift
 - positives rounded down

negatives? also rounded down?

1 0 0 1

Division by shifting

Example: -7/2

shift by one to right (sign extend)

Let's check the result

■ the result is -4, BUT we expected -3

MULTIPLY (unsigned)

Paper and pencil example (unsigned):

Multiplicand	1000
Multiplier	1001
_	1000
	0000
	0000
	1000
Product	01001000

Observation:

- \mathbf{m} bits $\times \mathbf{n}$ bits = $\mathbf{m} + \mathbf{n}$ bit product
- multiplication must be able to cope with overflow
- with only 1's and 0's -> we either add the multiplicand or do nothing

MULTIPLY (unsigned)

Pseudo-code implementation m x n (Unsigned)

```
INPUT
    m := Multiplicand;
    n := Multiplier; /* We view n as a string of bits: n[3], n[2], n[1], n[0] */
OUTPUT
                                        1000
    result := m x n;
                                        1000
BEGIN
                                      0000
    SET result = 0;
                                     0000
                                    1000
    SET i = 0:
                                  01001000
    REPEAT
              IF n[i] = 1 THEN result = result + m; ;otherwise skip Addition
              arithmetic shift m left by 1 place;
                                                    ;keep Shifting m
              i = i + 1;
    UNTIL i = 4;
    PRINT result;
END
```


Multiplication algorithms

- Implementation of multiplication (in hardware or software)
 - by a series of shifts and additions
 - as many additions as many bits in the multiplier
- Optimisations
 - for 0's bits in the multiplier the addition is skipped
 - clever use of the multiplicand, multiplier and product registers
 - looking at more bits of the multiplier for each step (like in Booth's Algorithm)

Booth's Algorithm: Elaboration

- Key observation:

 - so if we encounter a string of 1's in the multiplier we can subtract the multiplicand at the beginning of the string, and add multiplicand at the end
 - instead of adding for each occurrence of 1
- Actions for pairs of "current bit, bit to the right"
 - 00 middle of string of 0's, shift, do nothing
 - 11 middle of string of 1's, shift, do nothing
 - 01 end of string of 1's, shift, add the shifted multiplicand
 - 10 beginning of string of 1's, shift, subtract the shifted multiplicand

Booth's Algorithm: Pseudocode implementation

Pseudo-code implementation m x n (Unsigned)

```
INPUT
     m := Multiplicand;
     n := Multiplier; /* We view n as a string of bits: n/3, n/2, n/2, n/1, n/0 */
OUTPUT
     result := m x n;
BEGIN
     SET result = 0;
     SET i = 0;
     SET previous = 0;
     REPEAT
                current = n[i];
                IF current = 1 AND previous = 0 THEN result = result - m;
                IF current = 0 AND previous = 1 THEN result = result + m;
                shift m left 1 place;
                                            ;keep shifting
                i = i + 1;
                previous = current;
     UNTIL i = 4;
     PRINT result;
END
```


MULTIPLY in MIPS

MIPS registers

- two special purpose registers hi and lo
- **hi**: high-order word of product
- **Io**: low-order word of product

MIPS instructions

```
mult rs1, rs2 # (hi, lo) = rs1 * rs2 ;signed
multu rs1, rs2 # (hi, lo) = rs1 * rs2 ;unsigned
mfhi rd # move from hi to rd
mflo rd # move from lo to rd
```

Overflow in multiplication

- 32-bit integer result in lo
- logically overflow if product too big
- but software must check hi
 - for multu register hi should be zero
 - for mult register hi should be extended sign of lo
- Detecting: Multiply \$s5 by \$s6, product in \$t7

DIVIDE in MIPS

 all divide instructions put Remainder into hi register, and Quotient into lo register

- Overflow and division by 0 are NOT detected by hardware
 - software takes responsibility
 - assembly language programmer or compiler

Other Numbers

What about

Very large numbers? (seconds/century)

$$3,155,760,000_{\text{ten}}$$
 (3.15576_{ten} x 10⁹)

Very small numbers? (second / nanosecond)

$$0.00000001_{\text{ten}} (1.0_{\text{ten}} \times 10^{-9})$$

Rationals

Irrationals

$$2^{1/2}$$
 (1.414213562373. . .)

Transcendentals

Recall Scientific Notation

E.g. Alternatives to represent 1/1,000,000,000

■ Not normalized: 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰, ... [floating point?]

