MIPS addressing modes

Three instruction formats: R, I, J

[5 I I I d [shamt | Tunct R
Shits, EE

53 53 b s

s [[[16 bit address Il
5o e oo

T 76 bit address 14

EHE
261261241231 220218200101 181 74161151 14§ 13121 111100 9t s i7i8istaiaiaii0}

= Traversing arrays — Further remarks
= Handling character strings in MIPS
= Handling constants in MIPS

= MIPS addressing modes

= Addressing in branches and jumps
= Decoding instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Array addressing and traversing in MIPS

= Memory ARRAY access: A[k]

Traversing style m Address Algebra

Indices (relative, conceptual) k [0, m] k*¥4+A
Pointers (absolute, physical) P[A, A + m*4] P+=4

=>

Indices Offset Address

(index increases by 1
pointer increases by 4)

pointer = index * 4 + base

k=0 k*4 A+0*4

ve)
[
]
@
>

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Arrays: Element index [Text PH4, P157]

A[m]
to perform operations of a number of consecutive
locations of memory we use arrays

= to select an element of an array we use the index

int array[32];
array[i]

for example, to clear all elements of the array

int i;
for(i = 0; 1 < size; i =1i + 1)
array[i] = O;

this involves calculation of the new index value and
address of the next element for every iteration of the
loop

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Array addressing and traversing in MIPS

TASK: clear a number of consecutive locations in memory in C:
int *p;
for(p = &array[0]; p <= &array[size-1l]; p = p + 1)
* - .
p=0;

= Indexing version

array base and size are in registers $a0 and $al
index i is allocated to register $t0

move $t0, $zero #i-=
loopl: add $tl1,$t0,$t0 # $tl 2i

add $t1,$t1,s$tl # $tl 4i

add $t2,$a0,5$t1 # S$t2 array[i]

sw $zero,0(5t2) # array[i] = 0

addi $t0,$t0,1 #i=1+1

slt $t3,$t0,$al # $t3 = (i < size0)

bne $t3,$zero,loopl

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Arrays: Element pointer

we can operate on consecutive locations in memory by
calculating the address directly
= make direct use of memory abstraction (as an array of bytes)
so instead of using the indices we use so called pointers
= a pointer is an address of a memory location
= Java does not use pointers directly (but references to objects), but
C and C++ do
However using pointers ALl
= the code is more cryptic
= it is easier to make mistakes

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Array addressing and traversing in MIPS

= Pointer version

array address (address of the first array word) and
array size (how many words the array has) are found in
registers $a0 and $al

pointer p is allocated to register $t0

move $t0, $al p = address of array[0]
loop2: sw $zero,0($t0) =0

addi $t0,$t0,4 + 4

add $tl,$al,$al 2 x size

add tl,stl,$tl 4 x size

add $t2,$a0,5tl address of array[size]

slt $t3,$t0,$t2 (p < &array[size])

bne $t3,$zero,loop2

N

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Array addressing and traversing in MIPS

= Memory ARRAY access: A[k]

Index Offset Base Location Content
Addressing

k*4 (A)
0 (A + k*4)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Array addressing and traversing in MIPS

= Pointer version — some improvement

the address of array[size] is calculated for every
iteration of the loop, although it never changes
so we can move it outside the loop:

move $t0, $a0 = address of array[0]
add $tl,$al,$al t1l 2 x size

add tl,stl,$t1 t1l 4 x size

add $t2,$a0,5t1 t2 &array[size]

sw $zero,0($t0) memory[p] = 0

addi $t0,$t0,4 p=p+ 4

slt $t3,$t0,$t2 $t3 = (p < &array[size])
bne $t3,$zero,loop2

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Array addressing and traversing in MIPS * While loop cont

