Lecture 2: MIPS

. SONGS ABOUT COMPUTER SCIENCE

\ The MIPS Instruction Set
! Written by Walter Chang

T . To the tune of: The Major-General's Song

O p I CS | http://www.cs.utexas.edu/users/walter/cs-
: songbook/instruction_set.html
:I.'.hé“re's sh and sb and Ibu and blez and jal and then sltu !
+ And of course there's and and add and srl and sub and things to do

| With the MIPS instructions I am very nimble on my feet
+ And though I sing assembler but I am really not a geek

n MIPS Assembly Lang uage There's addu, ori, slti, swr, and bgez and jalr too

+ And loads of other fun instructions that were put in just for you

» RISC: Princip|es of good design I The MIPS instruction set is very simple to be memorized

Which will come in handy when you have your code to be optimized

= R, I, J instruction formats e
= Data access: Use registers; memory addressing

= Data process: Arithmetic instructions

= Programming constructs: Controlling flow of instructions

= branches, if statement, loops, switch statement

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Language of the machine, RISC, CISC

Language of the machine

= Instructions

= More primitive than statements in higher level languages
» Very restrictive formats

= Design goals are:

RISC: Reduced Instruction Set Computer
» all instructions are simple, the same length

also known as load / store architecture
Another architecture: CISC (Complex ...)

= current example: Intel

Is there a clear line distinguishing RISC and CISC?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Typical Operations (little change since 1960)

Data Movement

Load (from memory), Store (to memory)
memory-to-memory move, register-to-register move
input (from I/O device), output (to I/O device)
push, pop (to/from stack)

Arithmetic Add, Subtract, Multiply, Divide integer (binary + decimal) or FP
Shift shift left/right (logical / arithmetic), rotate left/right

Logical not, and, or, xor, set, clear

Control unconditional, conditional

(J/Branch)

Subroutine call, return

Linkage

Interrupt trap, return

Synchronisation

test & set (atomic read-mod-write)

String

search, translate

Graphics

parallel subword ops (4 16bit add)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 3

mailto:j.yang@uws.edu.au

MIPS arithmetic

HP4 Section 2.2 P77-P80

= All instructions have 3 operands with fixed order:
destination first. Simpler hardware!

Examples:

C assignment statement:
Corresponding MIPS code:

C assignment statement:

MIPS code:

1st principle of good design (more later, there are 4):

Simplicity favours regularity

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

MIPS arithmetic

= Simple statements

C code: a=b+c+ d;
e =f - a;
MIPS code: add a,b,c #
add a,a,d #
sub e,f,a #
= A complex statement
C code: f=(g+h) - (i + J);
MIPS code: add t0,g,h # temp regs-?

add t1,i,j #
sub £,t0,tl #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Registers as operands

= In MIPS arithmetic instructions operands must be registers
=« MIPS: 32 registers, each 32-bit wide, 32 bits is a word

= A complex statement again — PROPERLY coded:

C code: f=(g+ h) - (L + 3J);

MIPS code: add $t0,$s1,5s2 #
add $t1,5s3,5s4 #
sub $s0,5$t0,5t1 #

s Compiler associates variables with registers
= lots of variables — more registers?

2nd principle of good design:
Smaller is faster

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Use immediate values — part 1/2

program to calculate ? = (5§ - 20) - (13 + 3)
assumes: Numbers 5, -20, 13, 3 are in registers $sl through $s4

.data
.globl mess
mess: .asciiz "\nThe value of f is: " # string to print
. text
.globl main
main: # main has to be a global label
addu $s7,$0,S$ra # save the return address in $s7

the actual calculations follow: o _
initialisation and move

EE—— # immediate numbers to registers
'addi $s1,$0,5 ! # $s1 <= 5 <=> s1=5; (C-like)
'addi $s2,$0,-20' } $s2 <= -20 <=> s2=-20;

'addi $s3,$0,13 | # $s3 <= 13 <=> s3=13;

. addi $s4,$0,3 # $s4 <= 3 <=> s4=3;

add $t0,$sl,$s2 # 5 - 20 <=> tO0=sl+s2;

add $tl,$s3,S$s4 # 13 + 3 <=> tl=s3+s4;,

sub $s0,5$t0,$t1 # 2 = (5 - 20) - (13 + 3)

