Lecture 1: Introduction

Processorf Interrupts Main
| Memory
Cache
I/0 I/0 I/0
Controller || Controller | | Controller
i . . . B —
Aim, Objectives msjk E‘“S“ (o]

= Mode of delivery

= What's a computer
Fundamental model

= [nstruction Set Architecture (ISA)
MIPS [ARM, RISC-V, x86]

= Assembly programming
SPIM simulator, First SPIM program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

i Teaching Staff

= Subject/Unit Coordinator + Lecturer + Tutor:
Jamie Yang

Room ER.G.12, Parramatta

E-mail: j.yang@westernsydney.edu.au
Phone: 9685 9233

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Aim

= Assumed knowledge:
= as specified in the subject outline for pre-requisites

= This subject is designed for students:
= interested in systems programming, and
» interested in hardware development.

= Learn about the interface between the hardware and
software of a computer system
» this will involve study of some aspects of computer architecture

» students will gain insight into CPU organisation at the assembly
language level.

Pre-requisites/Co-requisites @ SV!\-?‘ Aims _
COMP1005 Programming Fundamentals OR " Systems programming
) Computer architecture
Equivalent .
CPU organisation Hardware development

MATH1006 Discrete Mathematics OR equivalent. AR (R

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 3

i Objectives

= Describe the internal representation of different types of
data, and discuss the effects of fixed-length number
representation on accuracy and precision.

= Identify the major components of a computer system, and
describe the basic organisation of the von Neumann
machine (data and instructions in the same memory).

= Describe how fundamental high-level programming
constructs and data structures are implemented at the
assembly language level.

m Discuss a simple CPU organisation and Instruction Set
Architecture (ISA) design, including instruction formats,
and addressing modes.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 4

i Objectives — cont.

= Undertake a programming task at the hardware/software
interface, carry out such task in the assembly language
programming of the example processor.

= Identify the hardware mechanisms which support
interrupt/exception/trap handling, and explain how
interrupts are used to implement I/O control.

= Understand the basics of logic circuit design, including
fundamental building blocks, and minimisation of logic
expressions using Karnaugh maps (K-maps).

s Construct ALU (Arithmetic Logic Unit) using logic gates.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 5

Objectives (summary)

Describe the internal
representation of DATA

[different types]
Identify the major
components...
Describethe basic

organisation ... 3
, ///D,es;ribethe assembly
‘. implementation of programming
y Wts and data structures

Discuss CPU
nrﬂanisatinn, memory
addressing, and ISA

W

Undertake assembly
|l::|r ramming tasks at
he HW/SW interface

explain how to use
interrupts to implement
I/0 control

= Understand the basics
of logic circuit design
and ALU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Learning outcomes

s After completing this subject students will be able to:

» identify major components of a computer system,

» describe representation of different types of data, and understand
different number representations,

» use fundamental high-level programming constructs and data structures,
program at the hardware/software interface in the assembly language

»« understand a simple CPU organisation and Instruction Set Architecture
(ISA) design, instruction formats, addressing modes,

« explain how interrupts are used to implement I/O control, understand
interrupt / exception / trap handling,

= Use mathematical expressions to describe the functions of simple
combinational and sequential logic circuits, explain function of ALU.

= With small adjustment the skills and knowledge gained
apply to any computer architecture and any computer
organisation.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 7

Mode of delivery

s Lectures: 1 x 2 hour per week
= COME to lectures with lecture notes (printed or on-screen)
= PLEASE behave so that others can listen

s Format
s Lecture notes couldnt cover all the details

= Some material may not be readily available elsewhere - expanded
topics, sample exam questions, etc. will be explained during
lectures, but are NOT included in provided notes

= Some sub-topics will be set for self study

« Lecture recordings available online for convenient access to the
lecture contents

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 8

Mode of delivery — cont.

= Labs: 1 x 2 hour per week, starting week 2

« Read a lab instructions, study recommended materials, and do the
preparation BEFORE coming to the lab. When you start a lab you
will get mark for preparation part (but not later).

