7t ffCh o

Topics #

Dynamic data

= Memory layout O [— 0B
= Segments (.data, .text ...)

400000nex Reserved

= Memory alignment
= Mixed data types

Lecture 4: Memory layout and procedures

Stack segment

Data segment

Text segment

= Procedures (PH2 §3.6, PH3 §2.7, PH4 §2.8 or PH5, PH6 §2.8 & HP_AppA P,,)

= Using procedures
= Software support: jal, jr
= Hardware support for procedures

= $ra; register conventions
= Stack and stack conventions

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Memory layout [PH2, PH3, A-21; PH4, B-21]

system space

71ff fffCox
Stack segment

l The dynamic part of the data
segment is called heap.
syscall service 9 requests a block
of memory from SPIM's heap.

Dynamic data

——————————— Data segment
Static data .

10000000},
Text segment

400000 Reserved

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 2

mailto:j.yang@uws.edu.au

Text segment, data segment

$sp— Ox 7f fffffc

= TEXT SEGMENT

21 0x 1000 8000
0x 1000 0000

= DATA SEGMENT

Ox 0040 0000
Ox 0000 0000

Reserved

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Implications of memory layout

= Data segment begins far above the text segment

= load and store instructions cannot use addresses in data segment
directly (offset field is 16 bits)

s For example, to load a data item at address 0x1000 8000

lui $tO0,

0x1000

1w $Sv0, 0x8000 ($t0)
= the lui instruction has to be

repeated for every load and store

from/to data segment
« this is done by the assembler

$t0

0001000000000000

0000000000000000

7fff fffC oy

10000000} 0,

400000, 0,

l
T

Dynamic data

Static data

Reserved

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stack segment

Data segment

Text segment

mailto:j.yang@uws.edu.au

Another convention

$sp—= 7fff Fffcpex

lui $t0, 0x1000 Stack

|
lw $Sv0, 0x8000($t0) t
Dynamic data
$gp— 1000 8000}« Static data
1w $VO, 0 ($gp) 1000 0000ax Toxt
] pc—= 0040 0000}y«
= MIPS solution Reserved

0
= dedicate a register to hold the address of the data segment

= this register is $gp, the global pointer register
= $gp contains 0x1000 8000, itis set by the assembler

= A single instruction can be used for addressing locations within 216
bytes from the beginning of the data segment (from 0x1000
0000 to 0x1001 0000)
= MIPS compilers use this area to store global variables
= Now we can do (compare this with previous slide):

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 5

mailto:j.yang@uws.edu.au

Mixing data types

= consider the following data declaration:

.data

.align O # turns off auto alignment.
memory is allocated beginning with the first free byte
strl: .asciiz “this string has n characters”
abc: .word 2,4,7,9

directive .asciiz stores defined string in memory
and null-terminates it (strl: 28 characters+null)

= [he string strl occupies
= ? bytes
= Thus, words of array abc are NOT ALIGNED

= we have problem as: Iw and sw can only operate on
aligned words

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 6

mailto:j.yang@uws.edu.au

Memory contents without proper alignment

= Memory layout

S i h t 0

r t S <sp> 4

<sp> g n i 8
<sp> S a h 12
h C <sp> n 16
C a r a 20
S r e t 24
00000000 | | 00000000 | | 00000010 | | 00000000 | 28
00000000 | | 00000000 | | 00000100 |\ | 00000000 | 32
00000000 | | 00000000 | | 00000111 |\ | 00000000 | 36
00000000 | | 00000000 | | 00001001 |\ | 00000000 | 40
00000000 | 44

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

48

O | (N[N

mailto:j.yang@uws.edu.au

Memory alignment, directives

= MIPS requires that all = .alignn
words start at addresses = aligns the next item of data
that are multiples of 4 on the 2" byte boundary
= — Alignment: objects must = .align 2
fall on address that is « aligns the next value on the
multiple of their size word boundary
= word aligned address is
A S S divisible by 4
Aligned align 0
» turns off automatic alignment
Not until the next .data directive
Aligned » useful if you want to experiment

with alignment (RISC and
PCSPIM tries to align data
automatically)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 8

mailto:j.yang@uws.edu.au

Memory contents with proper alignment

= Memory layout properly aligned data
[s J[i [mn J[t Jo .data

trl: . i 3 “thi
Cr I Js Jf=ses 4 "7 fiing has o
| <sp> || g |[n] i | 8 characters”
Csp> s e J[Ch J12 -alidg‘;f”g
[h][¢ I[<sps][J16 o7 sl
L ¢ [a [r][a]2
L s L r [e J[t 124

