Lecture 3: MIPS addressing modes

Three instruction formats: R, [, J

| op | rs | it | rd | shamt | funct |R
B bits 5 bits 5 hits 3 bits 2 bits g bits

| op | s | it | 16 bit address |
6 bits 3 bits 5 hits 16 bits

I O I CS | op [26 bit address |J
E bits 26 hits

P 3020 2B AT IR 20 4 251 22 2010 B ITE 1615814813812 108 088 768858483128 180¢

= Traversing arrays — Further remarks
= Handling character strings in MIPS
= Handling constants in MIPS

= MIPS addressing modes

= Addressing in branches and jumps
= Decoding instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Arrays: Element index [Text PH4, P157

to perform operations of a number of consecutive
locations of memory we use arrays

= 1o select an element of an array we use the index

int array([32];
array[i]

for example, to clear all elements of the array
int i,
for(i = 0; i < size; i =1 + 1)

array[i] = O0;
this involves calculation of the new index value and

address of the next element for every iteration of the
loop

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

A[m]

mailto:j.yang@uws.edu.au

Arrays: Element pointer

we can operate on consecutive locations in memory by
calculating the address directly
= Mmake direct use of memory abstraction (as an array of bytes)

so instead of using the indices we use so called pointers
= a pointer is an address of a memory location

= Java does not use pointers directly (but references to objects), but
C and C++ do

However using pointers ENZE
= the code is more cryptic
= It is easier to make mistakes

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 3

mailto:j.yang@uws.edu.au

Array addressing and traversing in MIPS

= Memory ARRAY access: A[k]

Index Offset Base Location Content

Addressing
k*4 (A)
Kk k*4 A k*4 + A |
0 (A + k*4)
word byte
index 12
2 10

O = N W &~ U1 O N OO ©

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Array addressing and traversing in MIPS

= Memory ARRAY access: A[k]

Traversing style Address Algebra

Indices (relative, conceptual) k [0, m] k*4 + A
Pointers (absolute, physical) P[A, A+ m*4] P+=4
8 n o
o < Indices Offset Address
+ &
>
T o wn
* 0 B
<x 3 S
L m = k=1 k*4 A+1*4
c P2
—_— =
1= 5
T O C
£E8
= Base A k=0 k*4 A+0%4

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Array addressing and traversing in MIPS

TASK: clear a number of consecutive locations in memory in C:
int *p;

for(p = &array[0];, p <= &array|[size-1]; p =p + 1)

*on;

= Indexing version

array base and size are in registers $a0 and $al
index i is allocated to register $tO

move $t0, $zero ¥ i=0
loopl: add $t1,$t0,$t0 ¥ S$tl = 2i
add $tl1,$tl,$tl # S$tl = 41
add $t2,%$a0,s$tl # $t2 = array[i]
sw $zero,0($t2) # array[i] = 0
addi $t0,$t0,1 #i=1+1
slt $t3,$t0,$al ¥ $t3 = (i < sizeO)

bne $t3,$zero,loopl

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 6

mailto:j.yang@uws.edu.au

s Pointer version

Array addressing and traversing in MIPS

array address (address of the first array word) and
array size (how many words the array has) are found in

registers $a0 and $al

pointer p is allocated to register $tO

move S$t0, $al
loop2: sw $zero,0($t0)

addi $t0,$t0,4

add $tl1,S$al, Sal

add $tl1l,$tl,s$tl

add $t2,%a0,5$tl

slt $t3,$t0,$t2

bne $t3,$zero,loop2

p = address of array|[0]

memory[p] = O

p=p + 4

S$Stl = 2 x size

S$tl = 4 x size

$t2 = address of array[size]
$t3 = (p < &array([size])

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Array addressing and traversing in MIPS

= Pointer version — some improvement

the address of array[size] is calculated for every
iteration of the loop, although it never changes
so we can move it outside the loop:

move $t0, $al

add $tl1,S$al, Sal
add $tl1l,$tl,s$tl
add $t2,%a0,5$tl

sw Szero,0($t0)
addi $t0,$t0,4

slt $t3,$t0,$t2

bne $t3,$zero,loop2

loop2:

p = address of array|[0]
Stl = 2 x size

Stl = 4 x size

$t2 = &array[size]

memory[p] = O
p=p+ 4
$t3 = (p < &array[size])

