Lecture 5 [Supplement]: Floating Point numbers
[For Self-Study]

(sign, magnitude) (sign, magnitude)
Mantissa exponent

|] Dx -

binary point radix (base)

= Division and multiplication

= Algorithms
= MULTIPLY and DIVIDE in MIPS

= Floating point numbers
= Binary floating point arithmetic
= Introduction to IEEE Standard 754
= Real life (and death) examples of floating point errors
= Floating point support in MIPS

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Arithmetic by shifting

= For a base n representation
= a shift to the left is like multiplying by n
sll rd, rs, 2
= a shift to the right is like dividing by n

s PITFALLS

= Mmultiplying numbers by shifting left may result in overflow
= but can be used with caution for small integers, for example

= division by arithmetic (not logical) right shift
= positives rounded down

9
0| 0

= Nnegatives? also rounded down?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Division by shifting

Example: -7/2

1111y 1111111111

nift by one to right (sign extend
11111111111 1f111

Let’s check the result

0[0| O] O O] O O| O] O] O O] O] O

the result is -4 , BUT we expected -3

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MULTIPLY (unsigned)

= Paper and pencil example (unsigned):

Multiplicand 1000
Multiplier 1001
1000
0000

0000

1000
Product 01001000

= Observation:
= M bits x n bits = m + n bit product
= multiplication must be able to cope with overflow
= with only 1's and 0’s -> we either add the multiplicand or do
nothing

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MULTIPLY (unsigned)

= Pseudo-code implementation m x n (Unsigned)
INPUT
m := Multiplicand;
n := Multiplier; /*We view n as a string of bits: n/3], n/2], n[1], n[0] */
OUTPUT 1000
result :==m x n; 1001
BEGIN = o)

0000

SET result =0; 0000
1000

SETi=0; 01001000
REPEAT

IF n[i] =1 THEN result = result + m; ;otherwise skip Addition
arithmetic shift m left by 1 place; ;keep Shifting m
i=i+1;
UNTIL i = 4;
PRINT result;
END

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Multiplication algorithms

= Implementation of multiplication (in hardware or
software)
= by a series of shifts and additions
= as many additions as many bits in the multiplier

= Optimisations
= for 0’s bits in the multiplier the addition is skipped

= Clever use of the multiplicand, multiplier and product registers

= looking at more bits of the multiplier for each step (like in
Booth’s Algorithm)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Booth’s Algorithm: Elaboration

= Key observation:
= 11111111 = 2n1 = 2n. 20

-~
n

so if we encounter a string of 1’s in the multiplier we can
subtract the multiplicand at the beginning of the string, and
add multiplicand at the end

* instead of adding for each occurrence of 1

= Actions for pairs of “current bit, bit to the right”
00 - middle of string of O’s, shift, do nothing
11 - middle of string of 1’s, shift, do nothing
01 - end of string of 1’s, shift, add the shifted multiplicand
10 - beginning of string of 1’s, shift, subtract the shifted multiplicand

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Booth's Algorithm: Pseudocode implementation

s Pseudo-code implementation m x n (Unsigned)
INPUT
m := Multiplicand;
n := Multiplier; /*We view n as a string of bits: n/3/, n/2], n[1], n[0] */
OUTPUT
result :== m x n;
BEGIN
SET result = 0;
SETi=0;
SET previous = 0;
REPEAT
current = n[i];
IF current = 1 AND previous = 0 THEN result = result - m;
IF current = 0 AND previous = 1 THEN result = result + m;
shift m left 1 place; ;keep shifting
i=i+1;
previous = current;
UNTIL i = 4;
PRINT result;

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MULTIPLY in MIPS

= MIPS reqisters
= two special purpose registers hi and lo
* hi: high-order word of product
* lo: low-order word of product

= MIPS instructions
mult rsl, rs2 # (hi, lo) = rsl * rs2 ;signed
multu rsl, rs2 # (hi, lo) = rsl * rs2 ;unsigned
mfhi rd # move from hi to rd

mflo rd # move from lo to rd

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overflow in multiplication

32-bit integer result in lo

logically overflow if product too big

but software must check hi
= for multu register hi should be zero
» for mult register hi should be extended sign of lo