« If you come to a lab completely unprepared, you will waste your
time, and risk getting mark O

= Be ready to ask questions, and get help from tutor
« Submit work on time (extension policy refers to the subject
learning guide)
s Format
= 11 assessable tasks. No labs in intra session break.
= No work will be accepted via e-mail
= See lab 1 sheet for additional info

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 9

* Assessment Structure

s Lecture Quizzes (in lecture) 10% = 2@5%
= Laboratory Work 40%
= Final Examination (open book) 50%

M Lecture Quizzes

M Laboratory Work

™ Final Examination
(open book)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

10

The Textbook

Hennessy and Patterson "Computer Organization &
De519n” the be$t textbook of this type, used by hundreds
of Unlver5|t|es Now |n 6th edition.

Reference to. Text
= Text HP6 (or PH6), Section 2.8 and Appendix A-22
=« Text HP4 (or PH4), Section 2.8 and Appendix B-22
= Text HP2 (or PH2), Section 3.6 and Appendix A-22

We do NOT go chapter by chapter, and NOT in sequence!

Recommended: print HP_AppA.pdf (available on vUWS). It
is 84 pages, but you will be using almost all of them, also
during the exam (open book).

General Data UnitOutline | leamingGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials ascii_chart.pdf | bias_representation.pdf | HP AppA.pdf | instruction decoding.pdf | masking help.pdf | PCSpim.pdf |
PCSpim Portable Version | Library materials

« Print 2pgs/page and double sided?

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 11

& FP F E H D 1 X

Text HP6, HP5,
HP3, Appendix A
[e-copy available]

Assemblers,
Linkers,

and the SPIM
Simulator

James B, Larus
Microsoft Research
Microsoft

A P P E N D | X

Text HP4,
Appendix B
[e-copy not
available]

HP6, Appendix A = HP4, Appendix B

Assemblers, Linkers,
and the SPIM
Simulator

James R, Larus
Microsoft Research
Microsaft

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 12

Online Access (Table of Contents; Modules)

= VUWS will be used extensively as a means of getting information to
students

= subject materials and announcements will be available online

s Check the subject website at least twice a week, and once before the
lecture every week

General Data UnitOutline | LeamningGuide | Teaching Schedule | Aligning Assessments ¥ |

Extra Materials ascii_chart.pdf | bias_re presentation.pdf | HP_AppA.pdf | instruction decoding.pdf | masking help.pdf | PCSpim.pdf |
PCSpim Portable Version | Library materials .

» Subject to later modifications 1f needed. Y
1
1
Wk Lecture Topic E Practical Task Others
/* Lecture videos online ¥ */ I Lab Sheet and Code
- 1
=|_E'ﬂ|'|"|||'|ﬂ Zone=—= 7 {* Text readings are listed in Lecture Notes and in Learning Guide (see Teaching Activities) */
Table of Contents 1 Lect. 01 [M [£] A tabular organisation of the unit contents is more convenient for access. While &)
you can browse individual modules listed below, you are recommended to check
- . the "Table of Contents" link directl
Leaming Modules Introduction: D .
EEl:ﬂr-diﬂgE. {Fﬂnﬂlﬂ:ﬂ] \\ structure. To Table of Contents (for the unit learning guide, teaching materials, and teaching activities)
Readings & Resources m -
- Module 01 - Introduction: Detailed outline of the unit, approach to teaching, =
2 Lect. 02: [Slides assessment structure.
ISA-MIPS: MIP: [Module 02 - ISA-MIPS: MIPS assembly language, R, |, J instructions, decision =
making

[Module 03 - Addressing: Constants, addressing, loops, arrays and pointers,
processing text

0

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 13

Major Components of a Computer

Identify the major
components ...

Describe the basic
organisation ...

I Memory :
Processor Memory ==
[]
CPU Coprocessor 1 (FPU)
Registers Registers
$0] $0

$31 —| $31
Arithmetic Multiply
unit divide
l—-l—l Arithmetic
[Lo] [Hi L

IIO Coprocessor 0 (traps and memory)
Registers
System =
BadvAddr | Cause
Status | EPC

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 14

Major Components — More Details

Main

~ Interrupts Memory

Processor |

|
Cache

I/0 I/0 I/0
Controller || Controller | | Controller

— — ‘
Disk\ ‘Disk Graphics mk

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Major Components — Alternative View

COMPUTER
Processor i
, Memory Devices Keyboard,
Control] (where L Mouse
L programs, data [Input]l;
. live when [~
Datapath] running) | Disk
[Output I\N Display,
Y S Printer

/ \ Road Map:

" = Control: Chap 4, 6, Appendix C
g 5 Sa 8| = Datapath: Chap 3, 4, 6, Append C
= |37 @33 = Memory: Chaps
< =<2 3 = I/O:Chap 5, 6

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 16

i What is a computer?