3= I H I H I

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Array addressing and traversing in MIPS

= Comparison

= the index version had to calculate new value of | for every
iteration of the loop: 7 instructions per iteration

m the pointer version calculated size once only outside the loop:
4 instructions per iteration

= modern compilers have the ability to produce the more
efficient pointer-like code for the array version

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

i While loop again (EXERCISE)

actual start of the main program
implements a while loop
while (save[i] == k)

i=1+73;

alternative form:
Loop: 1if (save[i] !'= k) go to Exit
i=1i+3;
go to Loop;
Exit:

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

10

mailto:j.yang@uws.edu.au

i While loop

variables i, j and k are in registers $s3, $s4 and $sb

address of save is in $s6
Allocate 10-word array save
.data
.align 2 # aligning will be explained later
.globl save
save: .word 0, O, O, O, O, O, O, 6, 3, 2
.globl main
. text

3=

main: main has to be a global label
addu $s7, $0, S$ra

Initialize wvariables

3=

save the return address in $ra

add $s3, $0, $O # i=0 (initial value)

addi $s4, $0, 1 # J=1

add $s5, $0, $O # k=0 (what if k=7 -> addi $s5,$0,7)
la $s6, save # $s6 = save[] (using 1la)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 11

mailto:j.yang@uws.edu.au

Exit:

add $tl1l, $s3, $s3 # 2*i ($s3 has i)
add $tl1, $tl1, $tl # 4*i ($tl has 4*i —-
add $tl1l, $tl, $s6 # $s6 = save[]; $tl =
#
lw $t0, 0($tl) # gets save[i]
#
bne $t0, $s5, Exit # $s5 has k
add $s3, $s3, $s4 # $s3 has i
#

j Loop

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

the offset)
save[] + 4*i

12

mailto:j.yang@uws.edu.au

i While loop cont

Output the value of i1 to see how far we got
.data
.globl messagel

messagel: .asciiz "\nThe value of i is: " #string to print
.Lext
1i sv0, 4 #
la $a0, messagel # la used here
syscall
1i sv0, 1 #
add $a0, $0, $s3 id
syscall
Usual stuff at the end of the main
addu Sra, $0, Ss7 # restore the return address
jr Sra # return to the main program
add $0, $0, $O # nop

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Processing text

Computers can process any information represented
as numbers

= characters can be processed if they are represented as
numbers

ASCII (American Standard Code for Information
Interchange — refer to the table in the last slide)

= 8 bits (one byte) used to represent a character

m 256 possible combinations

EBCIDC
= another 8-bit code, introduced by IBM

Unicode
= 16 bits per character, Java

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

14

mailto:j.yang@uws.edu.au

Storing characters

HP_AppA.pdf P43

= Storing an 8-bit character in a 32-bit word would be

wasteful

ojo|o|o

0
1
1
1

0
0
1
1

0
0
0
1

OCJOo |k |=

0
0
0
1

1
0
0
1

0
0
1
0

0

1

1

1

0

1

1

0

0

1

1

0

0

0

0

1

0

1

0

0

1

0

0

0

0

0

0

0

ij]0|1| 0

= We want to pack 4 characters into each word
48

=« two ways are used

14

[0A

00001010

_— 01001000
= need a convention on how bytes are ordered in a word

« this is called endianness

61

01100001

76

20

01110110 o

= pack characters starting at the most significant bit (big end)
= pack characters starting at the least significant bit (little end)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

]

15

mailto:j.yang@uws.edu.au

Special instructions

= we might use Iw and sw to transfer characters bundled
into words between memory and registers

= We would need to extract single bytes to process text
(masking?)