100000000/ 00000000 00000000/ (00000000 28
/00000000| 00000000 |00000000| (00000010| 32
100000000| 00000000 (00000000 [00000100] 36

100000000| 00000000 (00000000 [00000111] 40
100000000/ (00000000 [00000000] [00001001] 44

| [| | | 48

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Procedures

= What is a procedure (subroutine, function, method)?

main ()
{

printf ("The factorial of 10 is %d\n", fact(10));
}
int fact (int n) At 0
{ %d\n", fact(10));

if (n < 1)

return (1) ;

else

return (n * faCt (n - 1)) ; int fact (int n)
} élisfe(nr;tulrz\ r(?ltlf"rr;as:lt)(;n

- 1));
b

= Why is it used?

Large programs are difficult
Block structure

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

10

mailto:j.yang@uws.edu.au

Nested and leaf procedures

= A procedure may call other procedures
(become a caller)
« Wwe call these nested procedures
» if @ procedure does not call another procedure we
call it a leaf procedure
= Main difference

= Nested procedures have to preserve the return
addresses across the calls (ie. register $ra)

=« Example of leaf procedure

int leaf example(int g, int h, int i, int j)
{

int £;

f=(g+h) - (3 +1);

return f;

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

11

mailto:j.yang@uws.edu.au

A Procedure Call

= How is it implemented?
» Signature of a procedure

int fact (int n)

= Steps required for implementation

» Place parameters in somewhere (registers?)

1

5 | ° Transfer control to procedure

3 | ° Acquire storage for procedure

4 e Perform procedure’s operations

g |° Place result in somewhere (registers?) for caller
6 | ° Return to place of cal .

To speed up execution

of procedures registers
\are used to pass

arguments and results;

There is only one set of
registers; if needed, we
| spill registers to

*, memory — the STACK

jump-and-link

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

12

mailto:j.yang@uws.edu.au

Register allocation: $a and $v for data transfer

Name Register Usage Preserve on
Number call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values(declared variables) yes
$t8 - $t9 24-25 temporaries no
$kO, $k1 26, 27 reserved for OS kernel n.a.
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address (hardware) yes

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

13

mailto:j.yang@uws.edu.au

Jump-and-link instruction

jal procedure-address:
m “j procedure-address” and “$ra <- PC+4"

e oo > int fact (int n)

grlnt . (lT : 1o ; {if (n < 1) return (1);
actorial o is else return (n * fact (n

%d\n", fact(10));

-1));
b

= An instruction to support procedures:
jal procedure-address

= jump to procedure-address and simultaneously save the
address of the following instruction in $ra (ie. PC + 4)

= 'j procedure-address” and “$ra <- PC+4”

» storing the return address in $ra forms a link between the
procedure and the main program

= Important note

» the special function of the $ra register is enforced by hardware

» the special function of $a and $v registers is only a convention
of usage

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 14

mailto:j.yang@uws.edu.au

Return from procedure

coee (vTn int fact (int n)
Ermt . (lT : 1o ; {if (n < 1) return (1);
actorial o is else return (n * fact (n

%d\n", fact(10)); . ~1))-
jr $ra =

= Use “jump register” instruction
jr Sra
= This is the last instruction of every procedure

= We have to use register $ra for return from procedure because
of jal instruction

= but: jr instruction can be used with any other register
int leaf example(int g, int h, int i, int j)

{
int £;
f=(g+h) - (J+1i);
return f;

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

15

mailto:j.yang@uws.edu.au

Register spilling

we assign $a0-$a3 and $v0-$v1 to data transfer

A procedure may need to use other registers
« there may be more than 4 arguments
» there may be more than 2 results

There is only one set of registers
= The caller uses these registers already
= A procedure may make no assumptions on the register usage of
the caller program (except $a0-$a3, $v0-$v1, and $ra)
We need to spill registers to memory

s 10 do so we use STACK

= Saving conventions (more explanation later) reduce register
spilling -- memory transfer operations are expensive and should
be minimised

