
Topics
 Traversing arrays – Further remarks
 Handling character strings in MIPS
 Handling constants in MIPS
 MIPS addressing modes

 Addressing in branches and jumps
 Decoding instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 3: MIPS addressing modes

Arrays: Element index [Text PH4, P157]

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 for example, to clear all elements of the array

int array[32];
array[i]

int i;
for(i = 0; i < size; i = i + 1)

array[i] = 0;

 to perform operations of a number of consecutive
locations of memory we use arrays

 to select an element of an array we use the index

 this involves calculation of the new index value and
address of the next element for every iteration of the
loop

… …

A[0]

A[1]

A[i]

…

A[m]
...

Arrays: Element pointer

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we can operate on consecutive locations in memory by
calculating the address directly
 make direct use of memory abstraction (as an array of bytes)

 so instead of using the indices we use so called pointers
 a pointer is an address of a memory location

 Java does not use pointers directly (but references to objects), but
C and C++ do

 However using pointers
 the code is more cryptic

 it is easier to make mistakes
… …

A[0]

A[1]

A[i]

Array addressing and traversing in MIPS

 Memory ARRAY access: A[k]

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Index Offset Base Location Content
Addressing

k k*4 A k*4 + A
k*4 (A)

0 (A + k*4)

word
index

byte

2

1

0

12

10

9

8

7

6

5

4

3

2

1

0

Array addressing and traversing in MIPS

 Memory ARRAY access: A[k]

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Base A:

AddressIndices Offset

k = 0

k = 1

k * 4

k * 4

A + 0 * 4

A + 1 * 4

Traversing style Counter Address Algebra
Indices (relative, conceptual) k [0, m] k * 4 + A
Pointers (absolute, physical) P [A, A + m*4] P += 4

Array addressing and traversing in MIPS

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Indexing version
array base and size are in registers $a0 and $a1
index i is allocated to register $t0

move $t0, $zero # i = 0
loop1: add $t1,$t0,$t0 # $t1 = 2i

add $t1,$t1,$t1 # $t1 = 4i
add $t2,$a0,$t1 # $t2 = array[i]
sw $zero,0($t2) # array[i] = 0
addi $t0,$t0,1 # i = i + 1
slt $t3,$t0,$a1 # $t3 = (i < size0)
bne $t3,$zero,loop1

TASK: clear a number of consecutive locations in memory in C:

int *p;

for(p = &array[0]; p <= &array[size-1]; p = p + 1)

*p = 0;

Array addressing and traversing in MIPS

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Pointer version
array address (address of the first array word) and
array size (how many words the array has) are found in
registers $a0 and $a1
pointer p is allocated to register $t0

move $t0, $a0 # p = address of array[0]
loop2: sw $zero,0($t0) # memory[p] = 0

addi $t0,$t0,4 # p = p + 4
add $t1,$a1,$a1 # $t1 = 2 x size
add $t1,$t1,$t1 # $t1 = 4 x size
add $t2,$a0,$t1 # $t2 = address of array[size]
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2

Array addressing and traversing in MIPS

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Pointer version – some improvement
the address of array[size] is calculated for every
iteration of the loop, although it never changes
so we can move it outside the loop:

move $t0, $a0 # p = address of array[0]
add $t1,$a1,$a1 # $t1 = 2 x size
add $t1,$t1,$t1 # $t1 = 4 x size
add $t2,$a0,$t1 # $t2 = &array[size]

loop2: sw $zero,0($t0) # memory[p] = 0
addi $t0,$t0,4 # p = p + 4
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2

Array addressing and traversing in MIPS

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Comparison
 the index version had to calculate new value of i for every

iteration of the loop: 7 instructions per iteration

 the pointer version calculated size once only outside the loop:
4 instructions per iteration

 modern compilers have the ability to produce the more
efficient pointer-like code for the array version

While loop again (EXERCISE)

actual start of the main program

implements a while loop

while (save[i] == k)

i = i + j;

alternative form:

Loop: if (save[i] != k) go to Exit

i = i + j;

go to Loop;

Exit:

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop

variables i, j and k are in registers $s3, $s4 and $s5

address of save is in $s6
Allocate 10-word array save

.data

.align 2 # aligning will be explained later

.globl save

save: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2

.globl main

.text

main: # main has to be a global label

addu $s7, $0, $ra # save the return address in $ra

Initialize variables

add $s3, $0, $0 # i=0 (initial value)

addi $s4, $0, 1 # j=1

add $s5, $0, $0 # k=0 (what if k=7 -> addi $s5,$0,7)

la $s6, save # $s6 = save[] (using la)

