
Topics
 Division and multiplication

 Algorithms
 MULTIPLY and DIVIDE in MIPS

 Floating point numbers
 Binary floating point arithmetic
 Introduction to IEEE Standard 754
 Real life (and death) examples of floating point errors
 Floating point support in MIPS

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 5 [Supplement]: Floating Point numbers
[For Self-Study]

Arithmetic by shifting

 For a base n representation
 a shift to the left is like multiplying by n

sll rd, rs, 2

 a shift to the right is like dividing by n

 PITFALLS
 multiplying numbers by shifting left may result in overflow

 but can be used with caution for small integers, for example
 division by arithmetic (not logical) right shift

 positives rounded down

 negatives? also rounded down?

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1 0 0 1

9
1 0 0 1

Division by shifting

 Example: -7/2

 shift by one to right (sign extend)

 Let’s check the result

 the result is -4 , BUT we expected -3

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1 0 0 11 0 0 1

1 0 0

0 1 1

1

0 1 0 0

MULTIPLY (unsigned)

 Paper and pencil example (unsigned):
Multiplicand 1000
Multiplier 1001

1000
0000

0000
1000

Product 01001000

 Observation:
 m bits x n bits = m + n bit product
 multiplication must be able to cope with overflow
 with only 1’s and 0’s -> we either add the multiplicand or do

nothing

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MULTIPLY (unsigned)

 Pseudo-code implementation m x n (Unsigned)
INPUT

m := Multiplicand;

n := Multiplier; /* We view n as a string of bits: n[3], n[2], n[1], n[0] */
OUTPUT

result := m x n;

BEGIN

SET result = 0;

SET i = 0;

REPEAT

IF n[i] = 1 THEN result = result + m; ;otherwise skip Addition

arithmetic shift m left by 1 place; ;keep Shifting m

i = i + 1;

UNTIL i = 4;

PRINT result;

END

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Multiplication algorithms

 Implementation of multiplication (in hardware or
software)
 by a series of shifts and additions
 as many additions as many bits in the multiplier

 Optimisations
 for 0’s bits in the multiplier the addition is skipped
 clever use of the multiplicand, multiplier and product registers
 looking at more bits of the multiplier for each step (like in

Booth’s Algorithm)

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Booth’s Algorithm: Elaboration

 Key observation:
 1111 1111 = 2n -1 = 2n - 20

 so if we encounter a string of 1’s in the multiplier we can
subtract the multiplicand at the beginning of the string, and
add multiplicand at the end

 instead of adding for each occurrence of 1

 Actions for pairs of “current bit, bit to the right”
00 - middle of string of 0’s, shift, do nothing

11 - middle of string of 1’s, shift, do nothing

01 - end of string of 1’s, shift, add the shifted multiplicand

10 - beginning of string of 1’s, shift, subtract the shifted multiplicand

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

n

Booth’s Algorithm: Pseudocode implementation

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Pseudo-code implementation m x n (Unsigned)
INPUT

m := Multiplicand;

n := Multiplier; /* We view n as a string of bits: n[3], n[2], n[1], n[0] */
OUTPUT

result := m x n;

BEGIN
SET result = 0;
SET i = 0;
SET previous = 0;
REPEAT

current = n[i];
IF current = 1 AND previous = 0 THEN result = result - m;
IF current = 0 AND previous = 1 THEN result = result + m;
shift m left 1 place; ;keep shifting
i = i + 1;
previous = current;

UNTIL i = 4;
PRINT result;

END

MULTIPLY in MIPS

 MIPS registers
 two special purpose registers hi and lo

 hi: high-order word of product

 lo: low-order word of product

 MIPS instructions
mult rs1, rs2 # (hi, lo) = rs1 * rs2 ;signed

multu rs1, rs2 # (hi, lo) = rs1 * rs2 ;unsigned

mfhi rd # move from hi to rd

mflo rd # move from lo to rd

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overflow in multiplication

 32-bit integer result in lo
 logically overflow if product too big
 but software must check hi

 for multu register hi should be zero
 for mult register hi should be extended sign of lo

