
Topics

 Memory layout

 Segments (.data, .text …)

 Memory alignment

 Mixed data types

 Procedures (PH2 §3.6, PH3 §2.7, PH4 §2.8 or PH5, PH6 §2.8 & HP_AppA P22)

 Using procedures

 Software support: jal, jr

 Hardware support for procedures

 $ra; register conventions

 Stack and stack conventions
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 4: Memory layout and procedures

mailto:j.yang@uws.edu.au

Memory layout [PH2, PH3, A-21; PH4, B-21]

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

The dynamic part of the data
segment is called heap.

syscall service 9 requests a block
of memory from SPIM's heap.

system space

mailto:j.yang@uws.edu.au

Text segment, data segment

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c

Stack

Dynamic data
(heap)

$sp

$gp

PC

 TEXT SEGMENT

 DATA SEGMENT

mailto:j.yang@uws.edu.au

Implications of memory layout

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

lui $t0, 0x1000

lw $v0, 0x8000($t0)

 the lui instruction has to be
repeated for every load and store
from/to data segment

 this is done by the assembler

 Data segment begins far above the text segment

 load and store instructions cannot use addresses in data segment
directly (offset field is 16 bits)

 For example, to load a data item at address 0x1000 8000

0001000000000000 0000000000000000

$t0

mailto:j.yang@uws.edu.au

Another convention

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 MIPS solution

 dedicate a register to hold the address of the data segment

 this register is $gp, the global pointer register

 $gp contains 0x1000 8000, it is set by the assembler

 A single instruction can be used for addressing locations within 216

bytes from the beginning of the data segment (from 0x1000

0000 to 0x1001 0000)

 MIPS compilers use this area to store global variables

 Now we can do (compare this with previous slide):

0x1000 0x0000$t0lui $t0, 0x1000

lw $v0, 0x8000($t0)

lw $v0, 0($gp)

0x1000 0x8000$v0

mailto:j.yang@uws.edu.au

Mixing data types

 consider the following data declaration:

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

.data

.align 0 # turns off auto alignment.

memory is allocated beginning with the first free byte

str1: .asciiz “this string has n characters”

abc: .word 2,4,7,9

directive .asciiz stores defined string in memory

and null-terminates it (str1: 28 characters+null)

 The string str1 occupies

 ?

 Thus, words of array abc are NOT ALIGNED

 we have problem as: lw and sw can only operate on
aligned words

bytes

mailto:j.yang@uws.edu.au

Memory contents without proper alignment

 Memory layout

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

00000000 00000000 00000111 00000000

00000000 00000000 00001001 00000000

00000000

36

40

44

48

c a r a

s r e t

00000000 00000000 00000010 00000000

00000000 00000000 00000100 00000000

20

24

28

32

r t s <sp>

<sp> g n i

<sp> s a h

h c <sp> n

4

8

12

16

s i h t 0

2

4

7

9

mailto:j.yang@uws.edu.au

Memory alignment, directives

 MIPS requires that all
words start at addresses
that are multiples of 4

 – Alignment: objects must
fall on address that is
multiple of their size

 .align n

 aligns the next item of data
on the 2n byte boundary

 .align 2

 aligns the next value on the
word boundary

 word aligned address is
divisible by 4

 .align 0
 turns off automatic alignment

until the next .data directive

 useful if you want to experiment
with alignment (RISC and
PCSPIM tries to align data
automatically)

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3 2 1 0

Aligned

Not
Aligned

mailto:j.yang@uws.edu.au

Memory contents with proper alignment

 Memory layout

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

00000000 00000000 00000000 00000100

00000000 00000000 00000000 00000111

00000000 00000000 00000000 00001001

36

40

44

48

c a r a

s r e t

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000010

20

24

28

32

r t s <sp>

<sp> g n i

<sp> s a h

h c <sp> n

4

8

12

16

s i h t 0 .data

str1: .asciiz “this

string has n

characters”

.align 2

abc: .word 2,4,7,9

properly aligned data

mailto:j.yang@uws.edu.au

Procedures

 What is a procedure (subroutine, function, method)?

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

main ()

{

printf ("The factorial of 10 is %d\n", fact(10));

}

int fact (int n)

{

if (n < 1)

return (1);

else

return (n * fact (n - 1));

}

 Why is it used?

 Large programs are difficult

 Block structure

Caller
printf ("The

factorial of 10 is

%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}

mailto:j.yang@uws.edu.au

Nested and leaf procedures

 A procedure may call other procedures
(become a caller)

 we call these nested procedures

 if a procedure does not call another procedure we
call it a leaf procedure

 Main difference

 Nested procedures have to preserve the return
addresses across the calls (ie. register $ra)

 Example of leaf procedure

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int leaf_example(int g, int h, int i, int j)

{

int f;

f = (g + h) - (j + i);

return f;

}

mailto:j.yang@uws.edu.au

A Procedure Call

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How is it implemented?

 Signature of a procedure

 Steps required for implementation

1
• Place parameters in somewhere (registers?)