■ Normalized: 1.0 x 10⁻⁹

- Normal form: no leading zeros, 1 digit to left of decimal point
 - Simplifies data exchange, increases accuracy
 - Ensures single representation for every value

Scientific Notation for Binary Numbers

- - 1.xxxxxxxxxxx: Mantissa
 - xxxxxxxxxx: significand (significant positions)
 - yyyy: exponent

IEEE 754 Floating Point Standard

	<u>31</u>	30	23 22		0
	S	Exponent		Significand	
1	l bi	t 8 bits		23 bits	

- Word Size (32 bits, 23-bit Significand Single Precision)
- Value: (-1)^s x Mantissa x 2^{Exponent} [broken into 3 parts]
- Range: Represent numbers as small as **2.0** x **10**⁻³⁸ to as large as **2.0** x **10**³⁸
 - if result too large? (> 2.0x10³⁸), **Overflow** => Exponent larger than can be represented in 8-bit Exponent field
 - if result too small? (>0, < 2.0x10⁻³⁸), **Underflow** => Negative exponent larger than can be represented in 8-bit Exponent field
- Issues: increase range (Exponent field) and accuracy (no. of significant positions)

IEEE 754 Floating Point Standard

- Multiple of Word Size (64 bits, 52-bit Significand for Double Precision)
- Representing Mantissa: If significand bits left-to-right are s₁, s₂, s₃, ... then, Mantissa: 1.s₁s₂s₃...; the FP value is:

$$(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{Exponent}$$

NOTE: 1.s₁s₂s₃...

2 ⁰	2-1	2-2	2 -3	2-4	2-5	
1	S ₁	S ₂	S ₃	S ₄	S ₅	

IEEE 754 Floating Point Standard

$$(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{\text{Exponent}}$$

- Representing Exponent (Binary signed pattern)
 - 2's comp?
 - Not as intuitive as Unsigned numbers for comparison
 - Excess Notation
 - where: 0000 0000 is most negative, and 1111 1111 is most positive; comparison is as intuitive as Unsigned numbers
 - subtract a bias number to get real number (or add the bias number to get excess-exponent)

```
IEEE 754 uses bias of 127 for single precision (-1)<sup>s</sup> x (1.Significand) x 2<sup>(Excess_Exponent-127)</sup>
```

IEEE 754 uses bias of **1023** for double precision (-1)^s x (1.Significand) x 2^(Excess_Exponent-1023)

Converting Decimal to FP

$$(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{\mathbf{Excess-Exponent}}$$

- Example: representation of -0.75
 - Change appearance:
 - Work out three parts: S, Mantissa, and Exponent
 - Sign? 1
 - 1.Significand? $1.5_{ten} = 1.100_{two}$

2 ⁰ (1)	2 -1 (0.5)	2 -2 (0.25	2 -3	2-4	:
1	1	0	0	0	

Exponent?

Real Exponent: -1

Excess Exponent: $-1 + 127 = 126_{ten} = ($? $)_{two}$

31 30 23 22

Converting FP to Decimal

$$(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{\text{Excess-Exponent}}$$

Example

- Work out three parts: S, Mantissa, and Exponent
 - Sign? 0
 - 1.Significand? 1. 101 0101 0100 0011 0100 0010 $_{two}$ = (?)_{ten}

	S_1	S_2	\mathbf{S}_3	S_4	
20 (1)	2 -1 (0.5)	2 -2 (0.25	2-3	2-4	:
1 •	1	0	1	0	

Exponent?

Excess Exponent: $0110 \ 1000_{two} = 104_{ten}$

Real Exponent: 104 - 127=-13 [Bias adjustment]

Basic FP Addition Algorithm

$$(-1)^S \times (\mathbf{1} + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + ...) \times 2^{\mathbf{Excess-Exponent}}$$

- For addition (or subtraction) of X to Y (X<Y):
 - (1) Compute **D** = **ExpY ExpX** (align binary point)
 - (2) Right shift (ManX) by D bits => (ManX)*2(ExpX-ExpY)
 - (3)Compute (ManX)*2(ExpX ExpY) + ManY
- Floating Point addition is NOT associative

$$(x + y) + z \neq x + (y + z)$$

	Decimal	Binary		
x -102		11101000		
У	102	01101000		
z	.000012	00001000		

$$(x + y) + z = 00000000 + 00001000 = 00001000 => (.000012)_{ten}$$

 $x + (y + z) = 11101000 + 01101000 = 000000000 => (0)_{ten}$

Floating Point Fallacy: is Accuracy Optional?

- FP Fallacies: FP result approximation of real result!
- July 1994: Intel discovers bug in Pentium
 - Occasionally affects bits 12-52 of Double Precision divide
- Sept: Math Prof. discovers, put on WWW
- Nov: Front page trade paper, then NY Times
 - Intel: "...several dozen people that this would affect. So far, we've only heard from one."
 - Intel claims customers see 1 error/27000 years
 - IBM claims 1 error/month, stops shipping computers with Intel CPU
- December: Intel apologizes, replace chips \$300M
- Reputation? What responsibility to society?