 Detecting: Multiply $s5 by $s6, product in $t7
mult $s5,$s6 # perform multiplication

mfhi $t6 # move hi to $t6

mflo $t7 # product from lo to $t7

xor $t6,$t6,$t7 # compare signs of hi and lo

slt $t6,$t6,$zero # $t6=0 if signs different

beq $t6,$zero,Overflow # if different there is
overflow

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

DIVIDE in MIPS

 all divide instructions put Remainder into hi register, and
Quotient into lo register
div rs1, rs2 # divide rs1 by rs2; signed

quotient in lo, remainder in hi

divu rs1, rs2 # divide rs1 by rs2; unsigned

 Overflow and division by 0 are NOT detected by
hardware
 software takes responsibility

 assembly language programmer or compiler

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Other Numbers

 What about
 Very large numbers? (seconds/century)

3,155,760,000ten (3.15576ten x 109)
 Very small numbers? (second / nanosecond)

0.000000001ten (1.0ten x 10-9)
 Rationals

2/3 (0.666666666. . .)
 Irrationals

21/2 (1.414213562373. . .)
 Transcendentals

e (2.718...), π (3.141...)
12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0 1 2 3 4 5 6 7-7 -6 -5 -4 -3 -2 -1

Real number -2.3 Real number 0.2

Recall Scientific Notation

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 E.g. Alternatives to represent 1/1,000,000,000
 Not normalized: 0.1 x 10-8, 10.0 x 10-10, … [floating point?]
 Normalized: 1.0 x 10-9

 Normal form: no leading zeros , 1 digit to left of
decimal point
 Simplifies data exchange, increases accuracy
 Ensures single representation for every value

6.02 x 1023

radix (base)decimal point

Mantissa
(sign, magnitude)

exponent
(sign, magnitude)

Scientific Notation for Binary Numbers

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

1.01two x 2-101b

radix (base)binary point

Mantissa
(sign, magnitude)

exponent
(sign, magnitude)

 Normal format: 1.xxxxxxxxxxtwo * 2yyyy
two

 1.xxxxxxxxxx: Mantissa
 xxxxxxxxxx: significand (significant positions)
 yyyy: exponent

leading digit is always 1, so called
‘hidden’ or ‘implied’ 1, and is
implemented in hardware.

IEEE 754 Floating Point Standard

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Word Size (32 bits, 23-bit Significand Single Precision)
 Value:
 Range: Represent numbers as small as 2.0 x 10-38 to

as large as 2.0 x 1038

 if result too large? (> 2.0x1038), Overflow => Exponent larger
than can be represented in 8-bit Exponent field

 if result too small? (>0, < 2.0x10-38), Underflow => Negative
exponent larger than can be represented in 8-bit Exponent field

 Issues: increase range (Exponent field) and accuracy
(no. of significant positions)

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits

(-1)S x Mantissa x 2Exponent [broken into 3 parts]

IEEE 754 Floating Point Standard

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Multiple of Word Size (64 bits, 52-bit Significand for
Double Precision)

 Representing Mantissa: If significand bits left-to-right are
s1, s2, s3, ... then, Mantissa: 1.s1s2s3…; the FP value is:

031

S Exponent

30 20 19

Significand

1 bit 11 bits 20 bits

32 bits

Significand (cont’d)

Word 1

Word 2

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Exponent

NOTE: 1.s1s2s3… 1
20

s5

2-5

…s4s3s2s1

…2-42-32-22-1

IEEE 754 Floating Point Standard

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Exponent

 Representing Exponent (Binary signed pattern)
 2’s comp?