2
• Transfer control to procedure

3
• Acquire storage for procedure

4
• Perform procedure’s operations

5
• Place result in somewhere (registers?) for caller

6
• Return to place of call

int fact (int n)

To speed up execution
of procedures registers
are used to pass
arguments and results;

There is only one set of
registers; if needed, we
spill registers to
memory – the STACK

jump-and-link

mailto:j.yang@uws.edu.au

Register allocation: $a and $v for data transfer

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values(declared variables) yes

$t8 - $t9 24-25 temporaries no

$k0, $k1 26, 27 reserved for OS kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address (hardware) yes

mailto:j.yang@uws.edu.au

Jump-and-link instruction

 An instruction to support procedures:

 jump to procedure-address and simultaneously save the
address of the following instruction in $ra (ie. PC + 4)

 “j procedure-address” and “$ra <- PC+4”

 storing the return address in $ra forms a link between the
procedure and the main program

 Important note

 the special function of the $ra register is enforced by hardware

 the special function of $a and $v registers is only a convention
of usage

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

jal procedure-address

Caller
printf ("The

factorial of 10 is

%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}

jal procedure-address:
“j procedure-address” and “$ra <- PC+4”

mailto:j.yang@uws.edu.au

Return from procedure

 Use “jump register” instruction

 This is the last instruction of every procedure

 we have to use register $ra for return from procedure because
of jal instruction

 but: jr instruction can be used with any other register

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

jr $ra

Caller
printf ("The

factorial of 10 is

%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}jr $ra

int leaf_example(int g, int h, int i, int j)

{

int f;

f = (g + h) - (j + i);

return f;

}

mailto:j.yang@uws.edu.au

Register spilling

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we assign $a0-$a3 and $v0-$v1 to data transfer

 A procedure may need to use other registers

 there may be more than 4 arguments

 there may be more than 2 results

 There is only one set of registers

 The caller uses these registers already

 A procedure may make no assumptions on the register usage of
the caller program (except $a0-$a3, $v0-$v1, and $ra)

 We need to spill registers to memory

 To do so we use STACK

 Saving conventions (more explanation later) reduce register

spilling -- memory transfer operations are expensive and should

be minimised

mailto:j.yang@uws.edu.au

Stack segment

 Working principles

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c

Stack

Dynamic data
(heap)

$sp

$gp

PC

last-in-first-out LIFO queue

mailto:j.yang@uws.edu.au

STACK Data Structure

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 stack is a last-in-first-out LIFO queue

 the last item stored on stack is the first item
retrieved from stack

 only the item at the top of the stack is available

 operations on stack

 push: add an item on the top of stack (growing)

 pop: get an item from the top of the stack
(shrinking)

 no other operations are allowed

 an ideal stack has no limit on size

00000010
00000100
00000111
00001001
00000000
00000001

$sp

$sp

mailto:j.yang@uws.edu.au

Stack implementation in MIPS

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Need an area in memory for the stack

 the stack starts at a fixed address in memory

 the total size of the stack is fixed, but is large
enough to create an appearance of an ideal stack

 Need to know where the top of the stack is

 A register $sp (stack pointer) is allocated to this
function (holds the address of the next free
location in the stack)

 The stack always grows from high address in memory
to low address in memory

$sp Stack

subtracting from the pointer
e.g. addi $sp,$sp,-12

Push: grows the stack

adding to the stack pointer
e.g. addi $sp,$sp,12

Pop: shrinks the stack

mailto:j.yang@uws.edu.au

Coding example [1]

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int leaf_example(int g, int h, int i, int j)

{ int f;

f = (g + h) - (j + i);

return f;

}

 C code

the parameters g, h, i, j correspond to registers $a0, $a1, $a2, $a3

variable f corresponds to register $s0
addi $sp,$sp,-12 # make room for 3 items

sw $t0,8($sp) # save $t0

sw $t1,4($sp) # save $t1

sw $s0,0($sp) # save $s0

add $t0,$a0,$a1 # $t0 gets g + h

add $t1,$a2,$a3 # $t1 gets i + j

sub $s0,$t0,$t1 # f gets (g+h) - (i+j)

add $v0,$s0,$zero # return f

lw $s0,0($sp) # restore $s0 for caller

lw $t1,4($sp) # restore $t1 for caller

lw $t0,8($sp) # restore $t0 for caller

addi $sp,$sp,12 # shrink stack by 3 items

jr $ra # jump back to caller

 MIPS code

00000010
00000100

sub

… …
add

00000111
00001001
00000000
00000001

00100111
11001001
00010010
01100001

… …

p
ro

lo
g
u
e

b
o
d
y

e
p
ilo

g
u
e

jal leaf_example

$v0 = leaf_example($a0, $a1, $a2, $a3)

mailto:j.yang@uws.edu.au

Saving conventions

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 In the example: ‘callee save convention’ was used

 The called procedure saves all registers it will use

 Another possibility: caller save convention

 The calling program saves all registers it wants preserved

 Yet another possibility

 A mixed approach with some registers saved by the caller and
some by the callee – both take responsibilities

