
Topics
 Traversing arrays – Further remarks
 Handling character strings in MIPS
 Handling constants in MIPS
 MIPS addressing modes

 Addressing in branches and jumps
 Decoding instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 3: MIPS addressing modes

Arrays: Element index [Text PH4, P157]

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 for example, to clear all elements of the array

int array[32];
array[i]

int i;
for(i = 0; i < size; i = i + 1)

array[i] = 0;

 to perform operations of a number of consecutive
locations of memory we use arrays

 to select an element of an array we use the index

 this involves calculation of the new index value and
address of the next element for every iteration of the
loop

… …

A[0]

A[1]

A[i]

…

A[m]
...

Arrays: Element pointer

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we can operate on consecutive locations in memory by
calculating the address directly
 make direct use of memory abstraction (as an array of bytes)

 so instead of using the indices we use so called pointers
 a pointer is an address of a memory location

 Java does not use pointers directly (but references to objects), but
C and C++ do

 However using pointers
 the code is more cryptic

 it is easier to make mistakes
… …

A[0]

A[1]

A[i]

Array addressing and traversing in MIPS

 Memory ARRAY access: A[k]

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Index Offset Base Location Content
Addressing

k k*4 A k*4 + A
k*4 (A)

0 (A + k*4)

word
index

byte

2

1

0

12

10

9

8

7

6

5

4

3

2

1

0

Array addressing and traversing in MIPS

 Memory ARRAY access: A[k]

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Base A:

AddressIndices Offset

k = 0

k = 1

k * 4

k * 4

A + 0 * 4

A + 1 * 4

Traversing style Counter Address Algebra
Indices (relative, conceptual) k [0, m] k * 4 + A
Pointers (absolute, physical) P [A, A + m*4] P += 4

Array addressing and traversing in MIPS

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Indexing version
array base and size are in registers $a0 and $a1
index i is allocated to register $t0

move $t0, $zero # i = 0
loop1: add $t1,$t0,$t0 # $t1 = 2i

add $t1,$t1,$t1 # $t1 = 4i
add $t2,$a0,$t1 # $t2 = array[i]
sw $zero,0($t2) # array[i] = 0
addi $t0,$t0,1 # i = i + 1
slt $t3,$t0,$a1 # $t3 = (i < size0)
bne $t3,$zero,loop1

TASK: clear a number of consecutive locations in memory in C:

int *p;

for(p = &array[0]; p <= &array[size-1]; p = p + 1)

*p = 0;

Array addressing and traversing in MIPS

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Pointer version
array address (address of the first array word) and
array size (how many words the array has) are found in
registers $a0 and $a1
pointer p is allocated to register $t0

move $t0, $a0 # p = address of array[0]
loop2: sw $zero,0($t0) # memory[p] = 0

addi $t0,$t0,4 # p = p + 4
add $t1,$a1,$a1 # $t1 = 2 x size
add $t1,$t1,$t1 # $t1 = 4 x size
add $t2,$a0,$t1 # $t2 = address of array[size]
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2

Array addressing and traversing in MIPS

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Pointer version – some improvement
the address of array[size] is calculated for every
iteration of the loop, although it never changes
so we can move it outside the loop:

move $t0, $a0 # p = address of array[0]
add $t1,$a1,$a1 # $t1 = 2 x size
add $t1,$t1,$t1 # $t1 = 4 x size
add $t2,$a0,$t1 # $t2 = &array[size]

loop2: sw $zero,0($t0) # memory[p] = 0
addi $t0,$t0,4 # p = p + 4
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2

Array addressing and traversing in MIPS

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Comparison
 the index version had to calculate new value of i for every

iteration of the loop: 7 instructions per iteration

 the pointer version calculated size once only outside the loop:
4 instructions per iteration

 modern compilers have the ability to produce the more
efficient pointer-like code for the array version

While loop again (EXERCISE)

actual start of the main program

implements a while loop

while (save[i] == k)

i = i + j;

alternative form:

Loop: if (save[i] != k) go to Exit

i = i + j;

go to Loop;

Exit:

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop

variables i, j and k are in registers $s3, $s4 and $s5

address of save is in $s6
Allocate 10-word array save

.data

.align 2 # aligning will be explained later

.globl save

save: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2

.globl main

.text

main: # main has to be a global label

addu $s7, $0, $ra # save the return address in $ra

Initialize variables

add $s3, $0, $0 # i=0 (initial value)

addi $s4, $0, 1 # j=1

add $s5, $0, $0 # k=0 (what if k=7 -> addi $s5,$0,7)

la $s6, save # $s6 = save[] (using la)

11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop cont

Loop:

add $t1, $s3, $s3 # 2*i ($s3 has i)

add $t1, $t1, $t1 # 4*i ($t1 has 4*i –- the offset)

add $t1, $t1, $s6 # $s6 = save[]; $t1 = save[] + 4*i

#

lw $t0, 0($t1) # gets save[i]