<=> s0=(sl+s2)-(s3+s4);,

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 7

mailto:j.yang@uws.edu.au

Use immediate values — part 2/2

1li $v0,4 # HP AppA.pdf Page 44 or Appendix B in HP4
la $a0,mess Sorvice | Systomcallcode [Arguments [Res |
print_int 1 $a0 = integer
Syscall # . . . |:--“':n‘__f'0at 2 Sf:_Z = float
print_double 3 $f1Z = double
- rint_string 4 $a0 = strin
ll $V0 14 1 # ° © © "F‘Eﬂd_'l_'"'lt : 5 - = integer (in $v0)
read_float 1 float (in $10)
add $a0 ’ $0 ’ $So # e e . read_double 7 double (in $70)
read_string 8 $a0 = buffer, $a1 = length
syscall sbhrk =] $a0 = amount address {in $v0)
exit 10
#Usual stuff at the end of the main [== = —

addu $ra,$0,$s7 # restore the return address
jr $ra # return to the main program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 8

mailto:j.yang@uws.edu.au

Use simple variables (see lab code) — part 1/2

program to calculate £ = (g + h) - (i + j)
assumes: variables f through j are in registers $s0 through $s4

.data
.globl mess
mess: .asciiz "\nThe value of f is: " # string to print
f: .word O # £=0
g: .word 5 # simple/single variables
h: .word -20 # similar usage also as in lab 4 code
i: .word 13 # simplemem.s
] : .word 3 : . : 8 . . .
R CarE T Caution: Avoid using j as variable in MIPS code as it may cause
ex an error due to naming conflict with the jump instruction j.
.globl main
main: # main has to be a global label
addu $s7,$0,Sra # save the return address in $s7
the actual calculations follow:
1w $sl,g # $s1l <= g = 5;
lw $s2,h # $s2 <= h = -20;
lw $s3,1 # $s3 <= i = 13;
1w $s4,3 # $sd4 <= j = 3;

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 9

mailto:j.yang@uws.edu.au

Use simple variables (see lab code) — part 1/2

add $t0,$s1,$s2 # g+ h
add $tl,$s3,$s4 # 2727
sub $s0,$t0,$tl # 2727

1i $vo0,4
la $a0,mess

HP AppA.pdf Page 44 or Appendix B in HP4

1i $vO0,1
add $a0,$0,$s0
syscall
#Usual stuff at the end of the main
addu $ra,$0,$s7 # restore the return address

¥
#
syscall #
#
&

jr $ra # return to the main program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 10

mailto:j.yang@uws.edu.au

MIPS data transfer

= Registers are adequate for immediate numbers and

simple variables

= MIPS instructions to move data between registers and

memory:

' Memory access for storing:

$a0 add $a0,$0,5s0 . sw $s0, f
T move $a0,$s0 - source -> destination
$sOL T T T] from register to memory |
Register sw [store word] Memory
$s1 =
31 10 g:

w [load word]

addi $s1,$0,82
1li $s1, 82

Immediate num

. Memory access for loading:

Iw $s1, g

' destination < source

Lecture 02 Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Complex data structures - Array in memory

= Registers are adequate for numbers or simple variables

= Arrays may have more elements than registers available

" Example (A[] in memorY): 1. H?mtg[dle%?re an array?

C code: g =nh + A[8]; Name — Base address
Size — Number of elements
Type — Block size of single

2. How to locate and access

A[8] an array element? Index

A[8] Offset from base

3. Physical address A[k]

Offset Base
k¥4 + A

— AT 4. How to define an array 47?

5. How to load A4 to register?

6. How to calculate k ¥4 ? ...

- 7. Addressing syntax x(y)

< Offset(Base); B(O); 0(B+0)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 12

mailto:j.yang@uws.edu.au

lw and sw Array element
HP4 Section 2.2 P83-P85

s Example (result in register, lw):

C code: g =h + A[8];

MIPS code:
lw $t0,32($s3) #how to declare an array?
add $s1,$s2,$t0 #

Address (leading cell) Offset (byte) Indices (word)
K*4+A=> k *4 (A * kth
N3 (A) k*4
32+A
AP
4+A 4+A 2> 4(A) 1 * 4=4 k=1
A[0}
A 0+A = 0(A) 0 *4=0 k=0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 13

mailto:j.yang@uws.edu.au

lw and sw

s Example (result in register, lw):

C code: A[12] = g;

MIPS code:
lw $t0,32($s3) #
add $s1,$s2,$t0 #

sw $s1,48($s3) #
A[8]
32+A g =h + A[8]
...... l l 1333‘=A
A{T] | $s1 $s2 $t0
447
A[O] |
A