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop cont

Loop:

add $t1, $s3, $s3 # 2*i ($s3 has i)

add $t1, $t1, $t1 # 4*i ($t1 has 4*i –- the offset)

add $t1, $t1, $s6 # $s6 = save[]; $t1 = save[] + 4*i

#

lw $t0, 0($t1) # gets save[i]

#

bne $t0, $s5, Exit # $s5 has k

add $s3, $s3, $s4 # $s3 has i

j Loop #

Exit:

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop cont

Output the value of i to see how far we got

.data

.globl message1

message1: .asciiz "\nThe value of i is: " #string to print

.text

li $v0, 4 #

la $a0, message1 # la used here

syscall

li $v0, 1 #

add $a0, $0, $s3 #

syscall

Usual stuff at the end of the main

addu $ra, $0, $s7 # restore the return address

jr $ra # return to the main program

add $0, $0, $0 # nop

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processing text

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Computers can process any information represented
as numbers
 characters can be processed if they are represented as

numbers
 ASCII (American Standard Code for Information

Interchange – refer to the table in the last slide)
 8 bits (one byte) used to represent a character
 256 possible combinations

 EBCIDC
 another 8-bit code, introduced by IBM

 Unicode
 16 bits per character, Java

…

Storing characters

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 We want to pack 4 characters into each word
 ‘Have a … …’ [0A0000101048010010006101100001760111011020 …]
 need a convention on how bytes are ordered in a word

 this is called endianness
 two ways are used

 pack characters starting at the most significant bit (big end)
 pack characters starting at the least significant bit (little end)

 Storing an 8-bit character in a 32-bit word would be
wasteful

0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 0 0 0 0 1

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

HP_AppA.pdf P43

Special instructions

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we might use lw and sw to transfer characters bundled
into words between memory and registers
 we would need to extract single bytes to process text

(masking?)

 since character processing is so common (4th design
principle), special instructions are provided
 lb register, address

 loads a byte from memory into rightmost byte of the register
 sb register, address

 stores the rightmost byte of the register in memory

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1

Character strings

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 text consists of strings of characters
 strings have variable length

 three choices
1. reserve the first position of the string to store its length
2. create a structure consisting of an integer to store length, and

a variable length character string
3. use last position of the string to mark its end by storing a

terminating character
 3rd choice is commonly used

 C sets the last byte to zero
 a byte whose value is zero is called Null in ASCII

MIPS directives for strings

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 .ascii “sample character string”
 stores the characters in memory packed in consecutive bytes
 this string occupies 23 bytes of memory
 strings are enclosed in double quotes

 .asciiz “sample character string”
 adds a null byte at the end of the string
 this string occupies 24 bytes of memory

 special characters follow C conventions
 new line \n
 tab \t
 double quote \”

A-48 (PH3) or B-48 (PH4) explains directive .asciiz

Strings in MIPS [EXERCISE]

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 C code to copy string y to string x using the Null byte as a
terminating character char x[], y[];

int i = 0; //counter
while(y[i]!= 0) {

x[i] = y[i];
i = i + 1;

}

 MIPS assembly language code
base address for x and y is in $a0 and $a1
i is in $s0

add $s0,$zero,$zero # i = 0 (initialisation)
L1: add $t1,$a1,$s0 # address of y[i]; not 4*i (word)

lb $t2,0($t1) # load character y[i] to $t2
add $t3,$a0,$s0 # address of x[i]; not 4*i (word)
sb $t2,0($t3) # x[i] = y[i]
addi $s0,$s0,1 # i = i + 1 (update; byte by byte)
bne $t2,$zero,L1 # if y[i] != 0 (the NUL char)

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

18
19
1A
1B
1C

lb / sb

Constants

 Small constants are used quite frequently

 Solutions?
1. build hard-wired registers (like $zero) for constants
2. define 'typical constants' in memory and load them
3. put constants in instructions themselves

 We call constant operands immediate operands
 this way of accessing data is called immediate addressing

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

e.g., a = a + 4

addi $sp,$sp,4 # add immediate (add 4)

slti $t0,$s2,35 # common use of constants is comparison

4th principle of good design:
Make the common case fast

See Text: HP4, P86

Constants continued

 I-type Instruction with immediate operands

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

op rs rt constant
6 bits 5 bits 5 bits 16 bits

 Large constant: I-type instructions limit to 16-bit constants, HOW
do we load a 32-bit constant into a 32-bit register?
For example: 1110101010101011 1010101010101010

 New "load upper immediate" takes care of higher order 16 bits:
lui $t0, 1110101010101011

 Then we must get the lower order 16 bits right, i.e.,
ori $t0, $t0, 1010101010101010

1110101010101011 0000000000000000

0000000000000000 1010101010101010

1110101010101011 1010101010101010
ori

$t0

immediate

Large constants cont.

