
 Memory layout
 Segments (.data, .text …)

 Memory alignment
 Mixed data types

 Procedures (PH2 §3.6, PH3 §2.7, PH4 §2.8 or PH5, PH6 §2.8 & HP_AppA P22)
 Using procedures
 Software support: jal, jr
 Hardware support for procedures

 $ra; register conventions
 Stack and stack conventions

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 4: Memory layout and procedures

Memory layout [PH2, PH3, A-21; PH4, B-21]

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

The dynamic part of the data
segment is called heap.
syscall service 9 requests a block
of memory from SPIM's heap.

system space

Text segment, data segment

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

 TEXT SEGMENT

 DATA SEGMENT

Implications of memory layout

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

lui $t0, 0x1000
lw $v0, 0x8000($t0)

 the lui instruction has to be
repeated for every load and store
from/to data segment

 this is done by the assembler

 Data segment begins far above the text segment
 load and store instructions cannot use addresses in data segment

directly (offset field is 16 bits)
 For example, to load a data item at address 0x1000 8000

0001000000000000 0000000000000000
$t0

Another convention

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 MIPS solution
 dedicate a register to hold the address of the data segment

 this register is $gp, the global pointer register

 $gp contains 0x1000 8000, it is set by the assembler

 A single instruction can be used for addressing locations within 216

bytes from the beginning of the data segment (from 0x1000
0000 to 0x1001 0000)

 MIPS compilers use this area to store global variables

 Now we can do (compare this with previous slide):

0x1000 0x0000$t0lui $t0, 0x1000

lw $v0, 0x8000($t0)

lw $v0, 0($gp)

0x1000 0x8000$v0

Mixing data types

 consider the following data declaration:

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

.data

.align 0 # turns off auto alignment.
memory is allocated beginning with the first free byte
str1: .asciiz “this string has n characters”
abc: .word 2,4,7,9

directive .asciiz stores defined string in memory
and null-terminates it (str1: 28 characters+null)

 The string str1 occupies
 ?

 Thus, words of array abc are NOT ALIGNED
 we have problem as: lw and sw can only operate on

aligned words

bytes

Memory contents without proper alignment

 Memory layout

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

00000000 00000000 00000111 00000000
00000000 00000000 00001001 00000000

00000000

36
40
44
48

c a r a
s r e t

00000000 00000000 00000010 00000000
00000000 00000000 00000100 00000000

20
24
28
32

r t s <sp>
<sp> g n i
<sp> s a h

h c <sp> n

4
8
12
16

s i h t 0

2
4
7
9

Memory alignment, directives

 MIPS requires that all
words start at addresses
that are multiples of 4
 – Alignment: objects must

fall on address that is
multiple of their size

 .align n
 aligns the next item of data

on the 2n byte boundary
 .align 2

 aligns the next value on the
word boundary

 word aligned address is
divisible by 4

 .align 0
 turns off automatic alignment

until the next .data directive
 useful if you want to experiment

with alignment (RISC and
PCSPIM tries to align data
automatically)

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

3 2 1 0

Aligned

Not
Aligned

Memory contents with proper alignment

 Memory layout

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

00000000 00000000 00000000 00000100

00000000 00000000 00000000 00000111

00000000 00000000 00000000 00001001

36

40

44

48

c a r a

s r e t

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000010

20

24

28

32

r t s <sp>

<sp> g n i

<sp> s a h

h c <sp> n

4

8

12

16

s i h t 0 .data
str1: .asciiz “this

string has n
characters”
.align 2

abc: .word 2,4,7,9

properly aligned data

Procedures

 What is a procedure (subroutine, function, method)?

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

main ()
{

printf ("The factorial of 10 is %d\n", fact(10));
}

int fact (int n)
{

if (n < 1)
return (1);

else
return (n * fact (n - 1));

}

 Why is it used?
 Large programs are difficult
 Block structure

Caller
printf ("The
factorial of 10 is
%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}

Nested and leaf procedures

 A procedure may call other procedures
(become a caller)
 we call these nested procedures
 if a procedure does not call another procedure we

call it a leaf procedure
 Main difference

 Nested procedures have to preserve the return
addresses across the calls (ie. register $ra)

 Example of leaf procedure

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int leaf_example(int g, int h, int i, int j)
{

int f;
f = (g + h) - (j + i);
return f;

}

A Procedure Call

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 How is it implemented?
 Signature of a procedure

 Steps required for implementation

11 • Place parameters in somewhere (registers?)