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

14

mailto:j.yang@uws.edu.au

Using array index

s Example:
C code: g =h+ A[i];
MIPS code: # Stl := i the word index; calculate offset 4*i
add $t1,$tl1,$tl # Stl =1 + i = 2i
add $t1,$tl1,$tl # Stl = 21 + 21 = 4i
adding replaces mult
$s3 := A the base address; calculate 4*i + A
add $tl1,$tl,S$s3 # $tl = address of A[i]
lw $t0,0($t1) # $t0 gets A[i]
$s2 :=h
add $sl1,$s2,$t0 # g (reg $sl) gets result
lw St0, Stl($s3) # 2? $tl1 + $s3

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 15

mailto:j.yang@uws.edu.au

Spilling registers

= Registers are faster than memory
« smaller is faster
= registers are faster to access and easier to use

= In RISC, data can only be operated on in registers ! !'!

= If more variables than registers: spilling registers
= compiler must use registers efficiently for high performance

Stl := i the word index; calculate offset 4*i
add S$tl1,$tl,sS$tl # Stl =1i + i =21

add S$tl1,$tl1,s$tl # S$tl = 2i + 21 = 4i

$s3 := A the base address; calculate 4*i + A
add $tl1,$tl1l,$s3 # $tl = address of A[i]

3rd principle of good design:
Good design demands good compromises

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Stored Program Concept

= Programs are stored in memory
» Instructions are represented as numbers (consisting of bits)
= to be read or written just like data

—————————————— Section 2.5, P101, 4t Ed

I
I Accou nting program :
: (machine c ode) :

: Edi tor program :
: (machine c ode) !

[e .
| C compi ler |
I I
I [

Processor (machine c ode)

——— e —— —— ——— — — —— ———

——— ————— —— — —— — ——y

———— — —— — — — — — ——

Sourcecodein C
for editor program

B ot s g g . . — — p—

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 17

mailto:j.yang@uws.edu.au

Translating machine language

See HP4, P134 and instruction decoding.pdf on vVUWS
= Instructions, like registers and words are 32-bit long

= Each instruction consists of fields
» each field is represented as a number, and has a specific meaning

= For example:
= add $t0,$sl,$s2

0 17 18 8 0 32

» the first and the last field in combination specify “add”

= the second, third, and fourth field specify two source registers,
and the destination register -- registers are represented as
number between 0 and 31

a the fifth field is unused in this instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 18

mailto:j.yang@uws.edu.au

MIPS Register Convention

= Important — keep a copy of this page!

Name Register Usage Preserve on
Number call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values(declared variables) yes
$t8 - $t9 24-25 temporaries no
$kO, $k1 26, 27 reserved for OS kernel n.a.
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address (hardware) yes

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

i Instruction Formats: R, I, J types

s R-type Instruction format (R for Register)

op rs rt rd shamt | funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

s [-type Instruction format (I for Immediate)

op s rt constant

6 bits 5 bits 5 bits 16 bits

= J-type Instruction format (J for Jump)

op address

6 bits 26 bits

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

EXERCISES

There will be many exercises.
(or: additional, NON GRADED homework)

The exercises WILL help you to better:
understand the material covered,
prepare you for labs,

prepare you for final exam.

Here is the first one:

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 21

mailto:j.yang@uws.edu.au

Exercise example

= Can you figure out the code? (C followed by MIPS)

swap (int v[],
{ int temp;
temp = v[k];
vik] = v[k+1l];
v[k+l] = temp;
}

C code:

swap:
add $t0,$al, Sal
add $t0,$t0,$t0
add $t0,$a0,s$t0
1w $t1,0($t0)
1w $s0,4($t0)
sw $s0,0($t0)
sw $t1,4($t0)
jr S$ra

MIPS code:

int k)

H H H H H = H

$t0 =
$t0 =
$tl =
$s0
v[k] =
v[k+1l]

return

4k
address of v[k]
vi[k]
vik+1]
$s0
= $tl

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

mailto:j.yang@uws.edu.au

Controlling the flow of instructions

Ll: sub $s0,$s0,$s3

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Avoid using j as
variable in MIPS
code as it may
cause an error
due to naming
conflict with the
jump instruction

J

= Decision making instructions
« alter the control flow (the "next" instruction)
» distinguishes a computer from a simple calculator
= In a high level language - /7 statement, go fo statement
= In an assembly language - jumps, conditional branches
= MIPS conditional branch instructions:
beq regl,reg2,L1 # branch if equal
bne regl,reg2,Ll # branch if not equal
C code: MIPS code :
if (i==j) go to L1; beq $s3,$s4,L1 #
f =g+ h; add $s0,$sl,$s2 #
Ll1: £ =f - i; #
#