= Comparison # Output the value of i to see how far we got
= the index version had to calculate new value of i for every -data
iteration of the loop: 7 instructions per iteration .globl messagel
the pointer version calculated size once only outside the loop: messagel: .asciiz "\nThe value of i is: " #string to print
4 instructions per iteration .text
modern compilers have the ability to produce the more 1i $v0, 4 #
efficient pointer-like code for the array version la $a0, messagel # la used here
syscall
1i $vo, 1
add $a0, $0, $s3
syscall
Usual stuff at the end of the main
addu S$ra, $0, $s7 # restore the return address
jr Sra # return to the main program
add $0, $0, $O # nop

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

* While loop again (EXERCISE) Processing text

actual start of the main program Computers can process any information represented

implements a while loop as numbers
while (_sa"e_[i] == k) = characters can be processed if they are represented as

=1+ numbers

ASCII (American Standard Code for Information

Loop: if (save[i] '= k) go to Exit Interchange — refer to the table in the last slide)
i=i+3; = 8 bits (one byte) used to represent a character [T [[[[]
go to Loop; = 256 possible combinations

EBCIDC

= another 8-bit code, introduced by IBM

Unicode

= 16 bits per character, Java

alternative form:

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

While loop Storing characters HP_AppA.pdf P43

t variables i, J and k are in registers $s3, 9s4 and $s5 Storing an 8-bit character in a 32-bit word would be
address of save is in S$s6 Wasteful

Allocate 10-word array save : :
.data o
.align 2 # aligning will be explained later ol1
.globl save

save: .word O, O, O, O, O, O, O, 6, 3, 2
globl main GLele e e el oo e[e e o[o<l e e e oo [][]
~text We want to pack 4 characters into each word

main: main has to be a global label
g X = ‘JHave a " [0A 48 61 76 20 ..]
addu $s7, $0, $ra save the return address in $ra 00001010 ~01001000~"01100001" “01110110

Initialize variables = need a convention on how bytes are ordered in a word
add $s3, $0, $0 i=0 (initial value) = this is called endianness
addi $s4, $0, 1 j=1 = two ways are used
add $s5, $0, $0 k=0 (what if k=7 -> addi $s5,30,7) . pack characters starting at the most significant bit (big end)
1a 356, save 956 = savel] (using la) « pack characters starting at the least significant bit (little end)

o[o[1]0]1]0
of o] 1] 0] o]0
1] o] oo o]
1[1]o1]1]0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

While loop cont Special instructions

we might use lw and sw to transfer characters bundled

2*i ($s3 has i) into words between memory and registers
4*i ($tl has 4*i -- the offset) i
Stl = save[] + 4*i = we would need to extract single bytes to process text

(masking?)

add $t1, $s3, $s3
add $tl, $t1, $tl

add $tl, $tl, $s6 $s6 = savel[];

1w $t0, 0($tl1)

o[ofofo[:[0]1]0
gets save[i] of 1|0 o] 1]ofof0
o[1] x[o]o|o]o]x
of 1] 1] 1[o[1] 1[0

bne $t0, $s5, Exit
add $s3, $s3, $s4
j Loop

$s5 has k
$s3 has i

[T os [T ol o[=TsTo e o[o[=T e sTol e[s[o[e[o[o[o o[o[=T o[s o]
since character processing is so common (4th design
principle), special instructions are provided

« |b register, address [3[2]1]0]

= loads a byte from memory into rightmost byte of the register

= sb register, address

= stores the rightmost byte of the register in memory

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

LR R R

Character strings

= text consists of strings of characters
= strings have variable length
= three choices
1. reserve the first position of the string to store its length

2. create a structure consisting of an integer to store length, and
a variable length character string

use last position of the string to mark its end by storing a
terminating character

= 3rd choice is commonly used
= C sets the last byte to zero
= a byte whose value is zero is called Null in ASCII

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Constants continued

= I-type Instruction with immediate operands

| op [rs [rt [constant ‘
6 bits 5 bits 5 bits 16 bits
= Large constant: I-type instructions limit to 16-bit constants, HOW
do we load a 32-bit constant into a 32-bit register?
For example: 1110101010101011 1010101010101010