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 16

mailto:j.yang@uws.edu.au

Stack segment

= Working principles
last-in-first-out LIFO queue

$sp

Reserved

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

lOx 7ffffffc

=T 1 0x 1000 8000
+9 0x 1000 0000

| 0x 0040 0000

Ox 0000 0000

17

mailto:j.yang@uws.edu.au

STACK Data Structure

stack is a last-in-first-out LIFO queue

» the last item stored on stack is the first item
retrieved from stack

= only the item at the top of the stack is available

operations on stack
« push: add an item on the top of stack (growing)

= pop: get an item from the top of the stack
(shrinking)

no other operations are allowed
an ideal stack has no limit on size

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

$sp

$sp

00000010

00000100

00000111

00001001

00000000

00000001

18

mailto:j.yang@uws.edu.au

Stack implementation in MIPS

= Need an area in memory for the stack 78t e
» the stack starts at a fixed address in memory l

« the total size of the stack is fixed, but is large
enough to create an appearance of an ideal stack T

Dynamic data

= Need to know where the top of the stack is [Stato data | D2 segment

10000000,

= Aregister $sp (stack pointer) is allocated to this Tentsegment
function (holds the address of the next free "
location in the stack)

= The stack always grows from high address in memory
to low address in memory

Stack segment

$sp Stack

subtracting from the pointer | Push: grows the stack
e.g. addi $sp,$sp,-12

adding to the stack pointer | Pop: shrinks the stack
e.g. addi $sp,$sp,12

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 19

mailto:j.yang@uws.edu.au

Coding example [1]

int leaf example(int g, int h, int i, int j)
m Ccode ¢ int £; _ _

£=1(+h) - (3+41);

return £;

s MIPS code # $v0 = leaf_example($a0, $al, $a2, $a3) |

__

the parameters g, h, i, j correspond to registers $a0, $al, $a2, $a3
variable f corresponds to register $s0

g addi $sp,$sp,-12 # make room for 3 items 00000010
g sw $t0,8($Ssp) # save $t0 00000100
S sw $tl,4($sp) # save Stl 00000111
| -
S sw $s0,0($sp) # save $s0 00001001 sub
> add $t1,$a2,%a3 # $tl gets i + j '
ég sub $s0,$t0,$t1 # £ gets (g+h) - (i+j) 00000001
add $vO0,$s0,$zero # return f
o 1lw $s0,0($sp) # restore $s0 for caller 00100111 add
E% 1w $tl1,4(Ssp) # restore $tl for caller
ég lw $t0,8 ($sp) # restore $t0 for caller 11001001
Q. addi $sp,$sp,12 # shrink stack by 3 items 00010010
v " 01100001

jr S$ra jump back to caller

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 20

mailto:j.yang@uws.edu.au

Saving conventions

= In the example: ‘callee save convention’ was used
»« The called procedure saves all registers it will use

= Another possibility: caller save convention
»« The calling program saves all registers it wants preserved
= Yet another possibility

= A mixed approach with some registers saved by the caller and
some by the callee — both take responsibilities

= Memory transfer operations are expensive and should be
minimised

make room for 3 items
leaf example: sub $sp,$sp,12
- sw $t0,8(Ssp) # save $tO
sw $t1,4(Ssp) # save $tl
sw $s0,0(Ssp) # save $s0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 21

mailto:j.yang@uws.edu.au

MIPS convention

= $t0 - $t9 (temporary registers)
= NOT preserved by the callee on procedure call
= NO assumptions can be made on $t registers usage by the callee
» the caller saves and restores ALL $t registers it uses

s $s0 - $s7 (saved registers)
= must be preserved on a procedure call, but by whom?
= N0 assumptions can be made on $s registers usage by the caller
» if used, the callee saves and restores ALL $s registers it
uses
= ¢ aim - reduce register spilling

= in our code, we only save and restore register $s0, that will
reduce 4 memory transfer (sw/Iw) instructions

« if the caller uses $t0 and $t1, the caller has to save and restore
them

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 22

mailto:j.yang@uws.edu.au

Coding example [2]

s C code: nested procedures

int nested example (int g, int h, int i, int j)
{

int £,

f = sqgrt((g + h) - (3 + 1))

£f=f + 2;

return £;

}

= the parameters g, h, i, j correspond to registers $a0, $al,
$a2, $a3

= Vvariable f corresponds to register $s0
s sqrt is a library procedure to calculate square root