23

mailto:j.yang@uws.edu.au

Control Flow

= We have beg, bne, what about Branch-if-less-than?

blt $s0,$sl,Less # pseudoinstruction

s New instruction “set on less than”:

slt $t0,$s0,S$sl
bne $t0,$zero,Less # reg 0 (=0)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

24

mailto:j.yang@uws.edu.au

If-then-else statement

Yes No
= Example
| Else
C code: _
if (i==j) £ = g + h;
eigé\f = g - h; V Exit
Section 2.7, P107, 4t Ed
MIPS code: .
bne $s3,$s4,Else\\\ # more efficient to test
} # for opposite condition
add $s0,$s1,$s2 j # £f=qg+h

skipped if i'!'=j
j Exit ‘

\
\

#

jump (unconditional branch)
Else: sub $s0,$sl,$s2 v # £f=qg-h
#

skipped if i==j

\
\
\

Exit: .. " # some other instructions...

\

Caution: Avoid using j as variable in MIPS code as it may cause
an error due to naming conflict with the jump instruction j.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 25

mailto:j.yang@uws.edu.au

LOOPS {condition checking, looping block, occurrence updating}

= Simple loop:
C code (pseudo code): Loop: g =g + A[i];
i=1i+3;
if (i '= h) go to Loop

MIPS code:
Loop: add $tl,$s3,$s3 # $tl = 2i

add $tl1,$tl,s$tl # Stl = 4i

add $tl1,$tl1l,$s5 # $tl = address of A[i]
$sb=array base address

lw $t0,0($t1) # $t0 = A[i]

add $s1,$sl1,$t0 # g=g + A[i]

add $s3,$s3,$s4 #i=1+3

bne $s3,$s2,Loop # if 1 '= h
next instruction...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 26

mailto:j.yang@uws.edu.au

while loops

= While loops:

i+ 3;

C code: while (save[i]
i =
MIPS code:

Loop: add $tl,$s3,$s3
add $tl1,$tl1,$tl
add $t1,S$tl,$s5
lw $t0,0(S$tl)
bne $t0,$s2, Exit
add $s3,$s3,$s4
j Loop

Exit:

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

k)

H H H H H H H F HF

Caution: Avoid using j
as variable in MIPS
code as it may cause
an error due to naming
conflict with the jump
instruction j.

Stl
Stl =
Stl
$s5=array base address
$t0 <= save[i]

test condition,

2i
4i

address of save[i]

$s2 has k
i=1i+3
keep looping

next instruction...

27

mailto:j.yang@uws.edu.au

Switch statement — home EXERCISE

switch (k) {

case 0: £ =i + j; break; /* k =0 */
case 1: £f = g + h; break; /* k =1 */
case 2: £f = g - h; break; /* k =2 */
case 3: £ =i - j; break; /* k = 3 */
}
Assume:

= Six variablesf, g, h, i, j and k correspond to registers $s0 through to $s5;
= register $t2 contains a value 4

we may code the switch statement as a chain of if-then-else

another solution: a jump address table

= atable of addresses of a series of instruction sequences (an array of
addresses)

= Assume $t4 contains the address of the jump table
we need an instruction to jump to an address contained in a register
= ‘jump register” instruction: in MIPS: jr register

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 28

mailto:j.yang@uws.edu.au

Switch in assembly language

slt $t3,$s5,$zero

bne $t3,$zero,Exit

slt $t3,$s5,56t2

beq $t3,$zero,Exit
#0< k< 4,

add $tl1,$s5,$s5

add $t1,S$t1,$tl

add $t1,S5tl1,$t4

1w $t0,0(S$Stl)

H H H*= =

ie.

H H H*

#

test if k<0
exit

test if k<4
exit if not
0, 1, 2 and 3
$tl = 2k

Stl = 4k

Stl = offset to jump table
$t0 = jump-table[k]

jr $t0 # jump to appropriate case in the switch statement

LO: add $s0,$s3,$s4
j Exit

Ll: add $s0,$s1,$s2
j Exit

L2: sub $s0,$sl1,$s2
j Exit

L3: sub $s0,$s3,$s4

Exit:

#

H H H= H H=

#

k=0, so £f =1 + j
break
k=1, so £f =g + h
break
k=0, so £f =g - h
break
k=0, so £ =i - j

some instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 29

mailto:j.yang@uws.edu.au

Revision

= Given the register and memory values in the tables below (with dummy data
for easy calculation), work out the contents of registers in the instructions.