Detecting: Multiply $s5 by $s6, product in $t7

mult $sb5,$s6 ar
mfhi $t6 i
mflo $t7 #
xor $t6,S5t6,St7 il
slt Sto,S$to6, S$Szero #

perform multiplication
move hi to $t6

product from lo to St7
compare signs of hi and 1lo
$Sto=0 if signs different

beg $t6,Szero,Overflow # if different there is

overflow

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

DIVIDE in MIPS

= all divide instructions put Remainder into hi register, and
Quotient into lo register

div rsl, rs2 # divide rsl by rs2; signed
quotient in lo, remainder in hi
divu rsl, rs2 # divide rsl by rs2; unsigned
= QOverflow and division by 0 are NOT detected by
hardware

» software takes responsibility
= assembly language programmer or compiler

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Other Numbers

-7 -6 -5-4-3-2-1 01 34 5 6 7
00000 0 100 Ok O O—0—0—0—0

yd AN

Real nhumber -2.3|| Real number 0.2

= What about
= Very large numbers? (seconds/century)
3,155,760,000,, (3.15576,,, x 10°)
Very small numbers? (second / nanosecond)
0.000000001,,, (1.0, x 107)
Rationals
2/3 (0.666666666. . .)
Irrationals
2172 (1.414213562373. . .)
Transcendentals
e (2.718...), m (3.141...)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

o—

Recall Scientific Notation

(sign, magnitude) (sign, magnitude)
Mantissa exponent

—~—
6.02 x 1023

N

decimal point radix (base)

= E.g. Alternatives to represent 1/1,000,000,000
= Not normalized: 0.1 x 108 10.0 x 1019, ... [floating point?]
= Normalized: 1.0 x 107°

= Normal form: no leading zeros , 1 digit to left of
decimal point

= Simplifies data exchange, increases accuracy
= Ensures single representation for every value

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Scientific Notation for Binary Numbers

(sign, magnitude) (sign, magnitude)
Mantissa / exponent

T~
1f01

-101b
two X 2

binary point radix (base)

= Normal format: 1.200000XXXXX o * 2YYYY4wo

leading digit is always 1, so called

‘*hidden’ or ‘implied’ 1, and is

implemented in hardware.
= 1.00000exxxX: Mantissa
= XXXXXXXXXX: significand (significant positions)
" YYYY: exponent

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

IEEE 754 Floating Point Standard

31 30 23 22
|s| Exponent Significand

1 bit 8 bits 23 bits

Word Size (32 bits, 23-bit Significand Single Precision)
Value: (-1)S x Mantissa x 2&xeenent [broken into 3 parts]

Range: Represent numbers as small as 2.0 x 10-38 to
as large as 2.0 x 1038

= if result too large? (> 2.0x103%8), Overflow => Exponent larger
than can be represented in 8-bit Exponent field

if result too small? (>0, < 2.0x10-38), Underflow => Negative

exponent larger than can be represented in 8-bit Exponent field
Issues: increase range (Exponent field) and accuracy
(no. of significant positions)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

IEEE 754 Floating Point Standard

31 30 2019
Word1 |S| Exponent Significand

1 bit 11 bits 20 bits

Word 2 | Significand (cont’d)
32 bits

= Multiple of Word Size (64 bits, 52-bit Significand for
Double Precision)

= Representing Mantissa: If significand bits left-to-right are
Si, Sy, S3, ... then, Mantissa: 1.s;5,S5...; the FP value is:

(-1)° X (A +(5x27 1) +(5,%x272)+(55%273)+...) x 2Exponent

20 271 | 22| 23| 2% | 2°
NOTE: 1.s;S,55... 1 | s, | S5 | S35 | Sq | Ss

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

IEEE 754 Floating Point Standard

(-1)5 X (1+(5;x21)+(5,%x22) +(55%x2°3)+...) x 2Exponent

s Representing Exponent (Binary signed pattern)
» 2's comp?
= Not as intuitive as Unsigned numbers for comparison

s EXxcess Notation

= where: 0000 0000 is most negative, and 1111 1111 is most
positive; comparison is as intuitive as Unsigned numbers