 Not as intuitive as Unsigned numbers for comparison
 Excess Notation

 where: 0000 0000 is most negative, and 1111 1111 is most
positive; comparison is as intuitive as Unsigned numbers

 subtract a bias number to get real number (or add the bias number
to get excess-exponent)

IEEE 754 uses bias of 127 for single precision
(-1)s x (1.Significand) x 2(Excess_Exponent-127)

IEEE 754 uses bias of 1023 for double precision
(-1)s x (1.Significand) x 2(Excess_Exponent-1023)

Converting Decimal to FP

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Excess-Exponent

 Example: representation of -0.75
 Change appearance:
 Work out three parts: S, Mantissa, and Exponent

 Sign? 1
 1.Significand? 1.5ten = 1.100two

 Exponent?
Real Exponent: -1
Excess Exponent: -1 + 127 = 126ten = (?)two

031 30 23 22

1 0 0 0 0 0 0 0 0

20

(1)
2-1

(0.5)
2-2

(0.25
)

2-3 2-4 …

1 1 0 0 0

0 0 0 0 0 0 0 01 0 0 0 0 0 00 1 1 1 1 1 1 0

Converting FP to Decimal

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Excess-Exponent

 Example
 Work out three parts: S, Mantissa, and Exponent

 Sign? 0
 1.Significand? 1. 101 0101 0100 0011 0100 0010 two = (?)ten

 Exponent?
Excess Exponent: 0110 1000two = 104ten
Real Exponent: 104 - 127=-13 [Bias adjustment]

031 30 23 22

0 0 1 0 0 0 0 1 1

20

(1)
2-1

(0.5)
2-2

(0.25
)

2-3 2-4 …

1 1 0 1 0 …

S1 S2 S3 S4

0 1 0 0 0 0 1 01 0 1 0 1 0 10 1 1 0 1 0 0 0

Basic FP Addition Algorithm

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

(-1)S x (1+(s1x2-1)+(s2x2-2)+(s3x2-3)+...) x 2Excess-Exponent

 For addition (or subtraction) of X to Y (X<Y):
(1) Compute D = ExpY - ExpX (align binary point)

(2) Right shift (ManX) by D bits => (ManX)*2(ExpX-ExpY)

(3)Compute (ManX)*2(ExpX - ExpY) + ManY

 Floating Point addition is NOT associative
(x + y) + z ≠ x + (y + z)

Decimal Binary

x -102 11101000

y 102 01101000

z .000012 00001000

(x + y) + z = 00000000 + 00001000 = 00001000 => (.000012)ten

x + (y + z) = 11101000 + 01101000 = 00000000 => (0)ten

Floating Point Fallacy: is Accuracy Optional?

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 FP Fallacies: FP result approximation of real result!
 July 1994: Intel discovers bug in Pentium

 Occasionally affects bits 12-52 of Double Precision divide
 Sept: Math Prof. discovers, put on WWW
 Nov: Front page trade paper, then NY Times

 Intel: “…several dozen people that this would affect. So far,
we've only heard from one.”

 Intel claims customers see 1 error/27000 years
 IBM claims 1 error/month, stops shipping computers with Intel

CPU
 December: Intel apologizes, replace chips $300M
 Reputation? What responsibility to society?

MIPS FPU

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Floating Point Unit

MIPS Floating Point Architecture

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Single Precision, Double Precision versions of add,
subtract, multiply, divide, compare
 Single add.s, sub.s, mul.s, div.s, c.lt.s
 Double add.d, sub.d, mul.d, div.d, c.lt.d

 Registers
 Simplest solution: use existing registers
 Normally integer and FP operations on different data, for

performance could have separate registers
 MIPS provides 32 32-bit FP. reg: $f0, $f1, $f2 ...,

 Thus need FP data transfers: lwc1, swc1
 Double Precision? Even-odd pair of registers ($f0#$f1) act as

64-bit register: $f0, $f2, $f4, ...