MIPS Floating Point Architecture

- Single Precision, Double Precision versions of add, subtract, multiply, divide, compare
 - Single add.s, sub.s, mul.s, div.s, c.lt.s
 - Double add.d, sub.d, mul.d, div.d, c.lt.d
- Registers
 - Simplest solution: use existing registers
 - Normally integer and FP operations on different data, for performance could have separate registers
- MIPS provides 32 32-bit FP. reg: \$f0, \$f1, \$f2 ...,
 - Thus need FP data transfers: lwc1, swc1
 - Double Precision? Even-odd pair of registers (\$f0#\$f1) act as 64-bit register: \$f0, \$f2, \$f4, ...

New MIPS FP arithmetic instructions

```
add.s $f0,$f1,$f2 # $f0=$f1+$f2 FP Add (single)
add.d $f0,$f2,$f4 # $f0=$f2+$f4 FP Add (double)
sub.s $f0,$f1,$f2 # $f0=$f1-$f2 FP Subtract (single)
sub.d $f0,$f2,$f4 # $f0=$f2-$f4 FP Subtract (double)
mul.s $f0,$f1,$f2 # $f0=$f1x$f2 FP Multiply (single)
mul.d $f0,$f2,$f4 # $f0=$f2x$f4 FP Multiply (double)
div.s $f0,$f1,$f2 # $f0=$f1+$f2 FP Divide (single)
div.d $f0,$f2,$f4 # $f0=$f2÷$f4 FP Divide (double)
c.X.s $f0,$f1 # flaq1= $f0 \times $f1 \text{ FP Compare (single)}
c.X.d $f0,$f2 # flag1= $f0 \times $f2 \text{ FP Compare (double)}
# where X is: eq (equal), lt (less than), le (less than
# equal) to tests flag value:
# bc1t - floating-point branch true
# bclf - floating-point branch false
```


Example with FP Multiply [Exercise]

- Starting addresses are parameters in \$a0, \$a1, and \$a2.
 Integer variables are in \$t3, \$t4, \$t5. Arrays 32 by 32
- Use pseudoinstructions: li (load immediate), l.d/s.d (load/store 64 bits)

MIPS code for first piece: initilialize, x[][]

Initailize Loop Variables

```
mm: ...
    li $t1, 32  # $t1 = 32
    li $t3, 0  # i = 0; 1st loop
L1: li $t4, 0  # j = 0; reset 2<sup>nd</sup>
L2: li $t5, 0  # k = 0; reset 3rd
```

■ To fetch x[i][j], skip i rows (i*32), add j

```
sll $t2,$t3,5 # $t2 = i * 2^5 addu $t2,$t2,$t4 # $t2 = i*2^5 + j
```

Get byte address (8 bytes), load x[i][j]

```
sll $t2,$t2,3  # i,j byte addr.
addu $t2,$a0,$t2  # @ x[i][j]
l.d $f4,0($t2)  # $f4 = x[i][j]
```


MIPS code for second piece: z[][], y[][]

■ Like before, but load z[k][j] into \$f16

```
L3: sl1 $t0,$t5,5 # $t0 = k * 25
addu $t0,$t0,$t4 # $t0 = k*25 + j
sl1 $t0,$t0,3 # k,j byte addr.
addu $t0,$a2,$t0 # @ z[k][j]
1.d $f16,0($t0) # $f16 = z[k][j]
```

■ Like before, but load y[i][k] into \$f18

```
sll $t0,$t3,5  # $t0 = i * 25

addu $t0,$t0,$t5  # $t0 = i*25 + k

sll $t0,$t0,3  # i,k byte addr.

addu $t0,$a1,$t0  # @ y[i][k]

l.d $f18,0($t0)  # $f18 = y[i][k]
```

Summary: \$f4:x[i][j], \$f16:z[k][j], \$f18:y[i][k]

MIPS code for last piece: add/mul, loops

Add y*z to x

```
mul.d $f16,$f18,$f16 # y[][]*z[][] add.d $f4, $f4, $f16 # x[][]+ y*z
```

Increment k; if end of inner loop, store x

```
addiu $t5,$t5,1  # k = k + 1
bne $t5,$t1,L3  # if(k!=32) goto L3
s.d $f4,0($t2)  # x[i][j] = $f4
```

Increment j; middle loop if not end of j

```
addiu $t4,$t4,1  # j = j + 1
bne $t4,$t1,L2  # if(j!=32) goto L2
```

Increment i; if end of outer loop, return

```
addiu $t3,$t3,1  # i = i + 1
bne $t3,$t1,L2  # if(i!=32) goto L1
jr $ra
```