
 Aim, Objectives
 Mode of delivery
 What’s a computer

Fundamental model
 Instruction Set Architecture (ISA)

MIPS [ARM, RISC-V, x86]
 Assembly programming

SPIM simulator, First SPIM program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 1: Introduction

Teaching Staff

 Subject/Unit Coordinator + Lecturer + Tutor:
Jamie Yang

Room ER.G.12, Parramatta
E-mail: j.yang@westernsydney.edu.au
Phone: 9685 9233

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Aim

 Assumed knowledge:
 as specified in the subject outline for pre-requisites

 This subject is designed for students:
 interested in systems programming, and
 interested in hardware development.

 Learn about the interface between the hardware and
software of a computer system
 this will involve study of some aspects of computer architecture
 students will gain insight into CPU organisation at the assembly

language level.

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Pre-requisites/Co-requisites
COMP1005 Programming Fundamentals OR
Equivalent

MATH1006 Discrete Mathematics OR equivalent.

Computer architecture
CPU organisation
Assembly language
… …

HW SW Aims
Systems programming

Hardware development

Objectives

 Describe the internal representation of different types of
data, and discuss the effects of fixed-length number
representation on accuracy and precision.

 Identify the major components of a computer system, and
describe the basic organisation of the von Neumann
machine (data and instructions in the same memory).

 Describe how fundamental high-level programming
constructs and data structures are implemented at the
assembly language level.

 Discuss a simple CPU organisation and Instruction Set
Architecture (ISA) design, including instruction formats,
and addressing modes.

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Objectives – cont.

 Undertake a programming task at the hardware/software
interface, carry out such task in the assembly language
programming of the example processor.

 Identify the hardware mechanisms which support
interrupt/exception/trap handling, and explain how
interrupts are used to implement I/O control.

 Understand the basics of logic circuit design, including
fundamental building blocks, and minimisation of logic
expressions using Karnaugh maps (K-maps).

 Construct ALU (Arithmetic Logic Unit) using logic gates.

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Objectives (summary)

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Learning outcomes

 After completing this subject students will be able to:
 identify major components of a computer system,
 describe representation of different types of data, and understand

different number representations,
 use fundamental high-level programming constructs and data structures,

program at the hardware/software interface in the assembly language
 understand a simple CPU organisation and Instruction Set Architecture

(ISA) design, instruction formats, addressing modes,
 explain how interrupts are used to implement I/O control, understand

interrupt / exception / trap handling,
 use mathematical expressions to describe the functions of simple

combinational and sequential logic circuits, explain function of ALU.

 With small adjustment the skills and knowledge gained
apply to any computer architecture and any computer
organisation.

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery

 Lectures: 1 x 2 hour per week
 COME to lectures with lecture notes (printed or on-screen)
 PLEASE behave so that others can listen

 Format
 Lecture notes couldn’t cover all the details
 Some material may not be readily available elsewhere - expanded

topics, sample exam questions, etc. will be explained during
lectures, but are NOT included in provided notes

 Some sub-topics will be set for self study
 Lecture recordings available online for convenient access to the

lecture contents

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery – cont.

 Labs: 1 x 2 hour per week, starting week 2
 Read a lab instructions, study recommended materials, and do the

preparation BEFORE coming to the lab. When you start a lab you
will get mark for preparation part (but not later).

 If you come to a lab completely unprepared, you will waste your
time, and risk getting mark 0

 Be ready to ask questions, and get help from tutor
 Submit work on time (extension policy refers to the subject

learning guide)
 Format

 11 assessable tasks. No labs in intra session break.
 No work will be accepted via e-mail
 See lab 1 sheet for additional info

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Assessment Structure

 Lecture Quizzes (in lecture) 10% = 2@5%
 Laboratory Work 40%
 Final Examination (open book) 50%

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture Quizzes

Laboratory Work

Final Examination

(open book)

The Textbook

 Hennessy and Patterson “Computer Organization &
Design” the best textbook of this type, used by hundreds
of Universities. Now in 6th edition.