= Major components

control (processor) !
datapath (processor) L
memory 0
iInput ¥

= disk

= keyboard

= MOouse
output

= disk

= Mmonitor

= printer

= Another view

processor

input (mouse, keyboard)
output (display, printer)
storage

= main memory (DRAM, SRAM)

= Ssecondary (long-term)
storage (disks, tapes etc)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 17

Components of a processor

Datapath

N TT—

[ALU]

Arithmetic / Logic Unit

A\

¢ control

N

%

Register file
(architecture
registers)

Program Counter PC

"\

Other special
registers

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory abstraction

cell address

CT T 1T 1T 1T 1T 17
8 bits (byte) per cell

CCOARTARTANRTONRTNRTNRN
SOOU1T h~AWN RO

i f 2n-1

= N is word size (architecture size) in bits
= 32-bit architecture (232 = 4G); 64-bit architecture

= address space - total number of addresses available

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

19

MIPS organisation

Processor

Memory

I/O
System

..
— Memory
|
CPU Coprocessor 1 (FPU)
Registers Registers
$0 $0
$31 $31
Arithmetic Multiply
unit divide
l_l_l Arithmetic
Lo Hi umit

Registers

Coprocessor 0 (traps and memory)

BadVAddr

Cause

Status

EPC

Computer Organisation COMP2008, Jamie Yang:].yang@westernsydney.edu.au

Policy of Registers Use Convention

= Important — keep a copy of this page!

Name Register Usage Preserve on
Number call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values(declared variables) yes
$t8 - $t9 24-25 temporaries no
$k0, $k1 26, 27 reserved for OS kernel n.a.
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address (hardware) yes

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

i What is MIPS?

s MIPS Technologies, Inc. see: http://www.mips.com

= MIPS (originally an acronym for Microprocessor without
Interlocked Pipeline Stages)

= Instruction Set Architecture (ISA)

s 32- and 64-bit RISC (Reduced Instruction-Set Computing)
microprocessor architectures and cores for embedded
systems.

= license intellectual property and computer architecture.

=« Used in: Sony PlayStation 1, 2, 3, Cisco routers, HP laser printers,
embedded industrial controllers, broadband and cable hardware,
satellite hardware, DVD products, and many more.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 22

Instruction Set Architecture

= A very important abstraction
» Interface between hardware and lowest level software
« Standard instructions, machine language bit patterns, etc.
« Advantage: different implementations of the same architecture
[Binary compatibility]
»« Disadvantage: sometimes prevents using innovations
[Fit into the ISA]

i \ Undertake assembly
programming tasks at

the HW/SW interface

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

23

Simulation, SPIM, PC Spim

s Better environment
« building, testing new systems easy
= easily modified (changes only in software!)
= detect more errors
» provide debugging features not available in raw hardware

= Useful tool for studying computers, designing new
computers

» PCSpim/QtSpim - a simulator of the MIPS processor

= The classic PCSpim isn't outdated; rather its operation style helps
reveal many technical details.

= You have free choice of other simulators though.
= prepare assembly language programs with a TEXT EDITOR
= You will use it in each lab to run and debug your programs.

s Disadvantages: it is not the real thing

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 24

Example: C program

/* actual start of the main program */
/* to print "Hello World“ */

main () /* function name (no arguments) */
{ /* opening brace is used */
/* to delimit body of function */
printf (“Hello World”) ; /* one statement */
} /* closing brace is used */

/* to delimit body of function */

... would this be also OK:

main () { printf (“Hello World”); }

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

25

SPIM Program No 1 - Very Simple

= code similar to lab 1
= only two comments (# ...)

.text # what to do
.globl main
main:
1i $vO0, 4
la $a0, hello
syscall

.data # data to be used to do it
.globl hello
hello: .asciiz "Hello World"

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

26

SPIM Program No 1 - a bit better

s # comments!