Register | Value Memory Location [Value | |w R3, 12(R1)
R1 12 16 20 addi R2, R3, 12
R2 16 20 12 et
R3 20 24 16

R4 24 28 24

= JSA and MIPS implementation

I/o
System

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 30

mailto:j.yang@uws.edu.au

ASCII TABLE See ascii_chart.pdf on vUWS

DEC HEX CHAR DEC HEX CHAR | DEC HEX CHAR | DEC HEX CHAR
0 oo ~ @ ML 3z Z0 SPC a4 40] a& a0 v
1 o1 ~n SOH 33 21 ! &5 41 = a7 g1 =
2 0z ~B ST 34 22 " a6 4= B a8 62]
3 03 ~o ETX 35 23 : &7 43 o a9 &3 c
4 04 “D EQT 36 z4 s [4=] 44 o 100 &4 d
3 03 ~E ENQ 37 23 = (o8] 435 E 101 &3 =
(= 06 i ACE a8 26 & 70 45 b 102 66 £
7 07 G BEL 39 27 : 71 47 = 103 &7 g
= 0 ~H B3 400 Z28 (T2 42 H 104 (== h
4 0 ~T HT 41 za 1 73 49 I 105 &9 i

10 (i ~T LF 4z oh * 74 n T 108 6R 3

11 0B ~F T 43 ZB + 75 4B E 107 B lz

1z oc T FE 44 2C p 76 ac I 108 &C 1

13 oD M CR 45 2D - 77 4D M 109 6D m

14 OE | =lw] 45 Z2E . T8 4R o} 110 cE n

is oF) ST 47 Z2F 5 75 4F o 111 &F o

18 10 ~p DLE 43 30] 20 S0 = 112 70 E

17 11 ~o Dol 45 31 1 81 Sl o 113 71 g

ig 1z “R DC2 50 3z 2 a8z e =1 114 - r

13 13 = DC3 51 33 3 23 53 = 115 T3 s

20 14 ~ o DC4d 52 34 4 84 54 T 116 74 t

21 15 ~1T NAF 53 35 5 85 55 8] 117 75 1

2z 16 s SYMN 54 38 & = 55 W 118 TE w

23 17 W ETB 55 37 7 87 57 W 119 77 w

z4 i\ ~ Ch 56 38 =] 88 S8 pd 20 = =

z5 19 ~ EM 57 39] =) 55 ¥ 121 = W

Z& in ~F SUB S8 =y : a0 SA] 122 TR =

=7 iB ~ [EaC 59 3= : a1 3= [123 TE [

= ic YN Fa &0 e {d < az 5C 124 7o |

z9 iD ~1 =3 61 3D = a3 5D 125 7D +

30 1B cha & =¥ &2 IE = = SE 1z2&6 TE -~

31 iF ~ 7S &3 aF el a5 5F . 127 TF DEL

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 31

mailto:j.yang@uws.edu.au

Recommended readings

General Data

UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials

ascii_chart.pdf | bias_representation.pdf | HP ADDATEJdHJDst\ruction decoding.pdf | masking help.pdf | PCSpim.pdf |

PCSpim Portable Version | Library materials

~~

PHf, §2 2-82 3, P69 Operations and Operands
PHE, 52.2-82 3, P63: Operations and Operands
PH4, 52 2-52 3, P78: Operations and Operands

PHB, §2.2-§2.3, §2.5: 1¥-3rd Principle of hardware design
PH5, §2.2-§2.3, §2.5: 1¥-3rd Principle of hardware design

PH4, §2.2-52 3, §2.5, P79-P97: 1%-4" Principle of hardware design

PHB, §2.5, PBE: pay attention to Stored-Program Concept
PHS, §2.5, PBE: pay attention to Stored-Program Concept
PH4, 2.5, P101: pay attention to Stored-Program Concept

PH#&, §2.7, P96: Understand basic control structures

PHS, §2.7, P90-P96: Understand basic control structures
PH4, §2.7, P105-P111; Understand basic contral structures

HP_AppA.pdf -> A-21: Memory layout

HP_AppA.pdf-> A-44: System services

~

Text readings are listed in Teéching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-

companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?ISBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 32

mailto:j.yang@uws.edu.au
https://www.elsevier.com/books-and-journals/book-companion/9780128201091
http://booksite.elsevier.com/9780124077263/?ISBN=9780124077263