= Subtract a bias number to get real number (or add the bias number
to get excess-exponent)

IEEE 754 uses bias of 127 for single precision
(_1)s X (1 .Significand) X 2(Excess_Exponent-127)

IEEE 754 uses bias of 1023 for double precision
(_1)s X (1 Slgnlflcand) X 2(Excess_Exponent-1023)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Converting Decimal to FP

(-1)5 x (1+(5;x21)+(5,%x22)+(55%273)+...) x 2Excess-Exponent

= Example: representation of -0.75
= Change appearance:

= Work out three parts: S, Mantissa, and Exponent
= Sign? 1
= 1.Significand? 1.5,,, = 1.100,,,

= Exponent?
Real Exponent: -1
Excess Exponent: -1 + 127 = 126, = (

3130 23 22
1] o 1 1| 1f 1f of 1] of o] o] 0] 0] of o] 0| 0] o of of o] 0] 0 0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Converting FP to Decimal

(-1)5 x (1+(5;x21)+(5,%x22)+(55%273)+...) x 2Excess-Exponent

= Example

= Work out three parts: S, Mantissa, and Exponent
= Sign? 0

= 1.Significand? 1. 101 0101 0100 0011 0100 0010 ,,, = (

two —

S, S, S, S,
20 2-1 2-2 2-3 2-4
(1) (0.5) §0.25

= Exponent? L L 0
Excess Exponent: 0110 1000,,, = 104,
Real Exponent: 104 - 127=-13 [Bias adjustment]

)ten

3130 23 22
ofof1 1]o|ofof1|o|1|of1|0|1]|0|1[0|O|O|OfL|1]|O|1]O

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Basic FP Addition Algorithm

(-1)5 x (1+(5;x21)+(5,%x22)+(55%273)+...) x 2Excess-Exponent

= For addition (or subtraction) of X to Y (X<Y):
(1) Compute D = ExpY - ExpX (align binary point)
(2) Right shift (ManX) by D bits => (ManX)*2(ExpX-ExpY)
(3)Compute (ManX)*2(ExpX - ExoY) + ManY

= Floating Point addition is NOT associative
(x+y)+z#x+(y+2)

Decimal Binary
x |-102 11101000

y 102 01101000
z |.000012 | 00001000

(x + y) + z = 00000000 + 00001000 = 00001000 => (.000012),.,
X + (y+z)=11101000 + 01101000 = 00000000 => (0),,

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Floating Point Fallacy: is Accuracy Optional?

FP Fallacies: FP result approximation of real result!

July 1994: Intel discovers bug in Pentium
= Occasionally affects bits 12-52 of Double Precision divide

Sept: Math Prof. discovers, put on WWW
Nov: Front page trade paper, then NY Times

« Intel: “...several dozen people that this would affect. So far,
we've only heard from one.”

Intel claims customers see 1 error/27000 years

IBM claims 1 error/month, stops shipping computers with Intel
CPU

December: Intel apologizes, replace chips $300M
Reputation? What responsibility to society?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS FPU

Floating Point Unit

/

Coprocessor 1 (FPU)

Registers Registers

$0 $0

Arithmetic Multiply
unit divide

Arithmetic
[Lo | [Hi] unit

Coprocessor 0O (traps and memory)
Registers

BadVAddr Cause

Status EPC

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS Floating Point Architecture

= Single Precision, Double Precision versions of add,
subtract, multiply, divide, compare
» Single add.s, sub.s, mul.s, div.s, c.lt.s
= Double add.d, sub.d, mul.d, div.d, c.lt.d

= Registers
» Simplest solution: use existing registers

» Normally integer and FP operations on different data, for
performance could have separate registers

= MIPS provides 32 32-bit FP. reg: $f0, $f1, $f2 ...,

= Thus need FP data transfers: lwcl, swcl

= Double Precision? Even-odd pair of registers ($f0#$f1) act as
64-bit register: $f0, $f2, $f4, ...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