22 • Transfer control to procedure

33 • Acquire storage for procedure

44 • Perform procedure’s operations

55 • Place result in somewhere (registers?) for caller

66 • Return to place of call

int fact (int n)

To speed up execution
of procedures registers
are used to pass
arguments and results;

There is only one set of
registers; if needed, we
spill registers to
memory – the STACK
jump-and-link

Register allocation: $a and $v for data transfer

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values(declared variables) yes

$t8 - $t9 24-25 temporaries no

$k0, $k1 26, 27 reserved for OS kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address (hardware) yes

Jump-and-link instruction

 An instruction to support procedures:

 jump to procedure-address and simultaneously save the
address of the following instruction in $ra (ie. PC + 4)
 “j procedure-address” and “$ra <- PC+4”

 storing the return address in $ra forms a link between the
procedure and the main program

 Important note
 the special function of the $ra register is enforced by hardware
 the special function of $a and $v registers is only a convention

of usage

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

jal procedure-address

Caller
printf ("The
factorial of 10 is
%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}

jal procedure-address:
“j procedure-address” and “$ra <- PC+4”

Return from procedure

 Use “jump register” instruction

 This is the last instruction of every procedure
 we have to use register $ra for return from procedure because

of jal instruction
 but: jr instruction can be used with any other register

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

jr $ra

Caller
printf ("The
factorial of 10 is
%d\n", fact(10));

Callee
int fact (int n)
{ if (n < 1) return (1);
else return (n * fact (n
- 1));
}jr $ra

int leaf_example(int g, int h, int i, int j)
{

int f;
f = (g + h) - (j + i);
return f;

}

Register spilling

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we assign $a0-$a3 and $v0-$v1 to data transfer
 A procedure may need to use other registers

 there may be more than 4 arguments
 there may be more than 2 results

 There is only one set of registers
 The caller uses these registers already
 A procedure may make no assumptions on the register usage of

the caller program (except $a0-$a3, $v0-$v1, and $ra)
 We need to spill registers to memory

 To do so we use STACK
 Saving conventions (more explanation later) reduce register

spilling -- memory transfer operations are expensive and should
be minimised

Stack segment

 Working principles

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

last-in-first-out LIFO queue

STACK Data Structure

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 stack is a last-in-first-out LIFO queue
 the last item stored on stack is the first item

retrieved from stack
 only the item at the top of the stack is available

 operations on stack
 push: add an item on the top of stack (growing)
 pop: get an item from the top of the stack

(shrinking)
 no other operations are allowed
 an ideal stack has no limit on size

00000010

00000100
00000111

00001001

00000000

00000001

$sp

$sp

Stack implementation in MIPS

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Need an area in memory for the stack
 the stack starts at a fixed address in memory
 the total size of the stack is fixed, but is large

enough to create an appearance of an ideal stack
 Need to know where the top of the stack is

 A register $sp (stack pointer) is allocated to this
function (holds the address of the next free
location in the stack)

 The stack always grows from high address in memory
to low address in memory

$sp Stack
subtracting from the pointer
e.g. addi $sp,$sp,-12

Push: grows the stack

adding to the stack pointer
e.g. addi $sp,$sp,12

Pop: shrinks the stack

Coding example [1]

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int leaf_example(int g, int h, int i, int j)
{ int f;

f = (g + h) - (j + i);
return f;

}

 C code

the parameters g, h, i, j correspond to registers $a0, $a1, $a2, $a3
variable f corresponds to register $s0
addi $sp,$sp,-12 # make room for 3 items
sw $t0,8($sp) # save $t0
sw $t1,4($sp) # save $t1
sw $s0,0($sp) # save $s0
add $t0,$a0,$a1 # $t0 gets g + h
add $t1,$a2,$a3 # $t1 gets i + j
sub $s0,$t0,$t1 # f gets (g+h) - (i+j)
add $v0,$s0,$zero # return f
lw $s0,0($sp) # restore $s0 for caller
lw $t1,4($sp) # restore $t1 for caller
lw $t0,8($sp) # restore $t0 for caller
addi $sp,$sp,12 # shrink stack by 3 items
jr $ra # jump back to caller

 MIPS code

00000010

00000100

sub

… …
add

00000111

00001001

00000000

00000001

00100111

11001001

00010010

01100001

… …

jal leaf_example
$v0 = leaf_example($a0, $a1, $a2, $a3)

Saving conventions

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 In the example: ‘callee save convention’ was used
 The called procedure saves all registers it will use

 Another possibility: caller save convention
 The calling program saves all registers it wants preserved

