* Lecture 2: MIPS MIPS arithmetic
]

SONGS ABOUT COMPUTER SCIENCE

The MIPS Instruction Set = Simple statements
Written by Walter Chang

T H To the tune of: The Major-General's Song C code:

Oplcs http://www.cs.utexas.edu/users/walter/cs-

songbook/instruction_set.html|

There's sh and sb and Ibu and blez and jal and then sltu .
And of course there's and and add and srl and sub and things to do MIPS code:
With the MIPS instructions I am very nimble on my feet
And though I sing assembler but I am really not a geek

M There's addu, ori, slti, swr, and bgez and jalr too
MIPS Assembly Language And loads of other fun instructions that were put in just for you
= RISC: Principles of gOOd design The MIPS instruction set is very simple to be memorized

Which will come in handy when you have your code to be optimized [] A CompleX Statement
= R, I, J instruction formats
= Data access: Use registers; memory addressing C code: £ - G+ 9);
= Data process: Arithmetic instructions MIPS code: £0,g,h # temp regs?
= Programming constructs: Controlling flow of instructions tl,i,5 #
= branches, if statement, loops, switch statement £,t0,t1 #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Language of the machine, RISC, CISC Registers as operands

Language of the machine = In MIPS arithmetic instructions operands must be registers
« Instructions = MIPS: 32 registers, each 32-bit wide, 32 bits is a word
= More primitive than statements in higher level languages = A complex statement again — PROPERLY coded:
= Very restrictive formats
= Design goals are:

RISC: Reduced Instruction Set Computer MIPS code: add $t0,$sl,$s2 #
=« all instructions are simple, the same length add $t1,$s3,$s4 #

sub $s0,$t0,$t1 #
also known as load / store architecture

Another architecture: CISC (Complex ...)
= current example: Intel

Is there a clear line distinguishing RISC and CISC? 2nd principle of good design:
Smaller is faster

C code: £=(g+h - (i+3);

= Compiler associates variables with registers
= lots of variables — more registers?

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

Typical Operations (little change since 1960) Use immediate values — part 1/2

program to calculate ? = (5 - 20) - (13 + 3)

Data Movement | Load (from memory), Store (to memory) # assumes: Numbers 5, -20, 13, 3 are in registers $sl through $s4
memory-to-memory move, register-to-register move .data

input (from I/0O device), output (to I/O device) .globl mess

push, pop (to/from stack) mess: .asciiz "\nThe value of f is: " # string to print
Arithmetic Add, Subtract, Multiply, Divide integer (binary + decimal) or FP -text

N N . . 3 -) .globl main
Shift shift left/right (logical / arithmetic), rotate left/right main: # main has to be a global label

Logical not, and, or, xor, set, clear addu $s7,$0,%ra # save the return address in $s7
P T # the actual calculations follow:

Control unconditional, conditional "7 # initialisation and move
(3/Branch) # immediate numbers to registers
Subroutine call, return addi $s1,$0,5 # $sl <=5 <=> sl1=5; (C-like)
Linkage addi $s2,$0,-20 # $s2 <= -20 <=> s2=-20;
addi $s3,$0,13 # $s3 <= 13 <=> s3=13;
Interrupt trap, return

Rt P, : : addi $s4,%0,3 # $s4 <= 3 <=> s4=3;
Synchronisation | test & set (atomic read-mod-write) add $t0,$s1,8$s2 #5 - <=> t0=sl+s2;
String search, translate add $tl1,$s3,$s4 # 13 + 3 <=> tl=s3+s4;

Graphics parallel subword ops (4 16bit add) sub $s0,5t0, 51 # ?;)‘55;:2(‘5”“;2)‘{3(5’;;2 y

#
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

MIPS arithmetic P4 Seclion 2.2 PTT-PE0 Use immediate values — part 2/2

= All instructions have 3 operands with fixed order: 1i $v0,4 HP_AppA.pdf Page 44 or Appendix B in HP4

#
destination first. Simpler hardware! la $a0,mess # o e e ——
syscall # . . . v z
' :
#

Examples: 1i $v0,1
add $a0,$0,$s0
C assignment statement: c syscall

Corresponding MIPS code: #Usual stuff at the end of the main |[F0="
addu $ra,$0,$s7 # restore the return address
C assignment statement: jr $ra # return to the main program
MIPS code:

1st principle of good design (more later, there are 4):
Simplicity favours regularity

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Use simple variables (see lab code) — part 1/2

program to calculate £ = (g + h) - (i + j)
assumes: variables f through j are in registers $s0 through $s4
.data
.globl mess
.asciiz "\nThe value of £ is: " # string to print
.word 0 #£=0
.word 5 # simple/single variables
.word -20 # similar usage also as in lab 4 code
.word # simplemem.s

Caution: Avoid using j as variable in MIPS code as it may cause
an error due to naming conflict with the jump instruction j.