New MIPS FP arithmetic instructions

$f0,$f1,$£f2
$f0,$f2,5f4
$f0,$f1,$£f2
$£f0,8£f2,5f4
$f0,$f1,8£f2
$£f0,$f2,5f4
$f0,$f1,8£f2
$£f0,5f2,5f4
$£f0,Sfl

$£0,5£2

$Sf0=5f1+Sf2 FP Add (single)
Sf0=Sf2+Sf4 FP Add (double)
$f0=5f1-Sf2 FP Subtract (single)
$f0=5f2-5f4 FP Subtract (double)
Sf0=$f1x$f2 FP Multiply (single)
Sf0=5f2x$f4 FP Multiply (double)
$Sf0=$f1+$£f2 FP Divide (single)
$f0=5£f2+5Sf4 FP Divide (double)
flagl= $f0 X $fl1 FP Compare (single)
flagl= $f0 X $f2 FP Compare (double)

= S S S o 3 S S

.S
.d
.S
.d
.S
.d
.S
.d
.S
.d

where X 1s: eqg (equal), 1lt (less than), le (less than
equal) to tests flag value:

bclt - floating-point branch true

bclf - floating-point branch false

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Example with FP Multiply [Exercise]

void mm (double x[][], double y[][], double z[][])
{

int 1, 3j, k;
for (1=0; 1!=32; i=i+1)
for (3=0; 3!=32; J=3+1)
for (k=0; k!=32; k=k+1)
X[1

103 = x[2][3] + yl1][Kk] z[k][3]7
}

= Starting addresses are parameters in $a0, $al, and $a2.
Integer variables are in $t3, $t4, $t5. Arrays 32 by 32

= Use pseudoinstructions: li (load immediate), 1.d/s.d
(load/store 64 bits)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS code for first piece: initilialize, x[1[]

= Initailize Loop Variables

mm : .
1i st1, sStl = 32

11 $t3, i = 0; 1lst loop
Ll: 1i st4,] = 0; reset 2nd
L2: 1i $t5, = (0; reset 3rd

= To fetch x[i][j], skip i rows (i*32), add j

sll St2,S$t3,5 # St2 = 1 * 2°
addu St2,$t2,5t4 ¥ St2 = 1*2° + 3

= Get byte address (8 bytes), load x[i][j]

sll St2,%t2,3 # 1,7 byte addr.
addu $t2,5a0, $t2 Q@ x[i][7]
1.d $£4,0(St2) # Sfd4 =

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS code for second piece: z[1[1, Y[1[]

= Like before, but load z[k][j] into $f16

L3: s11 $t0,5%t5,5 # St0 = k * 25
addu $t0, s$t0, st4 # St0 = k*25 + 7
s11l $t0,%t0,3 # k,J byte addr.
addu $t0, $a2,st0 # Q@ z[k][7]

1.d $f16,0($t0) # sfle = z[k][7]

= Like before, but load y[i][k] into $f18

sll $t0,s$t3,5 # St0 = 1 * 25
addu $t0, $t0, $t5 # St0 = 1*25 + k
sll $t0,5%t0,3 # 1,k byte addr.
addu $t0, $Sal, $tO # Q@ y[i] [Kk]

1.d $£18,0($t0) # $f18 = y[i] [k]

= Summary: $f4:x[i][j], $f16:z[K][j], $f18:y[i][k]

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS code for last piece: add/mul, loops

= Add y*z to x

mul.d $f16,S$f18,$F16 # v[1[1*z[]1[]
add.d $f4, Sf4, $fl6 # x[]1[1+ y*z

= Increment k; if end of inner loop, store x

addiu $t5,S$t5,1 = k + 1
bne $tb5,$tl1,L3 (k!'=32) goto L3
s.d $£f4,0(5t2) ¥ x[1]1[J] = Sf4
= Increment j; middle loop if not end of j
addiu $t4,$t4,1 #9 =73+ 1
bne $t4,5tl,L2 # 1if(j'!=32) goto L2
= Increment i; if end of outer loop, return

addiu $t3,5t3,1 # 1 =1+ 1
bne $t3,$tl,L2 # 1f(1!=32) goto L1
jr Sra

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