. text #
.globl main #

main: #
li $vO, 4 i
la $a0, hello #
syscall #
.data #
.globl hello i

hello: .asciiz "Hello World" #

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 27

SPIM Program No 1 - best version

s # comments!
Actual start of the main program to print "Hello World"“

. text
.globl main # note ‘globl’ directive

main: # main has to be a global label
addu $s7, $0, Sra # save the return address in ra

Output the string "Hello World" on separate line

.data # note ‘data’ directive
.globl hello
hello: .asciiz "\nHello World\n"“ # string to print
.text # note ‘text’ directive
1i $vO0, 4 # print str (system call 4)
la $a0, hello # takes string address as argument
syscall
Usual stuff at the end of the main
addu $ra, $0, $s7 # restore the return address

jr Sra # return to the main program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 28

SPIM Program No. 1 —in PCSpim

File Simulator YWindow Help

== =uo| =[x

A

SPIM Version 6.3 of December 25, 2000

Copyright 1990-2000 by James E. Larus (larusi@cocs.wisc.edu).
211 Rights Reserved.

D03 and Windows ports by David A. Carley (daclcs.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers. Inc.

S=2e the file README for a full copyright notice.

Loaded: C:~Program Files-~PCI3pim~trap.handler

8|

PC = 0ooooooo ERPC = oooooooo Cause = 00000000 BadVAddr= 00000000
Status = 00000000 HI = Qoooooooo Lo = QJooooooo
General HRegisters
RO (r0) = 00000000 RS (t0) = 00000000 EREle (s0) = 00000000 ER24 (t§) = 00000000
K1l (at) = 00000000 R9 (tl) = 0O00o0ooooo R1¥7 (s1) = 00000000 ER25 (t9) = 00000000
Rz (w0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 00000000 ERE2e (kO) = 00000000
F3 (wl1l) = 00000000 R11 (t3) = 00000000 R19 (s3) = 00000000 R27 (kl) = 00000000
F4 (a0) = 00000000 R12 (t4) = 00000000 Rz20 (s4) = 00000000 ER28 (gp) = 10008000
FS (al) = 00000000 ER13 (tS) = 00000000 Rz2Z1 (s5) = 00000000 R29 (sp) = 7iffeffo
F&6 (aZ) = 00000000 ER14 (te) = 00000000 RZ22 (s6) = 00000000 E30 (s&8) = 00000000
EY (a3) = 00000000 R1S5 (t7) = 00000000 R23 (s¥) = 00000000 ER31 (ra) = 00000000
[0x00400000] OxG5fa40000 1w S4, 0($29) : 102: 1w a0, 0(%Ssp) # argc
[0=z00400004] O0x27a50004 addiu 355, 529, 4 : 103: addiu Sal, Ssp., 4 # argv
[0=00400008] OxZ4a60004 addiu 56, 55, 4 ; 104: addiu Sa2, Sal, 4 # envp
[0xz0040000c] Ox000410580 =11 $2, S4, 2 ; 105: =11 Sw0O, Sal, 2 addu Saz, SazZ, w0
[0xz00400010] 0x00c23021 addu $S6. S6. S2 : 106: addu SaZ. Saz, w0 jal main
[0=00400014] O0x0z000000 jal 0x00000000 [main] ; 107: jal main 11 S0 10
[0xz00400018] 0x3402000a ori $2, S0, 10 ; 1los: 1i $w0O 10
[0=z0040001¢c] 0xz0000000c syscall ;109 svscall # swvscall 10 {(exit)
EERMEL
[0xE0000050] 0x0001d821 addu $27, 30, 31 : 57 move Skl Sat # Save Sat
2|
DATA
[0xl1l0000000]...[0x10040000] Ox00000000
STACK
[0x7fffeffc] Ox00000000
EEENEL DATA
[0xz90000000] 0x78452020 0x74706563 OxZ06=6f69 Ox636f£Z2000
[0=20000010] 0x72727563 0x61206465 0Ox692064b6e Ox726f6=67
[0xz90000020] 0x000a6465 0x495kZ2020 O0x7265746e 0O0x74707572

For Help. press F1

|PC=0x00000000 EPC=0x00000000 Cause=0x00000000

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No. 1 —in PCSpim

s text and data segments

[0x00400000] 0x8fa40000 Iw $4, 0($29) ; 102: lw $a0, 0($sp) # argc
[0x00400004] 0x27a50004 addiu $5, $29, 4 ; 103: addiu $a1, $sp, 4 # argv
[0x00400008] 0x24a60004 addiu $6, $5, 4 - 104: addiu $a2, $a1, 4 # envp
[0x0040000c] 0x00041080 sll $2, $4, 2 ; 105: sll $v0, $a0, 2 addu $a2, $a2, $v0
[0x00400010] 0x00c23021 addu $6, $6, $2 ; 106: addu $a2, $a2, $v0 jal main
[0x00400014] 0x0c100008 jal 0x00400020 [main] ; 107: jal main li $v0 10
[0x00400018] 0x3402000a ori $2, $0, 10 ; 108: li $v0 10