.globl main
main has to be a global label
addu $s7,$0,8ra # save the return address in $s7
the actual calculations follow:
1w $sl,g # $s1 <=

g 5;
1w $s2,h # $s2 <= h

i

J

-20;
1w $s3,i # $s3 <= 13;
1w $s4,j # $s4 <= 3;
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

lw and sw Array element
HP4 Section 2.2 P83-P85

» Example (result in register, lw):

C code: g =nh + A[8];

MIPS code:
lw $t0,32($s3) #how to declare an array?
add $s1,$s2,5$t0 #

Address (leading cell) Offset (byte) Indices (word)
k*¥4+A D k*4(A) k*4 Kt

4+A > 4(A) 1 * 4=4

0+A = 0(A) 0*4=0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Use simple variables (see lab code) — part 1/2

add $t0,$sl,$s2 #g+h
add $t1,$s3,$s4 # 227
sub $s0,$t0,5t1 # 227

1i $vO0,4 HP_AppA.pdf Page 44 or Appendix B in HP4
la $a0,mess ..

1i $vO0,1

add $a0,$0,$s0

syscall
#Usual stuff at the end of the main

addu $ra,$0,$s7 # restore the return address

#
#
syscall # .
#
#
jr $ra # return to the main program

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Iw and sw

= Example (result in register, lw):

C code: A[l2] = g;

MIPS code:

1w $t0,32($s3) #
add $s1,$s2,5t0 #
sw $s1,48($s3) #

g =h + A[8]

|| e

$sl $s2 $tO

Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

MIPS data transfer

= Registers are adequate for immediate numbers and
simple variables

= MIPS instructions to move data between registers and

memory: .
EEEE Memory access for storing:
$a0 add $a0,%$0,5s0 sw $s0, f
move $a0,$s0 i source -> destination
$sOL T T 1] | from register to memory

Register sw [store word] Memor
$siLITT]..ITITT] £:
31 10 g:

Iw [load word]
N Mem ccess for loading:
addi $s1,$0,82 I\:$§¥: ess for loading
- R ’
1i $s1, 82 destination € source
Immediate num from memory to register

Lecture 02 Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Using array index

= Example:

C code: g =h + A[i];

MIPS code: # $tl := i the word index; calculate offset 4*i
add $t1,$tl,s$tl $6tl =i + i =2i
add $tl1,$tl,$tl # $tl = 2i + 2i = 4i

adding replaces mult
$s3 := A the base address; calculate 4*i + A
add $t1,$tl,$s3 # $tl = address of A[i]
1w $t0,0($tl) # $t0 gets A[i]
$s2 :=h
add $s1,$s2,$t0

g (reg $sl) gets result

1w $t0, $t1($s3) # 2?2 $tl + $s3

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Complex data structures - Array in memory

Registers are adequate for numbers or simple variables
Arrays may have more elements than registers available

Examp|e (A[] in memory): 1. How to declare an array?
int A[13];

C code: g =nh + A[8]; Name - Base address
Size — Number of elements
Type - Block size of single

2. How to locate and access

an array element? Index
A[8] Offset from base

3. Physical address A[k]

Offset Base
k¥4 + A

4. How to define an array 4 ?

5. How to load A to register?

6. How to calculate k * 4 ? ...

7. Addressing syntax x(y)
Offset(Base); B(0); 0(B+0)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Spilling registers

= Registers are faster than memory

= smaller is faster

= registers are faster to access and easier to use
» In RISC, data can only be operated on in registers !!!
= If more variables than registers: spilling registers

= compiler must use registers efficiently for high performance

$tl := i the word index; calculate offset 4*i
add $tl1,$tl,$tl # $tl =i +i=2i

add $t1,$tl,stl # $tl = 2i + 2i = 4i

$s3 := A the base address; calculate 4*i + A
add $t1,$t1,$s3 # $tl1 = address of A[i]

3rd principle of good design:
Good design demands good compromises

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Stored Program Concept EXERCISES

= Programs are stored in memory There will be many exercises.

» Instructions are represented as numbers (consisting of bits) (or: additional, NON GRADED homework)
= to be read or written just like data

Section 2.5, P101, 4% Ed The exercises WILL help you to better:
Accou nting program i ! .
(ma chine c ode) understand the material covered,
Editor program prepare you for labs,

(ma chine c ode)

PR —— prepare you for final exam.