 MIPS assembler provides a pseudo instruction

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

li register, constant # load immediate

 the constant must be broken at some stage either by the
compiler, or the assembler (as in MIPS)
 a temporary register $at is used for this purpose

 this is why it is reserved (NOT enforced by hardware!)

lui reg, const1 # const1 := constant >> 16
ori reg, reg, const2 # const2 := constant AND 0x0000ffff

1110101010101011 1010101010101010

replaced with

Addresses in loads/stores

 lw and sw are I-type instructions
 lw rt, address # e.g. lw $t0, 32($s3)
 address: constant [offset] + contents of a register rs [base]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 how about:

op rs rt constant [offset]
6 bits 5 bits 5 bits 16 bits

.data
labelx: .word 235 # define number ‘235’

.text
lw $t0, labelx # I-type instruction

 labelx address is 32-bit long, BUT constant field is only 16 bits

 these lw/sw are treated by the assembler as pseudoinstructions

 substituted with lui and common lw/sw

See Text: HP4, P128-P133

Load instructions

 so far we saw

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 another useful load instruction

 load computed address, NOT the contents of the location

 this is another case when we need a 32-bit immediate value

la register, address # pseudoinstruction

A: .word 11,12,13,14,15,16,17 #Array definition A[7], see Lab 4
la $s3, A
lw $s4, 8($s3)

li register, constant # pseudoinstruction
translate into more
than 1 common instr.

lw register, address # e.g. lw $t0, 32($s3)
or lw $t0, labelx

Addresses in Jumps, part 1

 the simplest addressing is in jump instruction

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 such instruction use another format: J-type

j Label # Next instruction is at Label

 …but address field is still only 26 bits, not 32 bits
required by the address (e.g. Loop address) , what to
do?

op address
6 bits 26 bits

Loop: add $t1, $s3, $s3 #
… …
lw $t0, 0($t1) #
bne $t0, $s5, Exit #
add $s3, $s3, $s4 #
j Loop #

Addresses in Jumps, part 2

 as each instruction is 4 byte long, we only need to
address words (not individual bytes – cells), so:
 26-bit address field can represent 28-bit byte address

 the 4 missing bits are provided by leaving the upper 4
bits of the PC (Program Counter) unchanged

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

PC<31,28> address field in the instruction 0 0
4 bits 26 bits 2 bits

word
index

byte

2

1

0

12

10

9

8

7

6

5

4

3

2

1

0

Addresses in Branches

 Instructions:

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Format (I-Type):

bne $t4,$t5,Label #Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label #Next instruction is at Label if $t4==$t5

 we only have 16 bits for the address

 this limits the size of the program to 216, not an
acceptable option

op rs rt constant
6 bits 5 bits 5 bits 16 bit address

Addresses in Branches: PC-relative addressing

 we could specify a register (like in lw and sw, e.g.
lw $t0, 32($s3)) and add it to address
 so next PC = register + branch_address

 which register to use
 most branches are local (principle of locality), used in loops

and if statements

 use Program Counter (PC)

 we can branch within 215 words either way from the current
instruction (not 216 , leaving one bit for direction)

 this is called PC-relative addressing: const(PC)

 MIPS uses the address of the next instruction, PC + 4
 by the time when address is calculated PC has been already

incremented

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

…

PC

Branching far away

 if a branch is to a far-away location (beyond the 16 bit
limit)
 the assembler replaces the branch with a pair of instructions

 for example:

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 becomes

beq $s0,$s1,L1
add . . .

bne $s0,$s1,L2
j L1

L2: add . . .

Addressing mode summary

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

PH4 Section 2.10, P132
I-type instructions

R-type instructions

I-type instructions

I-type instructions

J-type instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 17 18 8 0 32

Instruction Formats

 Three instruction format: R, I, J

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Instruction assembling that converts mnemonic format to machine code

R-type instruction: add $t0, $s1, $s2
rtrsrd

18178

op rs rt rd shamt funct

[mnemonic]

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

[assembled]add

0 2 3 2 4 0 2 00x
bin
dec

Home EXERCISE

Examples of translating machine instructions

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

See Text: HP4, P134; instruction decoding.pdf on vUWS

Home EXERCISE

Revision: Memory access

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Given var: .word 32
Which of the following is to load the address of var to register $s1?
1) la $s1, var 2) lw $s1, var 3) li $s1, var

 Given arr: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2
Which of the following is the correct algebra to calculate the address
of arr[i]?
1) arr+4*i 2) arr+4+i 3) (arr+i)*4

 Given arr: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2 and
assume array base and index are in registers $a0 and $t0.
Is the following code legal in syntax?

add $t1,$t0,$t0

add $t1,$t1,$t1

lw $t2, $t1($a0)

Recommended readings

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

ASCII TABLE

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

See ascii_chart.pdf on vUWS