0|0
1|0
1|1
1|1

=lOo|Oo|O©

o|j 1|0
ojo0| O
0joO0| 1
i]1]0

OO | |K=

0
0
0
0

of1f1f1f0/1)1)0fflof1|/21|/0|/0[fO|[O|1|0f1|[0|O|1|/0|]O|jOfO|Oj]O|]O|1|0f1|0

= Since character processing is so common (4th design
principle), special instructions are provided

« |b register, address
= loads a byte from memory into rightmost byte of the register
= Sb register, address
= stores the rightmost byte of the register in memory

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Character strings

» text consists of strings of characters
= strings have variable length

= three choices
1. reserve the first position of the string to store its length

2. create a structure consisting of an integer to store length, and
a variable length character string

3. use last position of the string to mark its end by storing a
terminating character

= 3rd choice is commonly used

= C sets the last byte to zero
= a byte whose value is zero is called Null in ASCII

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 17

mailto:j.yang@uws.edu.au

MIPS directives for strings

A-48 (PH3) or B-48 (PH4) explains directive .asciiz

= .ascii “sample character string”

= stores the characters in memory packed in consecutive bytes
» this string occupies 23 bytes of memory
= strings are enclosed in double quotes

= .asciiz “sample character string”
= adds a null byte at the end of the string
» this string occupies 24 bytes of memory
= special characters follow C conventions
= hew line \n
= tab\t
=« double quote \”

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

18

mailto:j.yang@uws.edu.au

Strings in MIPS [EXERCISE]

s C code to copy string y to string x using the Null byte as a

terminating character .. w171, vi1:

int i = 0; //counter
while (y[i]'= 0) {
x[i] = yl[1i];
i =i+ 1; 18 |

}
= MIPS assembly language code rlB

rle|l=]|o

0
0
1
1

=jlo|]o|o

0
0
0
1

0
0
1
0

Cjo ||k
= O |O|m

1C
base address for x and y is in $a0 and Sal 1b / sb
i is in $s0
add $s0,$zero,$zero # i = 0 (initialisation)
Ll: add $tl1,$al, $s0 address of y[i]; not 4*i (word)
@ 1p $t2,0(S$tl) load character y[i] to $t2
add $t3,$a0,$s0 address of x[i]; not 4*i (word)
@ sb $t2,0($t3) x[i] = yI[i]
addi $s0,$s0,1 i =14+ 1 (update; byte by byte)
bne $t2,$zero,Ll if y[i] !'= 0 (the NUL char)

3= I H I H

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 19

mailto:j.yang@uws.edu.au

Constants See Text: HP4, P86

= Small constants are used quite frequently

e.g., a=a-+4

= Solutions?
1. build hard-wired registers (like $zero) for constants
2. define "typical constants' in memory and load them
3. put constants in instructions themselves

addi $sp,$sp,4 # add immediate (add 4)

slti $t0,$s2,35 # common use of constants is comparison

= We call constant operands immediate operands
= this way of accessing data is called immediate addressing

4th principle of good design:
Make the common case fast

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 20

mailto:j.yang@uws.edu.au

Constants continued

= [-type Instruction with immediate operands

op

rs rt

constant

6 bits

5 bits 5 bits

16 bits

= Large constant: I-type instructions limit to 16-bit constants, HOW

do we load a 32-bit constant into a 32-bit register?

For example: 1110101010101011 1010101010101010

= New "load upper immediate" takes care of higher order 16 bits:

lui StO,

1110101010101011

= Then we must get the lower order 16 bits right, i.e.,
ori $t0, $t0, 1010101010101010

1110101010101011 0000000000000000 st0
ori 0000000000000000 1010101010101010 immediate
1110101010101011 1010101010101010

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

21

mailto:j.yang@uws.edu.au

Large constants cont.

s MIPS assembler provides a pseudo instruction

1i register, constant # load immediate

@ replaced with

lui reg, constl # constl = constant >> 16
ori reg, reg, const2 # const2 := constant AND 0x0000ffff

1110101010101011 1010101010101010

s the constant must be broken at some stage either by the
compiler, or the assembler (as in MIPS)
= atemporary register $at is used for this purpose
= thisis why it is reserved (NOT enforced by hardware!)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 22

mailto:j.yang@uws.edu.au

Addresses in loads/stores see Text: HP4, P128-P133

= lw and sw are I-type instructions
« lwrt, address # e.qg. Iw $t0, 32($s3)
» address: constant [offset] + contents of a register rs [base]

op | rs | rt | constant [offset] ‘
6 bits 5 bits 5 bits 16 bits
= how about:
.data
labelx: .word 235 # define number ‘235’
.text

lw $t0, labelx # I-type instruction

m labelx address is 32-bit long, BUT constant field is only 16 bits
= these Iw/sw are treated by the assembler as pseudoinstructions
m Substituted with lui and common Iw/sw