Processor (machine c ode)

Here is the first one:

Sourcecodein C
for editor program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Translating machine language Exercise example

See HP4, P134 and instruction decoding.pdf on vUWS

= Instructions, like registers and words are 32-bit long = Can you figure out the code? (C followed by MIPS)
= Each instruction consists of fields C code: swap(int v[], int X)

= each field is represented as a number, and has a specific meaning { int temp;
temp = v[k];
= For example: vik] = v[k+l];

= add $t0,$sl,$s2 , v[k+l] = temp;

[o [17 | 18 [8 [o [32 |

MIPS code: swap:
add $t0,$al,$al

add $t0,$t0,$t0
the second, third, and fourth field specify two source registers, add $t0,%a0,$t0 $t0 = address of v[k]

and the destination register -- registers are represented as $t1,0($t0) $tl = v[k]

the first and the last field in combination specify “add” :
#
#
number between 0 and 31 $s0,4($t0) # $s0 = v[k+1]
#
#
#

$to 4k

the fifth field is unused in this instruction $s0,0(5$t0) v[k] = $s0
$t1,4(5t0) v[k+l] = $t1

$ra return

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

MIPS Register Convention Controlling the flow of instructions

= Important — keep a copy of this page! Decision making instructions
Name Register Usage Preserve on = alter the control flow (the "next" instruction)

Number call? « distinguishes a computer from a simple calculator
$2er0 0 constant 0 (hardware) n-a. In a high level language - /fstatement, go to statement
$at 1 reserved for assembler n.a.] -

$v0 - Sv1 returned values no In an assembly language - jumps, conditional branches

$a0 - $a3 arguments yes MIPS conditional branch instructions:

$t0 - $t7 temporaries no .
- beq regl,reg2,Ll branch if equal
sO - $s7 saved values(declared variables es
$ $ () Y bne regl,reg2,Ll # branch if not equal

$t8 - $t9 temporaries no Avoid using jas

variable in MIPS
$kO, $k1 reserved for OS kernel n.a. C code: MIPS code : code as it may

$gp 28 global pointer if (i==j) go to L1; beq $s3,$s4,L1 # | cause an error
$sp 29 stack pointer £ =g +h; add $s0,$s1,$s2 # |dueto naming
#
#

$f 30 f int Ll: £ =f - i; conflict with the
o rame pointer Ll: sub $s0,$s0,$s3 jump instruction

31 return address (hardware) J
Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au 23

Instruction Formats: R, I, J types Control Flow

» R-type Instruction format (R for Register) = We have beg, bne, what about Branch-if-less-than?

l op [rs [rt [rd [shamt [funct ‘ blt $s0,$sl,Less # pseudoinstruction

6bits S5Sbits 5bits 5bits 5bits 6 bits = New instruction “set on less than”:

= I-type Instruction format (I for Immediate) slt $t0,$s0,8s1
bne $t0,$zero,Less # reg 0 (=0)
[constant

lop[rs[rt

6 bits 5 bits 5 bits 16 bits

= J-type Instruction format (J for Jump)

address

26 bits

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au Computer Organisation COMP2008, Jamie Yang: j.yang@westersydney.edu.au

If-then-else statement

= Example

C code:

MIPS code:

Yes

Exit
Section 2.7, P107, 4th Ed

bne $s3,$s4,Else # more efficient to test

add $s0,$s1,$s2 ;

j Exit
sub $s0,$sl,$s2

for opposite condition
$£f=g+h

skipped if i!=j

jump (unconditional branch)
f=g-nh

skipped if i==j

\ # some other instructionms...

Caution: Avoid using Yas variable in MIPS code as it may cause
an error due to naming conflict with the jump instruction j.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 25

Switch in assembly language

$t3,$s5, $zero #
$t3,%zero,Exit #
$t3,$s5,5t2 #
$t3,%zero,Exit #
#0< k<4, ie.
$tl,$s5,%s5 #
$t1,$t1,$t1 #
$t1,$t1,5t4 #
1w $t0,0($t1) #
jr $t0 # jump to appropr
add $s0,$s3,$s4 #
j Exit
add $s0,$sl,$s2
j Exit
sub $s0,$sl,$s2
j Exit
sub $s0,$s3,$s4
#

test if k<O

exit

test if k<4

exit if not

0, 1, 2 and 3

$tl = 2k

$tl = 4k

$tl = offset to jump table
$t0 = jump-tablel[k]

iate case in the switch statement
k=0, so £ =i + j

break

k=1, so f

break

k=0, so £

break

k=0, so £ =i - j

some instruction

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

LOOpS {condition checking, looping block, occurrence updating}

= Simple loop:
C code (pseudo code):

MIPS code:
Loop: add $tl1,$s3,$s3
add $tl1,$tl,$tl
add $t1,$tl,$s5

1w $t0,0($tl)
add $s1,$s1,$t0
add $s3,$s3,$s4
bne $s3,$s2,Loop

g =g + A[i];
i=

i+ j;

if (i '= h) go to Loop

$tl = 2i

$tl = 4i

$tl = address of A[i]
$s5=array base address
$t0 = A[i]

g =g + A[i]

i=41i+3

if i 1= h

next instruction...