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 23

mailto:j.yang@uws.edu.au

Coding example [2]

jal nested_example
s MIPS code # $v0=nested example($a0, $al, $a2, $a3)

the parameters g, h, i, j correspond to registers $a0, $al, $a2, $a3
variable f corresponds to register $s0
addi sp,Ssp,-8 make room for 2 items

sw $ra,4(Ssp) save return address

sw $s0,0(Ssp) save $s0

[add $t0, $a0, $al $t0 gets g + h

add $tl1,$%a2,$a3 Stl gets i + j

sub $t3,$t0,$tl $t3 gets (g+h) - (i+j)
add $a0,$t3,$zero argument for sqrt

jal sqrt call sqrt procedure
add $s0,$v0, $zero save result in £

addi $s0,$s0,2 f gets f+2

ladd $v0,$s0,S$zero return £

lw $s0,0(Ssp) restore $s0 for caller
lw $ra,4(Ssp) restore $ra

addi sp,Ssp,8 shrink stack by 2 items
jr $ra jump back to caller

prologue

bo?y

FH=HHHHHHH I

epilogue

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Stack discipline s ip appa.pdf, A-25

callee NEVER writes to addresses greater than $sp
» as illustrated, the area above the caller stack pointer
» the contents of the stack above stack pointer is preserved
» the contents of the stack below stack pointer is NOT preserved

callee ALWAYS adds to $sp exactly the same value it
subtracted from $sp
» the value of $sp is therefore preserved

if the above two rules are obeyed

» after the call the caller will find the values it deposited on the
stack before the call

The stack discipline is enforced by convention not
hardware

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

25

mailto:j.yang@uws.edu.au

More on stack usage

= 4 registers only reserved for arguments $a0 - $a3

= by MIPS convention
» additional parameters placed on stack above the frame pointer
» this is done by the caller
» these arguments are accessed by the callee using fixed offset
from the frame pointer
m 2 registers reserved for return values $vO - $v1
= most high level languages only allow one return value
= there is no convention for more than two return values

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

26

mailto:j.yang@uws.edu.au

More on stack usage

the stack may also be used to store the local procedure
variables

» Ssimple variables which do not fit into registers

» local arrays and structures

procedure frame (activation record)

» the fragment of the stack containing saved argument registers,
saved return address, saved caller registers, local arrays and
structures

MIPS allocates a register $fp to point to the beginning
of the frame (frame pointer)

» this makes finding the items on the stack easy

= We use $sp for this in lab examples

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

27

mailto:j.yang@uws.edu.au

Frame pomter See HP_AppA.pdf, A-25

frame pointer has to be preserved across procedure
calls

= it is specific to procedure activation

= once set, it does not change during procedure execution

stack pointer may change during the procedure
execution
= unlike in our examples so far

frame pointer is a fixed base within the procedure
= any register saved in the frame has a fixed offset from the $fp
= the procedure is easier to write and understand

and again
« all this is only a convention, not enforced in hardware

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

28

mailto:j.yang@uws.edu.au

Local Data on the Stack

High address
$p > §fp —» Saved argument $p —»
req sters (if any)
$sp Saved return address -
Saved saved
registers (if any)
Local arrays and
structures (if any)
17 JE—
Low address 4 g I
before procedure call during procedure call alter procedure ca

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 29

mailto:j.yang@uws.edu.au

Revision quiz

MIPS aligns the next item of data on the word boundary using:
1) .align 2 2) .align 0 3) .align 4

By conventions, is the usage of registers stated in the following
correct?
“Registers $s0 - $s7 should be saved first by the caller procedure
before using them.”

Which of the following can correctly allocate 3 words in the stack?
1) subi $sp, $sp, 12

2) sub S$sp, $sp, 12

3) addi $sp, $sp, 12

2) add S$sp, Ssp, 12

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 30

mailto:j.yang@uws.edu.au

Recommended readings

General Data

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials

PCSpim Portable Version | Library materials

ascii_chart.pdf | bias_representation.pdf | HP_AppA. nt:lH-lnstructlon decoding.pdf | masking help.pdf | PCSpim.pdf |

PH6, §2.8, P102-P112: Procedure calling
PH5, 2.8, P96-P106: Procedure calling
PH4, 2.8, P112-P122: Procedure calling
HP_AppA pdf -> A-22: Procedure calling

HP_AppA pdf -> A-24: MIPS registers

HP_AppA.pdf -> A-25: Stack frame

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407

7263/?ISBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 31

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