#

bne $t0, $s5, Exit # $s5 has k

add $s3, $s3, $s4 # $s3 has i

j Loop #

Exit:

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop cont

Output the value of i to see how far we got

.data

.globl message1

message1: .asciiz "\nThe value of i is: " #string to print

.text

li $v0, 4 #

la $a0, message1 # la used here

syscall

li $v0, 1 #

add $a0, $0, $s3 #

syscall

Usual stuff at the end of the main

addu $ra, $0, $s7 # restore the return address

jr $ra # return to the main program

add $0, $0, $0 # nop

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processing text

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Computers can process any information represented
as numbers
 characters can be processed if they are represented as

numbers
 ASCII (American Standard Code for Information

Interchange – refer to the table in the last slide)
 8 bits (one byte) used to represent a character
 256 possible combinations

 EBCIDC
 another 8-bit code, introduced by IBM

 Unicode
 16 bits per character, Java

…

Storing characters

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 We want to pack 4 characters into each word
 ‘Have a … …’ [0A0000101048010010006101100001760111011020 …]
 need a convention on how bytes are ordered in a word

 this is called endianness
 two ways are used

 pack characters starting at the most significant bit (big end)
 pack characters starting at the least significant bit (little end)

 Storing an 8-bit character in a 32-bit word would be
wasteful

0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 0 0 0 0 1

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

HP_AppA.pdf P43

Special instructions

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 we might use lw and sw to transfer characters bundled
into words between memory and registers
 we would need to extract single bytes to process text

(masking?)

 since character processing is so common (4th design
principle), special instructions are provided
 lb register, address

 loads a byte from memory into rightmost byte of the register
 sb register, address

 stores the rightmost byte of the register in memory

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 00 1 0 0 1 0 0 00 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1

Character strings

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 text consists of strings of characters
 strings have variable length

 three choices
1. reserve the first position of the string to store its length
2. create a structure consisting of an integer to store length, and

a variable length character string
3. use last position of the string to mark its end by storing a

terminating character
 3rd choice is commonly used

 C sets the last byte to zero
 a byte whose value is zero is called Null in ASCII

MIPS directives for strings

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 .ascii “sample character string”
 stores the characters in memory packed in consecutive bytes
 this string occupies 23 bytes of memory
 strings are enclosed in double quotes

 .asciiz “sample character string”
 adds a null byte at the end of the string
 this string occupies 24 bytes of memory

 special characters follow C conventions
 new line \n
 tab \t
 double quote \”

A-48 (PH3) or B-48 (PH4) explains directive .asciiz

Strings in MIPS [EXERCISE]

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 C code to copy string y to string x using the Null byte as a
terminating character char x[], y[];

int i = 0; //counter
while(y[i]!= 0) {

x[i] = y[i];
i = i + 1;

}

 MIPS assembly language code
base address for x and y is in $a0 and $a1
i is in $s0

add $s0,$zero,$zero # i = 0 (initialisation)
L1: add $t1,$a1,$s0 # address of y[i]; not 4*i (word)

lb $t2,0($t1) # load character y[i] to $t2
add $t3,$a0,$s0 # address of x[i]; not 4*i (word)
sb $t2,0($t3) # x[i] = y[i]
addi $s0,$s0,1 # i = i + 1 (update; byte by byte)
bne $t2,$zero,L1 # if y[i] != 0 (the NUL char)

0 0 0 0 1 0 1 0

0 1 0 0 1 0 0 0

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

18
19
1A
1B
1C

lb / sb





Constants

 Small constants are used quite frequently

 Solutions?
1. build hard-wired registers (like $zero) for constants
2. define 'typical constants' in memory and load them
3. put constants in instructions themselves

 We call constant operands immediate operands
 this way of accessing data is called immediate addressing

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

e.g., a = a + 4

addi $sp,$sp,4 # add immediate (add 4)

slti $t0,$s2,35 # common use of constants is comparison

4th principle of good design:
Make the common case fast

See Text: HP4, P86

Constants continued

 I-type Instruction with immediate operands

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

op rs rt constant
6 bits 5 bits 5 bits 16 bits

 Large constant: I-type instructions limit to 16-bit constants, HOW
do we load a 32-bit constant into a 32-bit register?
For example: 1110101010101011 1010101010101010

 New "load upper immediate" takes care of higher order 16 bits:
lui $t0, 1110101010101011

 Then we must get the lower order 16 bits right, i.e.,
ori $t0, $t0, 1010101010101010

1110101010101011 0000000000000000

0000000000000000 1010101010101010

1110101010101011 1010101010101010
ori

$t0

immediate

Large constants cont.

