
Topics

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 2: MIPS

 MIPS Assembly Language

 RISC: Principles of good design

 R, I, J instruction formats

 Data access: Use registers; memory addressing

 Data process: Arithmetic instructions

 Programming constructs: Controlling flow of instructions

 branches, if statement, loops, switch statement

SONGS ABOUT COMPUTER SCIENCE

The MIPS Instruction Set
Written by Walter Chang
To the tune of: The Major-General's Song
http://www.cs.utexas.edu/users/walter/cs-
songbook/instruction_set.html

… …
There's sh and sb and lbu and blez and jal and then sltu
And of course there's and and add and srl and sub and things to do
With the MIPS instructions I am very nimble on my feet
And though I sing assembler but I am really not a geek

There's addu, ori, slti, swr, and bgez and jalr too
And loads of other fun instructions that were put in just for you
The MIPS instruction set is very simple to be memorized
Which will come in handy when you have your code to be optimized
… …

mailto:j.yang@uws.edu.au

Language of the machine, RISC, CISC

 Language of the machine

 Instructions

 More primitive than statements in higher level languages

 Very restrictive formats

 Design goals are:

 RISC: Reduced Instruction Set Computer

 all instructions are simple, the same length

 also known as load / store architecture

 Another architecture: CISC (Complex …)

 current example: Intel

 Is there a clear line distinguishing RISC and CISC?

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Typical Operations (little change since 1960)

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Data Movement Load (from memory), Store (to memory)
memory-to-memory move, register-to-register move
input (from I/O device), output (to I/O device)
push, pop (to/from stack)

Arithmetic Add, Subtract, Multiply, Divide integer (binary + decimal) or FP

Shift shift left/right (logical / arithmetic), rotate left/right

Logical not, and, or, xor, set, clear

Control
(J/Branch)

unconditional, conditional

Subroutine
Linkage

call, return

Interrupt trap, return

Synchronisation test & set (atomic read-mod-write)

String search, translate

Graphics parallel subword ops (4 16bit add)

mailto:j.yang@uws.edu.au

MIPS arithmetic

 All instructions have 3 operands with fixed order:
destination first. Simpler hardware!

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Examples:

C assignment statement: a = b + c

Corresponding MIPS code: add a,b,c

C assignment statement: a = b + c + d + e

MIPS code: add a,b,c #

add a,a,d #

add a,a,e #

1st principle of good design (more later, there are 4):
Simplicity favours regularity

HP4 Section 2.2 P77-P80

mailto:j.yang@uws.edu.au

MIPS arithmetic

 Simple statements

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

C code: a = b + c + d;

e = f - a;

MIPS code: add a,b,c #

add a,a,d #

sub e,f,a #

 A complex statement

C code: f = (g + h) - (i + j);

MIPS code: add t0,g,h # temp regs?

add t1,i,j #

sub f,t0,t1 #

mailto:j.yang@uws.edu.au

Registers as operands

 In MIPS arithmetic instructions operands must be registers

 MIPS: 32 registers, each 32-bit wide, 32 bits is a word

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

2nd principle of good design:

Smaller is faster

 A complex statement again – PROPERLY coded:

C code: f = (g + h) - (i + j);

MIPS code: add $t0,$s1,$s2 #

add $t1,$s3,$s4 #

sub $s0,$t0,$t1 #

 Compiler associates variables with registers

 lots of variables – more registers?

mailto:j.yang@uws.edu.au

Use immediate values – part 1/2

program to calculate ? = (5 - 20) - (13 + 3)

assumes: Numbers 5, -20, 13, 3 are in registers $s1 through $s4

.data

.globl mess

mess: .asciiz "\nThe value of f is: " # string to print

.text

.globl main

main: # main has to be a global label

addu $s7,$0,$ra # save the return address in $s7

the actual calculations follow:

addi $s1,$0,5 # $s1 <= 5 <=> s1=5; (C-like)

addi $s2,$0,-20 # $s2 <= -20 <=> s2=-20;

addi $s3,$0,13 # $s3 <= 13 <=> s3=13;

addi $s4,$0,3 # $s4 <= 3 <=> s4=3;

add $t0,$s1,$s2 # 5 – 20 <=> t0=s1+s2;

add $t1,$s3,$s4 # 13 + 3 <=> t1=s3+s4;

sub $s0,$t0,$t1 # ? = (5 - 20) - (13 + 3)