= New "load upper immediate" takes care of higher order 16 bits:
lui $t0, 1110101010101011
= Then we must get the lower order 16 bits right, i.e.,
ori $t0, $t0, 1010101010101010
[1110101010101011 | 000000000) | sto
ori [0000000000000000 [1010101010101010] immediate

[1110101010101011 | 1010101010101010

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS directives for strings
A-48 (PH3) or B-48 (PH4) explains directive .asciiz
= .ascii “sample character string”
= stores the characters in memory packed in consecutive bytes
= this string occupies 23 bytes of memory
= strings are enclosed in double quotes
= .asciiz “sample character string”
= adds a null byte at the end of the string
= this string occupies 24 bytes of memory
= special characters follow C conventions
= new line \n
= tab \t
= double quote \"”

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Large constants cont.

= MIPS assembler provides a pseudo instruction

1i register, constant # load immediate
l replaced with
lui reg, const1 # const1 := constant >> 16
ori reg, reg, const2 # const2 := constant AND 0x0000ffff

1110101010101011 1010101010101010

= the constant must be broken at some stage either by the
compiler, or the assembler (as in MIPS)
= a temporary register $at is used for this purpose
= this is why it is reserved (NOT enforced by hardware!)

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Strings in MIPS [EXERCISE]

= C code to copy string y to string x using the Null byte as a

terminating character x[1, y[1;

int i = 0; //counter

while (y[i]!= 0) {
x[i] = y[i];
i=

}
= MIPS assembly language code

o[o
o|o
1o
11

base address for x and y is in $a0 and $al 1b
i is in $s0
add $s0,$zero,$zero # i = 0 (initialisation)
Ll: add $tl1,$al,$s0 # address of y[i]; not 4*i (word)
@ 1p $t2,0($t1) load character y[i] to $t2
add $t3,$a0,$s0 address of x[i]; not 4*i (word)
@ sb $t2,0($t3) x[i] = y[i]
addi $s0,$s0,1 i =i + 1 (update; byte by byte)
bne $t2,$zero,Ll # if y[i] '= 0 (the NUL char)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

#
#
#
#

Addresses in loads/stores see Text: Hp4, P128-P133

= lw and sw are I-type instructions
= lwrt, address # e.g. lw $t0, 32($s3)
= address: constant [offset] + contents of a register rs [base]

op ‘ rs ‘ rt ‘ constant [offset] ’
6 bits 5 bits 5 bits 16 bits
= how about:
.data
labelx: .word 235 # define number ‘235
.text
1w $t0, labelx # I-type instruction
= labelx address is 32-bit long, BUT constant field is only 16 bits
= these Iw/sw are treated by the assembler as pseudoinstructions
= substituted with lui and common Iw/sw

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Constants See Text: HP4, P86

= Small constants are used quite frequently
e.g., a=a+4
= Solutions?
1. build hard-wired registers (like $zero) for constants
2. define 'typical constants' in memory and load them
3. put constants in instructions themselves
addi $sp,$sp,4 # add immediate (add 4)

slti $t0,$s2,35 # common use of constants is comparison

= We call constant operands immediate operands
= this way of accessing data is called immediate addressing

4th principle of good design:
Make the common case fast

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Load instructions

= so far we saw

1i register, constant pseudoinstruction
translate into more
than 1 common instr.

lw register, address # e.g. 1w $t0, 32($s3)
or lw $t0, labelx
= another useful load instruction

la register, address # pseudoinstruction

= load computed address, NOT the contents of the location

= this is another case when we need a 32-bit immediate value
A: .word 11,12,13,14,15,16,17 #Array definition A[7], see Lab 4
la $s3, A

Iw $s4, 8($s3)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Addresses in Jumps, part 1

the simplest addressing is in jump instruction
j Label # Next instruction is at Label

such instruction use another format: J-type

’ op ‘ address
6 bits 26 bits

...but address field is still only 26 bits, not 32 bits
required by the address (e.g. Loop address) , what to

do? Loop: add $tl, $s3, $s3 #

1w $t0, 0(stl)

bne $t0, $s5, Exit
add $s3, $s3, $s4

j Loop #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Branching far away

= if a branch is to a far-away location (beyond the 16 bit

limit)