 MIPS assembler provides a pseudo instruction

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

li register, constant # load immediate

 the constant must be broken at some stage either by the
compiler, or the assembler (as in MIPS)
 a temporary register $at is used for this purpose

 this is why it is reserved (NOT enforced by hardware!)

lui reg, const1 # const1 := constant >> 16
ori reg, reg, const2 # const2 := constant AND 0x0000ffff

1110101010101011 1010101010101010

replaced with

Addresses in loads/stores

 lw and sw are I-type instructions
 lw rt, address # e.g. lw $t0, 32($s3)
 address: constant [offset] + contents of a register rs [base]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 how about:

op rs rt constant [offset]
6 bits 5 bits 5 bits 16 bits

.data
labelx: .word 235 # define number ‘235’

.text
lw $t0, labelx # I-type instruction

 labelx address is 32-bit long, BUT constant field is only 16 bits

 these lw/sw are treated by the assembler as pseudoinstructions

 substituted with lui and common lw/sw

See Text: HP4, P128-P133

Load instructions

 so far we saw

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 another useful load instruction

 load computed address, NOT the contents of the location

 this is another case when we need a 32-bit immediate value

la register, address # pseudoinstruction

A: .word 11,12,13,14,15,16,17 #Array definition A[7], see Lab 4
la $s3, A
lw $s4, 8($s3)

li register, constant # pseudoinstruction
translate into more
than 1 common instr.

lw register, address # e.g. lw $t0, 32($s3)
or lw $t0, labelx

Addresses in Jumps, part 1

 the simplest addressing is in jump instruction

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 such instruction use another format: J-type

j Label # Next instruction is at Label

 …but address field is still only 26 bits, not 32 bits
required by the address (e.g. Loop address) , what to
do?

op address
6 bits 26 bits

Loop: add $t1, $s3, $s3 #
… …
lw $t0, 0($t1) #
bne $t0, $s5, Exit #
add $s3, $s3, $s4 #
j Loop #

Addresses in Jumps, part 2

 as each instruction is 4 byte long, we only need to
address words (not individual bytes – cells), so:
 26-bit address field can represent 28-bit byte address

 the 4 missing bits are provided by leaving the upper 4
bits of the PC (Program Counter) unchanged

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

PC<31,28> address field in the instruction 0 0
4 bits 26 bits 2 bits

word
index

byte

2

1

0

12

10

9

8

7

6

5

4

3

2

1

0

Addresses in Branches

 Instructions:

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Format (I-Type):

bne $t4,$t5,Label #Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label #Next instruction is at Label if $t4==$t5

 we only have 16 bits for the address

 this limits the size of the program to 216, not an
acceptable option

op rs rt constant
6 bits 5 bits 5 bits 16 bit address

Addresses in Branches: PC-relative addressing

 we could specify a register (like in lw and sw, e.g.
lw $t0, 32($s3)) and add it to address
 so next PC = register + branch_address

 which register to use
 most branches are local (principle of locality), used in loops

and if statements

 use Program Counter (PC)

 we can branch within 215 words either way from the current
instruction (not 216 , leaving one bit for direction)

 this is called PC-relative addressing: const(PC)

 MIPS uses the address of the next instruction, PC + 4
 by the time when address is calculated PC has been already

incremented

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

…

PC

Branching far away

 if a branch is to a far-away location (beyond the 16 bit
limit)
 the assembler replaces the branch with a pair of instructions

 for example:

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 becomes

beq $s0,$s1,L1
add . . .

bne $s0,$s1,L2
j L1

L2: add . . .

Addressing mode summary

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

PH4 Section 2.10, P132
I-type instructions

R-type instructions

I-type instructions

I-type instructions

J-type instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

0 17 18 8 0 32

Instruction Formats

 Three instruction format: R, I, J

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Instruction assembling that converts mnemonic format to machine code

R-type instruction: add $t0, $s1, $s2
rtrsrd

18178

op rs rt rd shamt funct

[mnemonic]

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

[assembled]add

0 2 3 2 4 0 2 00x
bin
dec

Home EXERCISE

Examples of translating machine instructions

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

See Text: HP4, P134; instruction decoding.pdf on vUWS

Home EXERCISE

Revision: Memory access

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Given var: .word 32
Which of the following is to load the address of var to register $s1?
1) la $s1, var 2) lw $s1, var 3) li $s1, var

 Given arr: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2
Which of the following is the correct algebra to calculate the address
of arr[i]?
1) arr+4*i 2) arr+4+i 3) (arr+i)*4

 Given arr: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2 and
assume array base and index are in registers $a0 and $t0.
Is the following code legal in syntax?

add $t1,$t0,$t0

add $t1,$t1,$t1

lw $t2, $t1($a0)

Recommended readings

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)
https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

ASCII TABLE

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

See ascii_chart.pdf on vUWS