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

<=> s0=(s1+s2)-(s3+s4);

initialisation and move

immediate numbers to registers

mailto:j.yang@uws.edu.au

Use immediate values – part 2/2

li $v0,4 # HP_AppA.pdf Page 44 or Appendix B in HP4

la $a0,mess # . . .

syscall # . . .

li $v0,1 # . . .

add $a0,$0,$s0 # . . .

syscall

#Usual stuff at the end of the main

addu $ra,$0,$s7 # restore the return address

jr $ra # return to the main program

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Use simple variables (see lab code) – part 1/2

program to calculate f = (g + h) - (i + j)

assumes: variables f through j are in registers $s0 through $s4

.data

.globl mess

mess: .asciiz "\nThe value of f is: " # string to print

f: .word 0 # f = 0

g: .word 5 # simple/single variables

h: .word -20 # similar usage also as in lab 4 code

i: .word 13 # simplemem.s

j: .word 3

.text

.globl main

main: # main has to be a global label

addu $s7,$0,$ra # save the return address in $s7

the actual calculations follow:

lw $s1,g # $s1 <= g = 5;

lw $s2,h # $s2 <= h = -20;

lw $s3,i # $s3 <= i = 13;

lw $s4,j # $s4 <= j = 3;
9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Caution: Avoid using j as variable in MIPS code as it may cause
an error due to naming conflict with the jump instruction j.

mailto:j.yang@uws.edu.au

Use simple variables (see lab code) – part 1/2

add $t0,$s1,$s2 # g + h

add $t1,$s3,$s4 # ???

sub $s0,$t0,$t1 # ???

li $v0,4 # HP_AppA.pdf Page 44 or Appendix B in HP4

la $a0,mess # . . .

syscall # . . .

li $v0,1 # . . .

add $a0,$0,$s0 # . . .

syscall

#Usual stuff at the end of the main

addu $ra,$0,$s7 # restore the return address

jr $ra # return to the main program

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS data transfer

 Registers are adequate for immediate numbers and
simple variables

 MIPS instructions to move data between registers and
memory:

Lecture 02 11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Register Memory
sw [store word]

lw [load word]
Memory access for loading:
lw $s1, g
destination source

from memory to register

Memory access for storing:
sw $s0, f
source destination

from register to memory

…
31 1 0

f:

g:

Immediate num

addi $s1,$0,82

li $s1, 82

$s1

$s0

$a0
add $a0,$0,$s0

move $a0,$s0

mailto:j.yang@uws.edu.au

Complex data structures - Array in memory

 Registers are adequate for numbers or simple variables

 Arrays may have more elements than registers available

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Example (A[…] in memory):

C code: g = h + A[8];

… …

A:

A[0]

A[1]

A[8]

mailto:j.yang@uws.edu.au

lw and sw Array element

 Example (result in register, lw):

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

C code: g = h + A[8];

MIPS code:
lw $t0,32($s3) #how to declare an array?

add $s1,$s2,$t0 #

Indices (word)Offset (byte)

k = 0

kth

0 * 4=0

1 * 4=4

0+A 0(A)

k * 4

k = 14+A 4(A)

Address (leading cell)

k * 4 +A k * 4 (A)

HP4 Section 2.2 P83-P85

… …

A[0]

A[1]

A[8]

32+A

4+A

A

mailto:j.yang@uws.edu.au

lw and sw

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Example (result in register, lw):

C code: A[12] = g;

MIPS code:
lw $t0,32($s3) #

add $s1,$s2,$t0 #

sw $s1,48($s3) #

g = h + A[8]

$t0$s2$s1

$s3:=A
… …

A[0]

A[1]

A[8]

32+A

4+A

A

mailto:j.yang@uws.edu.au

Using array index

$t1 := i the word index; calculate offset 4*i

add $t1,$t1,$t1 # $t1 = i + i = 2i

add $t1,$t1,$t1 # $t1 = 2i + 2i = 4i

adding replaces mult

$s3 := A the base address; calculate 4*i + A

add $t1,$t1,$s3 # $t1 = address of A[i]

lw $t0,0($t1) # $t0 gets A[i]

$s2 := h

add $s1,$s2,$t0 # g (reg $s1) gets result

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Example:

C code: g = h + A[i];

MIPS code:

lw $t0, $t1($s3) # ?? $t1 + $s3

mailto:j.yang@uws.edu.au

Spilling registers

 Registers are faster than memory

 smaller is faster

 registers are faster to access and easier to use

 In RISC, data can only be operated on in registers ! ! !