I I oI I I I I A

Computer Organisation COMP2008, Jamie Yang: .yang@westernsydney.edu.au

Revision

= Given the register and memory values in the tables below (with dummy data
for easy calculation), work out the contents of registers in the instructions.

Register | Value

Memory Location |Value

R1 12 16

Iw R3, 12(R1)
20 addi R2, R3, 12

R2 16 20

12

R3 20 24

16

R4 24 28

24

= ISA and MIPS implementation

E
P
S 6’

<

CISsC

Computer Organisation COMP2008, Jamie Yang: L.yang@westernsydney.edu.au

while loops

= while loops:
C code: while (savel[i]

MIPS code:
Loop: add $tl,$s3,$s3
add $tl,$tl,$tl
add $t1,$tl,$s5

1w $t0,0($t1)

bne $t0,$s2, Exit
add $s3,$s3,$s4

j Loop

== k) code as it may cause
i=1i+3;

Caution: Avoid using j
as variable in MIPS

an error due to naming
conflict with the jump
instruction j.

$tl =

$tl =

$tl = address of save[i]
$s5=array base address
$t0 <= save[i]

test condition, $s2 has k
i=1i+73

keep looping

W I FE I I I I I I

next instruction...

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

ASCII TABLE

See ascii_chart.pdfon vVUWS

=}
[}
a

g
[}
a
=}
[}
Q
]
B
®

S me W

wa

BLLL L
@ oo

W W
ko

w
1o

LT
oo ww
aaan 000 o
Smae W

n

R N N Rty
oo oo o

aaaann o
W ooy e

)

Gn0s 6 e
R]
ERTErE

)
3

o/~
BHKHHddHuRNOMO0REREE NG HEQMEY O

[}

WEO 00 e

“ew
AKX 4B 0 0T 0 R T b 00

s

Computer Organisation COMP2008, Jamie Yang: 1.yang@westernsydney.edu.au

Switch statement — home EXERCISE

switch (k) {
case
case
case
case

}
Assume:

j; break;

break;

h; break;
j; break;

= six variables f, g, h, i, j and k correspond to registers $s0 through to $s5;

= register $t2 contains a value 4

we may code the switch statement as a chain of if-then-else
another solution: a jump address table
= a table of addresses of a series of instruction sequences (an array of

addresses)

= Assume $t4 contains the address of the jump table
we need an instruction to jump to an address contained in a register
= “jump register” instruction: in MIPS: jr register

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Recommended readings

General Data UnitOutline | LearningGuide | Teaching Scheduk: | Aligning Assessments % |

Extra Miaterials | asci_Chart.odf | bias

PCSpim Portable Version | Library materials

ion pdf | HP_AppA 5 +-instruction decoding.cdf | masking help.pdf | PCSpim.pdf |

PHG, §2.2-52.3, P69: Operations and Operands
PHS, §2.2-§2.3, P63: Operations and Operands
PH4, §2.2-52.3, P78: Operations and Operands

PH6, §2.2-523, §2.5: 14-3rd Principle of hardware design
PHS, §2.2-523, §2.5: 1-3rd Principle of hardware design

PH4, §2.2-523, §2.5, P79-P97: 1#-4" Principle of hardware design

PHG, 52.5, P86: pay attention to Stored-Program Concept
PHS, §2.5, P86: pay attention to Stored-Program Concept
PH4, 525, P101: pay attention to Stored-Program Concept

PH6, §2.7, P96: Understand basic control structures
PHS, §2.7, P0-P96: Understand basic control structures
PH4, §2.7, P105-P111: Understand basic control structures

HP_AppA.pdf -> A-21: Memory layout

HP_AppA.pdf-> A-44: System services

Text readings are listed in Teaching
Schedule and Learning Guide

PH6 (PH5 & PH4 also suitable): check
whether eBook available on library site

PH6: companion materials (e.g. online
sections for further readings)

https://www.elsevier.com/books-and-
journals/book-
companion/9780128201091

PH5: companion materials (e.g. online
sections for further readings)
http://booksite.elsevier.com/978012407
7263/?1SBN=9780124077263

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