 Memory transfer operations are expensive and should be
minimised

make room for 3 items

sub $sp,$sp,12

sw $t0,8($sp) # save $t0

sw $t1,4($sp) # save $t1

sw $s0,0($sp) # save $s0

leaf_example:

mailto:j.yang@uws.edu.au

MIPS convention

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 $t0 - $t9 (temporary registers)

 NOT preserved by the callee on procedure call

 no assumptions can be made on $t registers usage by the callee

 the caller saves and restores ALL $t registers it uses

 $s0 - $s7 (saved registers)

 must be preserved on a procedure call, but by whom?

 no assumptions can be made on $s registers usage by the caller

 if used, the callee saves and restores ALL $s registers it
uses

 • aim - reduce register spilling

 in our code, we only save and restore register $s0, that will
reduce 4 memory transfer (sw/lw) instructions

 if the caller uses $t0 and $t1, the caller has to save and restore
them

mailto:j.yang@uws.edu.au

Coding example [2]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int nested_example (int g, int h, int i, int j)

{

int f;

f = sqrt((g + h) - (j + i));

f = f + 2;

return f;

}

 C code: nested procedures

 the parameters g, h, i, j correspond to registers $a0, $a1,
$a2, $a3

 variable f corresponds to register $s0

 sqrt is a library procedure to calculate square root

mailto:j.yang@uws.edu.au

Coding example [2]

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

the parameters g, h, i, j correspond to registers $a0, $a1, $a2, $a3

variable f corresponds to register $s0

addi $sp,$sp,-8 # make room for 2 items

sw $ra,4($sp) # save return address

sw $s0,0($sp) # save $s0

add $t0,$a0,$a1 # $t0 gets g + h

add $t1,$a2,$a3 # $t1 gets i + j

sub $t3,$t0,$t1 # $t3 gets (g+h) - (i+j)

add $a0,$t3,$zero # argument for sqrt

jal sqrt # call sqrt procedure

add $s0,$v0,$zero # save result in f

addi $s0,$s0,2 # f gets f+2

add $v0,$s0,$zero # return f

lw $s0,0($sp) # restore $s0 for caller

lw $ra,4($sp) # restore $ra

addi $sp,$sp,8 # shrink stack by 2 items

jr $ra # jump back to caller

 MIPS code

p
ro

lo
g
u
e

b
o
d
y

e
p
ilo

g
u
e

jal nested_example

$v0 = nested_example($a0, $a1, $a2, $a3)

mailto:j.yang@uws.edu.au

Stack discipline

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 callee NEVER writes to addresses greater than $sp

 as illustrated, the area above the caller stack pointer

 the contents of the stack above stack pointer is preserved

 the contents of the stack below stack pointer is NOT preserved

 callee ALWAYS adds to $sp exactly the same value it
subtracted from $sp

 the value of $sp is therefore preserved

 if the above two rules are obeyed

 after the call the caller will find the values it deposited on the
stack before the call

 The stack discipline is enforced by convention not
hardware

See HP_AppA.pdf, A-25

mailto:j.yang@uws.edu.au

More on stack usage

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 4 registers only reserved for arguments $a0 - $a3

 by MIPS convention

 additional parameters placed on stack above the frame pointer

 this is done by the caller

 these arguments are accessed by the callee using fixed offset
from the frame pointer

 2 registers reserved for return values $v0 - $v1

 most high level languages only allow one return value

 there is no convention for more than two return values

mailto:j.yang@uws.edu.au

More on stack usage

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 the stack may also be used to store the local procedure
variables

 simple variables which do not fit into registers

 local arrays and structures

 procedure frame (activation record)

 the fragment of the stack containing saved argument registers,
saved return address, saved caller registers, local arrays and
structures

 MIPS allocates a register $fp to point to the beginning
of the frame (frame pointer)

 this makes finding the items on the stack easy

 we use $sp for this in lab examples

mailto:j.yang@uws.edu.au

Frame pointer

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 frame pointer has to be preserved across procedure
calls

 it is specific to procedure activation

 once set, it does not change during procedure execution

 stack pointer may change during the procedure
execution

 unlike in our examples so far

 frame pointer is a fixed base within the procedure

 any register saved in the frame has a fixed offset from the $fp

 the procedure is easier to write and understand

 and again

 all this is only a convention, not enforced in hardware

See HP_AppA.pdf, A-25

mailto:j.yang@uws.edu.au

Local Data on the Stack

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Revision quiz

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 MIPS aligns the next item of data on the word boundary using:

1) .align 2 2) .align 0 3) .align 4

 By conventions, is the usage of registers stated in the following
correct?

“Registers $s0 - $s7 should be saved first by the caller procedure
before using them.”

 Which of the following can correctly allocate 3 words in the stack?

1) subi $sp,$sp,12

2) sub $sp,$sp,12

3) addi $sp,$sp,12

2) add $sp,$sp,12

mailto:j.yang@uws.edu.au

Recommended readings

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