= the assembler replaces the branch with a pair of instructions

= for example:

beq $s0,$s1,L1
add .
= becomes
bne $s0,$s1,L2
j 11
add

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Addresses in Jumps, part 2

as each instruction is 4 byte long, we only need to
address words (not individual bytes — cells), so:

= 26-bit address field can represent 28-bit byte address

the 4 missing bits are provided by leaving the upper 4
bits of the PC (Program Counter) unchanged

word byte
index 2

10

2

l PC<31,28> [address field in the instruction [00 l

9
8
7
6
5
a
3
2
1
o

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

4 bits 26 bits 2 bits

Addressing mode summary

PH4 Section 2.10, P132

1. Immediate addressing

[ep [rs [mt [immeaiate | I-type instructions

2. Register addressing
[op [re [t [ra [---[rancy
: I

R-type instructions Registers

[
L

3. Base addressing
[ep [rs [m [Adgdress | I-type instructions Memory

| Rogister] CED%
—

4. PC-relative addressing

[ep [rs | m | Adaress | I-type instructions
T

\ &= | G>—

5. Pseudodirect addressing

] J-type instructions

[op | Address

[

i Po | <}>—|{

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Addresses in Branches

= Instructions:

bne $t4,$t5,Label #Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label #Next instruction is at Label if $t4==$t5

= Format (I-Type):

constant
16 bit address

(o [o [n]
6 bits 5 bits 5 bits

= we only have 16 bits for the address

= this limits the size of the program to 26, not an
acceptable option

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Home EXERCISE
Instruction Formats

= Three instruction format: R, |, J

Three instruction formats: R, I, J

T it T rd T ‘shamt
Sots

ThiE S

16 bit address
Teois

= Instruction assembling that converts mnemonic format to machine code

rd rs rt
R-type instruction: add $t0, $sl1, $s2
add 8 17 18
6 bits 5 bits 5 bits 5 bits 5 bits

[mnemonic]
[assembled]

6 bits

l op rs rt rd shamt [

funct]

dec 0 17 18 8 0

32

bin 000000 10001 10010 0100000000 100000

0x 0 2 3 2 4 0 2

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0

Emmmm e —

Addresses in Branches: PC-relative addressing

we could specify a register (like in lw and sw, e.g.
lw $t0, 32 ($s3))and add it to address

= so next PC = register + branch_address
which register to use

= most branches are local (principle of locality), used in Ioops§
and if statements 3

use Program Counter (PC)
we can branch within 2'% words either way from the current

instruction (not 216, leaving one bit for direction) PC
this is called PC-relative addressing: const(PC)

MIPS uses the address of the next instruction, PC + 4

= by the time when address is calculated PC has been already
incremented

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Home EXERCISE

Examples of translating machine instructions

See Text: HP4, P134; instruction decoding.pdf on vUWS

Three instruction formats: R, |, J

[| [d
hie o o

[TS T | 16 bit address
Shis This TEbis

funct
G oS,

shamt
Sots

26 bit address

280is . .
witsiisiaizitinisisirTiseisisisizitio

Two examples of translating a machine instruction into a MIPS assembly instruction

0x 02324020 - what MIPS instruction is it?

0
31130

op | s 3 shamt | funct
0 0 0 0 0 0[7 0 00 1[7 00 7 0[0 1 00 0[0 000 0[1 00000

op (aper:
that s

75 T[T 7 3] dec 30 or hew 20
Rpeinstuction | Ri7=%s1 | Rig=gs2 | RB=60 | ot used by "add add

ANSWER: add §8, §17, $18 ==> add §10, 551, 552 add rd, rs, 1t

0x 34020005 - what MIPS instruction is it?

rs | imm
0 1 1 0 1]/0 0 0 0 0|0 0 0 1 0[0 0 0 0000000000 101
Gec 13 or hex 00 z 1
or

I |
[®me=0 | RS0 5
ori i, rs, imm ANSWER: on it, rs, imm ==> ori $2, §0, 5 ==> ori $v0, S0, 5

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Funct fiid tels us thatthe
insiruction is 2, format
6 2, 5, 1 (455

op il tells s that this.