New MIPS FP arithmetic instructions

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

add.s $f0,$f1,$f2 # $f0=$f1+$f2 FP Add (single)
add.d $f0,$f2,$f4 # $f0=$f2+$f4 FP Add (double)
sub.s $f0,$f1,$f2 # $f0=$f1-$f2 FP Subtract (single)
sub.d $f0,$f2,$f4 # $f0=$f2-$f4 FP Subtract (double)
mul.s $f0,$f1,$f2 # $f0=$f1x$f2 FP Multiply (single)
mul.d $f0,$f2,$f4 # $f0=$f2x$f4 FP Multiply (double)
div.s $f0,$f1,$f2 # $f0=$f1÷$f2 FP Divide (single)
div.d $f0,$f2,$f4 # $f0=$f2÷$f4 FP Divide (double)
c.X.s $f0,$f1 # flag1= $f0 X $f1 FP Compare (single)
c.X.d $f0,$f2 # flag1= $f0 X $f2 FP Compare (double)

where X is: eq (equal), lt (less than), le (less than
equal) to tests flag value:
bc1t - floating-point branch true
bc1f - floating-point branch false

Example with FP Multiply [Exercise]

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

void mm (double x[][], double y[][], double z[][])
{

int i, j, k;
for (i=0; i!=32; i=i+1)

for (j=0; j!=32; j=j+1)
for (k=0; k!=32; k=k+1)

x[i][j] = x[i][j] + y[i][k] * z[k][j];
}

 Starting addresses are parameters in $a0, $a1, and $a2.
Integer variables are in $t3, $t4, $t5. Arrays 32 by 32

 Use pseudoinstructions: li (load immediate), l.d/s.d
(load/store 64 bits)

MIPS code for first piece: initilialize, x[][]

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mm: ...
li $t1, 32 # $t1 = 32
li $t3, 0 # i = 0; 1st loop

L1: li $t4, 0 # j = 0; reset 2nd

L2: li $t5, 0 # k = 0; reset 3rd

 Initailize Loop Variables

sll $t2,$t3,5 # $t2 = i * 25

addu $t2,$t2,$t4 # $t2 = i*25 + j

 To fetch x[i][j], skip i rows (i*32), add j

sll $t2,$t2,3 # i,j byte addr.
addu $t2,$a0,$t2 # @ x[i][j]
l.d $f4,0($t2) # $f4 = x[i][j]

 Get byte address (8 bytes), load x[i][j]

MIPS code for second piece: z[][], y[][]

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

L3: sll $t0,$t5,5 # $t0 = k * 25
addu $t0,$t0,$t4 # $t0 = k*25 + j
sll $t0,$t0,3 # k,j byte addr.
addu $t0,$a2,$t0 # @ z[k][j]
l.d $f16,0($t0) # $f16 = z[k][j]

 Like before, but load z[k][j] into $f16

sll $t0,$t3,5 # $t0 = i * 25
addu $t0,$t0,$t5 # $t0 = i*25 + k
sll $t0,$t0,3 # i,k byte addr.
addu $t0,$a1,$t0 # @ y[i][k]
l.d $f18,0($t0) # $f18 = y[i][k]

 Like before, but load y[i][k] into $f18

 Summary: $f4:x[i][j], $f16:z[k][j], $f18:y[i][k]

MIPS code for last piece: add/mul, loops

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mul.d $f16,$f18,$f16 # y[][]*z[][]
add.d $f4, $f4, $f16 # x[][]+ y*z

 Add y*z to x

addiu $t5,$t5,1 # k = k + 1
bne $t5,$t1,L3 # if(k!=32) goto L3
s.d $f4,0($t2) # x[i][j] = $f4

 Increment k; if end of inner loop, store x

addiu $t4,$t4,1 # j = j + 1
bne $t4,$t1,L2 # if(j!=32) goto L2

 Increment j; middle loop if not end of j

addiu $t3,$t3,1 # i = i + 1
bne $t3,$t1,L2 # if(i!=32) goto L1
jr $ra

 Increment i; if end of outer loop, return