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 23

mailto:j.yang@uws.edu.au

Load instructions

m SO far we saw

1i register, constant # pseudoinstruction
translate into more
than 1 common instr.

lw register, address # e.g. 1w $t0, 32($s3)
or lw $t0, labelx

s another useful load instruction
la register, address # pseudoinstruction

s |oad computed address, NOT the contents of the location
m this is another case when we need a 32-bit immediate value

A: .word 11,12,13,14,15,16,17 #Array definition A[7], see Lab 4
la $s3, A
lw $s4, 8($s3)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 24

mailto:j.yang@uws.edu.au

Addresses in Jumps, part 1

= the simplest addressing is in jump instruction

J Label # Next instruction is at Label

= such instruction use another format: J-type

’ op | address ‘
6 bits 26 bits

= ...but address field is still only 26 bits, not 32 bits
required by the address (e.g. Loop address) , what to

do? Loop: add $tl, $s3, $s3 i

1w $t0, 0(Stl) #
bne $t0, Ss5, Exit #
add $s3, $s3, Ss4 #
7 Loop #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

25

mailto:j.yang@uws.edu.au

Addresses in Jumps, part 2

= as each instruction is 4 byte long, we only need to
address words (not individual bytes — cells), so:
= 26-bit address field can represent 28-bit byte address

= the 4 missing bits are provided by leaving the upper 4
bits of the PC (Program Counter) unchanged

word byte
index 12
2 10
o PC<31,28> | address field in the instruction | 0 0
8
7 4 bits 26 bits 2 bits
6
1 5
4
3
2
0 1
0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 26

mailto:j.yang@uws.edu.au

Addresses in Branches

s Instructions:

bne $t4,$t5,Label #Next instruction is at Label if $t4'=$t5
beq $t4,$t5,Label #Next instruction is at Label if $t4==$t5

= Format (I-Type):

op I's rt constant
6 bits 5 bits 5 bits 16 bit address

= Wwe only have 16 bits for the address

= this limits the size of the program to 26, not an
acceptable option

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Addresses in Branches: PC-relative addressing

we could specify a register (like in lw and sw, e.qg.

lw $t0, 32($s3)) and add it to address

= SO0 next PC =register + branch_address

which register to use

= Mmost branches are local (principle of locality), used in Ioops

and if statements

= use Program Counter (PC)

= we can branch within 21* words either way from the current :

instruction (not 216 | leaving one bit for direction) PC

this is called PC-relative addressing: const(PC)

MIPS uses the address of the next instruction, PC + 4

= by the time when address is calculated PC has been already
iIncremented

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

28

mailto:j.yang@uws.edu.au

Branching far away

» If a branch is to a far-away location (beyond the 16 bit
limit)
= the assembler replaces the branch with a pair of instructions
= for example:

beq $s0,$s1,L1

add .
s becomes
bne $s0,$sl,L2
j L1
L2: add .

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

29

mailto:j.yang@uws.edu.au

Addressing mode summary

PH4 Section 2.10, P132

1. Immediate addressing

op rs rt Immediate I-type instructions

2. Register addressing

R-type instructions

Registers

op rs rt rd - - - |funct

L Register

3. Base addressing

op rs rt Address I-type instructions Memory

Register <—E> [[Bvte] Halfword | wWord

4. PC-relative addressing

op rs rt Address I-type instructions Memory

PC GP Word
[

5. Pseudodirect addressing

op P— J-type instructions

Memory

PC @ wWord
[

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Home EXERCISE
Instruction Formats

s Three instruction format: R, I, J

Three instruction formats: R, 1, .J

| op | rs | rt | rd | shamt | funct |R
g bits 3 bits 5 bits 5 bits 5 bits 6 bits

| op | rs | rt | 16 bit address | 1
g bits 3 bits 5 bits 16 bits

| op [26 bit address | J
g bits 26 hits

§31i308020828E07i2Ei05 4231008 21E20E10i18E1TE168 15814813 8128118108 9 ¢ 8§ 7 § fciaqafiziziqiod