[0x0040001c] 0x0000000c syscall ; 109: syscall # syscall 10 (exit)
[0x00400020] 0x34020004 ori $2, $0, 4 ; 5:1i $vO0, 4

[0x00400024] 0x3c011001 lui $1, 4097 [hello] ; 6: la $a0, hello
[0x00400028] 0x34240000 ori $4, $1, 0 [hello]

[0x0040002c] 0x0000000c syscall ; 7: syscall

DATA

[0x10000000]...[0x1000fffc] 0x00000000

[0x1000fffc] 0x00000000

[0x10010000] 0x6¢c65480a 0x57206f6¢c 0x646¢c726f 0x0000000a

[0x10010010]...[0x10040000] 0x00000000

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 30

Overview: Programs for SPIM

comments start with “#”

some lines start with “.”
= assembler directives
= Ssome directives have parameters
some lines start with a letter
= assembler instructions (or pseudoinstructions)
= Mmostly have parameters separated by commas
= some parameters start with “$” (registers)
= instruction names are reserved keywords
labels are terminated with “:”
» label is a symbol corresponding to a specific memory address

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 31

Overview: Some assembler directives

m .text
= the instructions to execute
s .data

« the data in memory

= both can be used as many times as needed

» the assembler will combine all instructions in one predefined area
of memory,

« and all data in another predefined area of memory

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 32

Overview: Data directives

.byte b1, b2, ..., bn
« store values b1, b2 ... in n successive locations of memory

.word wl, w2, ..., wn
= as above for words

.space n
» allocate n bytes of space in memory

.ascii “'string”
= Store string in memory

.asciiz “‘string”

» store string in memory followed by a null byte ie. a byte
containing all zeros (00000000)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

33

Overview: Other directives

s .kdata and .ktext

= relate to special instructions and data accessible in privileged
mode only

= .globl abc

= declares symbol abc as global, so it can be used in other files

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

34

Revision: A top-down view of computer

organisation

= A top-down view

System

Ndertake assembly
; programming tasks at
o the HW/SWinterface

explain how to use

[i# Output the string "Hello World" on
” .data
- .globl hello

mhello: .asciiz "\nHello Worldn"

Time 1 min 5S5min 90 min
’ - - - -
What's a Learning objectives Introduction
com putel‘7 Describe theinternl e Tupts Main
reprasentationof DATA Memory
[differentfypes]]
ety et H
Processor| | Memory H : L
Desrtelie st ™" w]
Ll Organisation... L # mal = e main program to
Contents “. K " Describetheassemby text
I — mplementalmnaffr ramming i
e ‘ constructs anddata structures .globl main # note
i Discuss CPU Lﬂi—imﬂ.irl: # main |
°§3§?§‘fiﬁ’g"f§ﬁﬁ"ﬂ&" .‘I . addn §s7, §0, §ra # save

interrupts toimplement herstand the basic text # note
1/0 contrl oflogic iruit design 1i §v0, 4 # print
andALl .
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 35

Before the next lecture and first lab

= Recommended reading:
= Text readings are listed in Teaching Schedule and Learning Guide
« HP6, HP5, HP4 chap 1 “Computer Absfractions and Technology”

= HP6, HP5, Appendix A, part A.9; I;|P4, Appendix B, part B.9; or part
A.9 of HP_AppA.pdf on vVUWS,”

General Data UnitOutline | LeamingGuide T Teaching Schiedule | Aligning Assessments ¥ |
Extra Materials ascii_chart.pdf | bias_representation.pdf | HP_AppA.pdf | instruction decoding.pdf | masking help.odf | PCSpim.pdf |
PCSpim Portable Version | Library materials

s Recommended: get Spim Simulator, install it on ur machine

= run the simplest “"program No 1" which prints text on screen,
experiment with options, observe what PCSpim/QtSpim does

= make some changes: different text, new lines (\n), enter a
nonexisting instruction and observe ‘parser error’

= get instructions for lab 1, study all recommended materials
= do some lab 1 tasks before the lab.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 36