 If more variables than registers: spilling registers

 compiler must use registers efficiently for high performance

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

$t1 := i the word index; calculate offset 4*i

add $t1,$t1,$t1 # $t1 = i + i = 2i

add $t1,$t1,$t1 # $t1 = 2i + 2i = 4i

$s3 := A the base address; calculate 4*i + A

add $t1,$t1,$s3 # $t1 = address of A[i]

3rd principle of good design:

Good design demands good compromises

mailto:j.yang@uws.edu.au

Stored Program Concept

 Programs are stored in memory

 Instructions are represented as numbers (consisting of bits)

 to be read or written just like data

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Section 2.5, P101, 4th Ed

mailto:j.yang@uws.edu.au

Translating machine language

 Instructions, like registers and words are 32-bit long

 Each instruction consists of fields

 each field is represented as a number, and has a specific meaning

 For example:
 add $t0,$s1,$s2

 the first and the last field in combination specify “add”

 the second, third, and fourth field specify two source registers,
and the destination register -- registers are represented as
number between 0 and 31

 the fifth field is unused in this instruction

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

0 17 18 8 0 32

See HP4, P134 and instruction decoding.pdf on vUWS

mailto:j.yang@uws.edu.au

MIPS Register Convention

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Important – keep a copy of this page!

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values(declared variables) yes

$t8 - $t9 24-25 temporaries no

$k0, $k1 26, 27 reserved for OS kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address (hardware) yes

mailto:j.yang@uws.edu.au

Instruction Formats: R, I, J types

 R-type Instruction format (R for Register)

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 I-type Instruction format (I for Immediate)

op rs rt constant

6 bits 5 bits 5 bits 16 bits

 J-type Instruction format (J for Jump)

op address

6 bits 26 bits

mailto:j.yang@uws.edu.au

EXERCISES

There will be many exercises.

(or: additional, NON GRADED homework)

The exercises WILL help you to better:

understand the material covered,

prepare you for labs,

prepare you for final exam.

Here is the first one:

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Exercise example

swap:

add $t0,$a1,$a1 #

add $t0,$t0,$t0 # $t0 = 4k

add $t0,$a0,$t0 # $t0 = address of v[k]

lw $t1,0($t0) # $t1 = v[k]

lw $s0,4($t0) # $s0 = v[k+1]

sw $s0,0($t0) # v[k] = $s0

sw $t1,4($t0) # v[k+1] = $t1

jr $ra # return

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Can you figure out the code? (C followed by MIPS)

C code: swap(int v[], int k)

{ int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

MIPS code:

mailto:j.yang@uws.edu.au

Controlling the flow of instructions

 Decision making instructions

 alter the control flow (the "next" instruction)

 distinguishes a computer from a simple calculator

 In a high level language - if statement, go to statement

 In an assembly language - jumps, conditional branches

 MIPS conditional branch instructions:

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

C code:

if (i==j) go to L1;

f = g + h;

L1: f = f - i;

MIPS code :

beq $s3,$s4,L1 #

add $s0,$s1,$s2 #

#

L1: sub $s0,$s0,$s3 #

beq reg1,reg2,L1 # branch if equal

bne reg1,reg2,L1 # branch if not equal
Avoid using j as
variable in MIPS
code as it may
cause an error
due to naming
conflict with the
jump instruction
j.

mailto:j.yang@uws.edu.au

Control Flow

24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 We have beq, bne, what about Branch-if-less-than?

blt $s0,$s1,Less # pseudoinstruction

 New instruction “set on less than”:

slt $t0,$s0,$s1

bne $t0,$zero,Less # reg 0 (=0)

mailto:j.yang@uws.edu.au

If-then-else statement

bne $s3,$s4,Else # more efficient to test

for opposite condition

add $s0,$s1,$s2 # f = g + h

skipped if i!=j

j Exit # jump (unconditional branch)

Else: sub $s0,$s1,$s2 # f = g - h

skipped if i==j

Exit: … # some other instructions...