Revision: Memory access

= Given var: .word 32
Which of the following is to load the address of var to register $s1?
1) 1a $s1, var 2)1w $s1, var 3)1i $s1, var

= Given arr: .word 0, 0, 0, 0, 0, O, 0, 6, 3, 2
Which of the following is the correct algebra to calculate the address
of arr[(i]?
1) arr+4*i 2) arr+4+i 3) (arr+i)*4
=« Given arr: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2 and
assume array base and index are in registers $a0 and $t0.
Is the following code legal in syntax?
add $tl,$t0,s$t0
add s$tl,stl,stl
1w $t2, $tl(sa0)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 33

Recommended readings

General Data
Extra Materials

UnitOudline | LeamingGuide | Teaching Schedule | Aligning Assessments % | |
ascii_chart.pdf | bias, ion.odf | HP_ApoA.bdf J-insfruction decoding.odf | masking help.pdf | PCSpim.odf |
PCSpim Poriable Version | Library meterials

PH, §2.3, P72: immediate operands; making the common case fast
PHS, 523, P72: immediate operands; making the common case fast
PHA §2.3, P36 immediate operands. rd Princple of hardware design | 1€Xt r€adings are listed in Teaching
Schedule and Learning Guide

PHg, §2.10, P118: Addressing mode in MIPS

PH5, §2.10, P111: Addressing mode in MIPS .
PH4, 5210, P128: Addressing mode in MIPS PH6 (PH5 & PH4 also suitable): check
PH, 52.10, P125-P127: Instruction decoding and Instruction Formats whether eBook available on library site
PHS5, §2.10, P118-P120: Instruction decoding and Instruction Formats

PH4, 6210, P134-P136 Instruction decoding and Instruction Formats PH6: companion materials (e.g. online
Also refer to “instruction decoding pdf* on VWS sections for further readings)

PH, 6214, P147. Traversing arays — index vs poirter https://www.elsevier.com/books-and-
PHS, §2.14, P141: Traversing arrays — index vs pointer journals/book-

PH4, §2114, P157: Traversing arrays — index vs pointer compan ion, 59780 128201091

HP_AppA. pclf -> A-43 (PHE, PHS) or P-43 (PH4) pack characters

Alsp efer to“asc chartpdf- onVUWS PHS5: companion materials (e.g. online

sections for further readings)

HP_AppA pdif -> A-48 (PHE, PHS) or P-48 (PH4) explains directive asciz| - http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au 3

ASCII TABLE See ascii_chart.pdf on vUWS

pec | mEx cnan pec |mex |cmar |pec |mEex |cmar |pec |mEex | cmam
o won | a2 szc e o |
1 sou |33 \ A a1 |a
z smx | 34 " = e v
5 eox | a5 : c PR
a mou | 36 = o e |a
s ena |27 - e es e
B acx | 38 N = e |z
7 e . e &1 |a
s Bs |40 ‘ 5 e |m
9 HT 41) I €9 i
10 = | a2 « T e |3
poy ve | a3 - = = |n
12 x| 4a . = e |2
13 cm | as Z e =
1a so | as 5 =
1s sz | a7 ° B
16 oue | 48 o B ©
17 ool | 4s 1 a 2
18 oez | so 2 = =
15 oes |51 3 s N
20 oca |32 " = *
21 wax | 23 s o =
e svn | oa . - =
23 ers | 3s tl " =
24 can | 56 s x =
2s e |37 s v v
26 sus |38 : 2 M
27 esc |25 ; ; (
28 Fs €0 < \]
29 (=13 1 = 1 1
a0 Rs | ez > - =
a1 us | e3 - oEn

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au 35