 Yet another possibility
 A mixed approach with some registers saved by the caller and

some by the callee – both take responsibilities
 Memory transfer operations are expensive and should be

minimised
make room for 3 items
sub $sp,$sp,12
sw $t0,8($sp) # save $t0
sw $t1,4($sp) # save $t1
sw $s0,0($sp) # save $s0

leaf_example:

MIPS convention

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 $t0 - $t9 (temporary registers)
 NOT preserved by the callee on procedure call
 no assumptions can be made on $t registers usage by the callee
 the caller saves and restores ALL $t registers it uses

 $s0 - $s7 (saved registers)
 must be preserved on a procedure call, but by whom?
 no assumptions can be made on $s registers usage by the caller
 if used, the callee saves and restores ALL $s registers it

uses
 • aim - reduce register spilling

 in our code, we only save and restore register $s0, that will
reduce 4 memory transfer (sw/lw) instructions

 if the caller uses $t0 and $t1, the caller has to save and restore
them

Coding example [2]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

int nested_example (int g, int h, int i, int j)
{

int f;
f = sqrt((g + h) - (j + i));
f = f + 2;
return f;

}

 C code: nested procedures

 the parameters g, h, i, j correspond to registers $a0, $a1,
$a2, $a3

 variable f corresponds to register $s0
 sqrt is a library procedure to calculate square root

Coding example [2]

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

the parameters g, h, i, j correspond to registers $a0, $a1, $a2, $a3
variable f corresponds to register $s0
addi $sp,$sp,-8 # make room for 2 items
sw $ra,4($sp) # save return address
sw $s0,0($sp) # save $s0
add $t0,$a0,$a1 # $t0 gets g + h
add $t1,$a2,$a3 # $t1 gets i + j
sub $t3,$t0,$t1 # $t3 gets (g+h) - (i+j)
add $a0,$t3,$zero # argument for sqrt
jal sqrt # call sqrt procedure
add $s0,$v0,$zero # save result in f
addi $s0,$s0,2 # f gets f+2
add $v0,$s0,$zero # return f
lw $s0,0($sp) # restore $s0 for caller
lw $ra,4($sp) # restore $ra
addi $sp,$sp,8 # shrink stack by 2 items
jr $ra # jump back to caller

 MIPS code
jal nested_example
$v0 = nested_example($a0, $a1, $a2, $a3)

Stack discipline

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 callee NEVER writes to addresses greater than $sp
 as illustrated, the area above the caller stack pointer
 the contents of the stack above stack pointer is preserved
 the contents of the stack below stack pointer is NOT preserved

 callee ALWAYS adds to $sp exactly the same value it
subtracted from $sp
 the value of $sp is therefore preserved

 if the above two rules are obeyed
 after the call the caller will find the values it deposited on the

stack before the call
 The stack discipline is enforced by convention not

hardware

See HP_AppA.pdf, A-25

More on stack usage

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 4 registers only reserved for arguments $a0 - $a3
 by MIPS convention

 additional parameters placed on stack above the frame pointer
 this is done by the caller
 these arguments are accessed by the callee using fixed offset

from the frame pointer
 2 registers reserved for return values $v0 - $v1

 most high level languages only allow one return value
 there is no convention for more than two return values

More on stack usage

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 the stack may also be used to store the local procedure
variables
 simple variables which do not fit into registers
 local arrays and structures

 procedure frame (activation record)
 the fragment of the stack containing saved argument registers,

saved return address, saved caller registers, local arrays and
structures

 MIPS allocates a register $fp to point to the beginning
of the frame (frame pointer)
 this makes finding the items on the stack easy
 we use $sp for this in lab examples

Frame pointer

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 frame pointer has to be preserved across procedure
calls
 it is specific to procedure activation
 once set, it does not change during procedure execution

 stack pointer may change during the procedure
execution
 unlike in our examples so far

 frame pointer is a fixed base within the procedure
 any register saved in the frame has a fixed offset from the $fp
 the procedure is easier to write and understand

 and again
 all this is only a convention, not enforced in hardware

See HP_AppA.pdf, A-25

Local Data on the Stack

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Revision quiz

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 MIPS aligns the next item of data on the word boundary using:
1) .align 2 2) .align 0 3) .align 4

 By conventions, is the usage of registers stated in the following
correct?
“Registers $s0 - $s7 should be saved first by the caller procedure
before using them.”

 Which of the following can correctly allocate 3 words in the stack?
1) subi $sp,$sp,12

2) sub $sp,$sp,12
3) addi $sp,$sp,12

2) add $sp,$sp,12

Recommended readings

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