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Example

C code:

if (i==j) f = g + h;

else f = g - h;

MIPS code:

i==j?

Block 01 Block 02

Yes No

Exit

Else

Section 2.7, P107, 4th Ed

Caution: Avoid using j as variable in MIPS code as it may cause
an error due to naming conflict with the jump instruction j.

mailto:j.yang@uws.edu.au

Loops

Loop: add $t1,$s3,$s3 # $t1 = 2i

add $t1,$t1,$t1 # $t1 = 4i

add $t1,$t1,$s5 # $t1 = address of A[i]

$s5=array base address

lw $t0,0($t1) # $t0 = A[i]

add $s1,$s1,$t0 # g = g + A[i]

add $s3,$s3,$s4 # i = i + j

bne $s3,$s2,Loop # if i != h

… # next instruction...

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Simple loop:

C code (pseudo code): Loop: g = g + A[i];

i = i + j;

if (i != h) go to Loop

MIPS code:

{condition checking, looping block, occurrence updating}

mailto:j.yang@uws.edu.au

while loops

Loop: add $t1,$s3,$s3 # $t1 = 2i

add $t1,$t1,$t1 # $t1 = 4i

add $t1,$t1,$s5 # $t1 = address of save[i]

$s5=array base address

lw $t0,0($t1) # $t0 <= save[i]

bne $t0,$s2, Exit # test condition, $s2 has k

add $s3,$s3,$s4 # i = i + j

j Loop # keep looping

Exit: … # next instruction...

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 while loops:

C code: while (save[i] == k)

i = i + j;

MIPS code:

Caution: Avoid using j
as variable in MIPS
code as it may cause
an error due to naming
conflict with the jump
instruction j.

mailto:j.yang@uws.edu.au

Switch statement – home EXERCISE

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

switch (k) {

case 0: f = i + j; break; /* k = 0 */

case 1: f = g + h; break; /* k = 1 */

case 2: f = g - h; break; /* k = 2 */

case 3: f = i - j; break; /* k = 3 */

}

 Assume:

 six variables f, g, h, i, j and k correspond to registers $s0 through to $s5;

 register $t2 contains a value 4

 we may code the switch statement as a chain of if-then-else

 another solution: a jump address table

 a table of addresses of a series of instruction sequences (an array of

addresses)

 Assume $t4 contains the address of the jump table

 we need an instruction to jump to an address contained in a register

 “jump register” instruction: in MIPS: jr register

mailto:j.yang@uws.edu.au

Switch in assembly language

slt $t3,$s5,$zero # test if k<0

bne $t3,$zero,Exit # exit

slt $t3,$s5,$t2 # test if k<4

beq $t3,$zero,Exit # exit if not

0 < k < 4, ie. 0, 1, 2 and 3

add $t1,$s5,$s5 # $t1 = 2k

add $t1,$t1,$t1 # $t1 = 4k

add $t1,$t1,$t4 # $t1 = offset to jump table

lw $t0,0($t1) # $t0 = jump-table[k]

jr $t0 # jump to appropriate case in the switch statement

L0: add $s0,$s3,$s4 # k=0, so f = i + j

j Exit # break

L1: add $s0,$s1,$s2 # k=1, so f = g + h

j Exit # break

L2: sub $s0,$s1,$s2 # k=0, so f = g - h

j Exit # break

L3: sub $s0,$s3,$s4 # k=0, so f = i - j

Exit: ... # some instruction

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Revision

30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

ISARISC

CISC

MIPS

MIPS

 ISA and MIPS implementation

 Given the register and memory values in the tables below (with dummy data
for easy calculation), work out the contents of registers in the instructions.

Register Value
R1 12
R2 16
R3 20
R4 24

Memory Location Value
16 20
20 12
24 16
28 24

lw R3, 12(R1)
addi R2, R3, 12

mailto:j.yang@uws.edu.au

ASCII TABLE

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

See ascii_chart.pdf on vUWS

mailto:j.yang@uws.edu.au

Recommended readings

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