= Instruction assembling that converts mnemonic format to machine code

rd rs 1t
R-type instruction: add $t0, $sl, $s2 [mnemonic]
add 8 17 18 [assembled]
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op Is rt rd shamt funct
dec 0 17 18 8 0 32
bin 000000 10001 10010 0100000000 100000
() 0 2 3 2 4 0 2 0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 31

2 e

mailto:j.yang@uws.edu.au

Home EXERCISE
Examples of translating machine instructions

See Text: HP4, P134; instruction decoding.pdf on vUWS

Three instruction formats: R, 1, J

ap | rs | rt | rd | shamt | funct
& hitz 5 hits 5 hits 5 hits 5 bits 6 bits
ap | rs | rt | 16 bit address [1
5 hitz 5 hits 5 itz 16 bits
op | 26 bit address [J
g hits 26 bts
P31 i30i20 2R PTE 26 25 24123 228211 20019818817 16 15 14§ 13§i12iMi1WE 9 i iTi6i5i4i3iz2i1§0
Two examples of translating a machine instruction into a MIPS assembly instruction
Ox 02324020 - what MIPS instruction is it?

0 3 2 4 0 2 0
0i0DiDi0|0Di0iTi0|0Di0DE 0i0Di1i0 0515{]50 [HIHH I EERIIN l]ﬂé
Mia0j29j28ia7izdiosi4i2al 2§z t191168i17116]15i14]13}12i1Mi1W0: 018} 7i6i1514i3i231]0

op rs rt rd shamt funt:t
o 0 o00OOQ|71T 0O0COTT[(1T OO0T1T OO0 1T OODTO|0O0O0OO0OCO(1T O O0T0CTO0 D0
16 1118 2 8 dec: 32 or hex: 20
R-type instruction R17=F51 R18=Fs2 Ra=5t0 not used by "add” add
ANSWER: add 58, 517, 18 === add §t0, 551, $s2 add rd, rs, it
Ox 34020005 - what MIPS instruction is it?

3 4 2 0 0 0 5
Di0i1:i1|0:1:i0:0 D:0:1:0(0:0:0:0]|0:0:0:0(0:0D:0:0)0D:1:D:1
M i30:29i0B:27i 2Bi25;24; 7 i10i16:17:16:15:14i13:12:11: 10 9 i 8 7 i 6:i 5 : 4§ 3: 2: 1: 0

op rs rt imm
o 0 11 01|00O0O0OOQ0CO0O0CO0COTOO|0CO0O0COCOOTODOOOOOOOODOT1T D 1
dec: 12 or hex: Od 2 4 1
ori RO=5r{ R2=%v0 5
ari rt, rs, imm ANSWER: ori rt, rs, imm === ori 32, $0, 5 === ori v0, 30, 5

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MOTES:

| R Sesthelzciures 2. 3 and

the textbook Patterson and
Hennessey "Computer
Organization & Design”
Cha (Ed2) or ChZ (Ed3).

1 word -- 32 bits

ap (operation) field tells us
that this is R-type
nsiruction (see the
tewtbook from p. 117, Fig.
3.18 or Fig. A.12). R-type
nsiructions fields are
allocated in groups: Ghits-
Sbits-Sbits-Shits-Sbhits-Ghits.
Funct field tells us that the
nsiruction is "add’, format:
add rd, rs, it {p. &-55).

ap field tells us that this
nstruction is ‘o' (see the
textbook from p. 117, Fig.
3.18 or Fig. A12). oriis |-
type instructions, so fields
are allacated in groups:
Bbits-Ebits-Sbits-10bits. The
nstruction format is:

ani rt, s, imm (p. A-57).

& Derek Bem, 2005

32

mailto:j.yang@uws.edu.au

Revision: Memory access

s Given var: .word 32
Which of the following is to load the address of var to register $s17?
1) la $s1, var 2)1lw $sl1, var 3)1i $sl, var

«= Given arr: .word 0, 0, 0, O, O, 0, 0, 6, 3, 2

Which of the following is the correct algebra to calculate the address
of arr[i]?

1) arr+4*i 2) arr+4+i 3) (arr+i)*4
« Given arr: .word 0, 0, O, O, 0, 0, 0, 6, 3, 2 and
assume array base and index are in registers $a0 and $tO.

Is the following code legal in syntax?
add $tl1,s$t0,st0
add S$t1,st1,stl
1w $t2, Stl(sal)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 33

mailto:j.yang@uws.edu.au

Recommended readings

General Data

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials

ascii_chart.pdf | bias_representation.pdf | HP ADDATEJdH-iDst\ruction decoding.pdf | masking help.pdf | PCSpim.pdf |

PCSpim Portable Version | Library materials

~~

PHB, §2 3, P72: immediate operands; making the common case fast
PH5, §2 3, P72: immediate operands; making the common case fast

PH4, §2 3, P86: immediate operands; 3rd Principle of hardware design

PHE, §2.10, P118: Addressing mode in MIPS
PH5, §2.10, P111: Addressing mode in MIPS
PH4, §2.10, P128: Addressing mode in MIPS

PHE, §2.10, P125-P127: Instruction decoding and Instruction Formats
PH5, §2.10, P118-P120: Instruction decoding and Instruction Formats
PH4, §2.10, P134-P136: Instruction decoding and Instruction Formats
Also refer to “instruction decoding.pdf” on vUWS

PHE, 8214, P147: Traversing arrays — index vs pointer
PHS, §2.14, P141: Traversing arrays — index vs pointer
PH4, §2.14, P157: Traversing arrays — index vs pointer

HP_AppA pdf -> A-43 (PH6, PH5) or P-43 (PH4) pack characters
Also refer to "ascii_chartpdf" on vUWS

HP_AppA pdf -> A-48 (PHB, PH5) or P-48 (PH4) explains directive .asciiz

~

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 34

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

ASCII TABLE See ascii_chart.pdf on vUWS

DEC HEX CHAR DEC HEX CHAR | DEC HEX CHAR | DEC HEX CHAR
u} (NN i = NTTL 32 0 apc a4 40 =} 96 e *
1 [~h S0OH 33 21 ! a5 41 -y 97 el =
2 (e ~B ST 24 Z22 " oG 42 B as o2]
3 03 o ETX 35 z3 : &7 43 C a9 &3 c
4 (W “D EOQT 38 Z4 = aB 44 D 100 (S [|
3 03 ~E ENQ 37 23 = (o8] 435 E 101 &3 =
o 0e “F DCE 38 26 = T 45 F 102 a6 £
7 a7 e BEL 39 27 ' Tl 47 = 103 a7 o
a8 (W= ~H B3 410 z28 (T2 42 H 104 (== h
= [NR=] ~I HT 41 9) T3 45 I 105 a9 i

10 (W% ~T LF 4z 258 * 74 A J 106 an a

11 OB R T 43 ZB + =] 4B F 107 B o

12 (Wl L FF 44 2C . T 4 I 108 aC 1

13 0D D CR 45 2D = T 4D M 109 &eD m

14 OFE M =le] 4& ZE . T8 4FE M 110 aE n

15 OF ~O ST 47 2F s 79 1F o 111 aF o

1& 10 = DLE 43 30 [} a0 S0 = 112 T E

17 11 ~o D 45 31 1 81 a1 2 113 Tl o

18 12 R DC2 S0 3z 2 82 52 E 114 T2 r

19 13 = i D 51 33 3 83 53 = 115 73 s

20 14 ~ D4 22 34 4 84 o4 T 116 74 t

21 15 1T MLTF 53 35 3 85 =ia o) 117 75 1

22 16 SR STYMN >4 36 [86 26 A 118 T6 =

23 17 ~W ETEB] 37 7 87 57 w 119 i w

4 18 a4 Ch 36 38 8 88 S8 = 120 78 =

23 15 W EM 57 39 = 249 o5 b4 121 79 3

26 1n ~3 IUB 58 n : =1 S a2 122 T =

27 1B i | ESC o9 3B H 91 SB [123 TE !

28 1c Y F3 (=) 3c < 92 o 124 T |

29 1D ~1 =2 &l 32D = a3 SD 125 7D I

30 1E o =¥ 62 IE = S 4 oE 126 TE -~

31 i1F "~ s 63 3F ? 93 oF . 127 TF DEL

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 35

mailto:j.yang@uws.edu.au