 Reference to Text:
 Text HP6 (or PH6), Section 2.8 and Appendix A-22
 Text HP4 (or PH4), Section 2.8 and Appendix B-22
 Text HP2 (or PH2), Section 3.6 and Appendix A-22

 We do NOT go chapter by chapter, and NOT in sequence!
 Recommended: print HP_AppA.pdf (available on vUWS). It

is 84 pages, but you will be using almost all of them, also
during the exam (open book).

 Print 2pgs/page and double sided?
11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

HP6, Appendix A = HP4, Appendix B

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text HP6, HP5,
HP3, Appendix A
[e-copy available]

Text HP4,
Appendix B
[e-copy not
available]

Online Access (Table of Contents; Modules)

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 vUWS will be used extensively as a means of getting information to
students

 subject materials and announcements will be available online
 Check the subject website at least twice a week, and once before the

lecture every week

Major Components of a Computer

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Major Components – More Details

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

Major Components – Alternative View

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Road Map:
 Control: Chap 4, 6, Appendix C
 Datapath: Chap 3, 4, 6, Append C
 Memory: Chap 5
 I/O: Chap 5, 6

Processor
Control

Datapath

Memory
(where
programs, data
live when
running)

Devices

Output

Input

COMPUTER

Keyboard,
Mouse

Disk

Display,
Printer

What is a computer?

 Major components
 control (processor)
 datapath (processor)
 memory
 input

 disk
 keyboard
 mouse

 output
 disk
 monitor
 printer

 Another view
 processor
 input (mouse, keyboard)
 output (display, printer)
 storage

 main memory (DRAM, SRAM)
 secondary (long-term)

storage (disks, tapes etc)

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Components of a processor

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Arithmetic / Logic Unit

[ALU] Register file
(architecture

registers)

Program Counter PC

Datapath

Other special
registers

control

Memory abstraction

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 n is word size (architecture size) in bits
 32-bit architecture (232 = 4G); 64-bit architecture

 address space - total number of addresses available

cell address
0
1
2
3
4
5
6

2n-2
2n-1

8 bits (byte) per cell

MIPS organisation

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Policy of Registers Use Convention

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Important – keep a copy of this page!
Name Register

Number
Usage Preserve on

call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values(declared variables) yes

$t8 - $t9 24-25 temporaries no

$k0, $k1 26, 27 reserved for OS kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address (hardware) yes

What is MIPS?

 MIPS Technologies, Inc. see: http://www.mips.com
 MIPS (originally an acronym for Microprocessor without

Interlocked Pipeline Stages)

 Instruction Set Architecture (ISA)

 32- and 64-bit RISC (Reduced Instruction-Set Computing)
microprocessor architectures and cores for embedded
systems.
 license intellectual property and computer architecture.
 Used in: Sony PlayStation 1, 2, 3, Cisco routers, HP laser printers,

embedded industrial controllers, broadband and cable hardware,
satellite hardware, DVD products, and many more.

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction Set Architecture

 A very important abstraction
 Interface between hardware and lowest level software
 Standard instructions, machine language bit patterns, etc.
 Advantage: different implementations of the same architecture

[Binary compatibility]
 Disadvantage: sometimes prevents using innovations

[Fit into the ISA]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Undertake assembly

programming tasks at
the HW/SW interface

Simulation, SPIM, PC Spim

 Better environment
 building, testing new systems easy
 easily modified (changes only in software!)
 detect more errors
 provide debugging features not available in raw hardware

 Useful tool for studying computers, designing new
computers
 PCSpim/QtSpim - a simulator of the MIPS processor

 The classic PCSpim isn’t outdated; rather its operation style helps
reveal many technical details.

 You have free choice of other simulators though.
 prepare assembly language programs with a TEXT EDITOR
 You will use it in each lab to run and debug your programs.

 Disadvantages: it is not the real thing
24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Example: C program

/* actual start of the main program */

/* to print "Hello World“ */

main () /* function name (no arguments) */

{ /* opening brace is used */

/* to delimit body of function */

printf (“Hello World”); /* one statement */

} /* closing brace is used */

/* to delimit body of function */

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

... would this be also OK:

main () { printf (“Hello World”); }

SPIM Program No 1 - Very Simple

.text # what to do

.globl main

main:

li $v0, 4

la $a0, hello

syscall

.data # data to be used to do it

.globl hello

hello: .asciiz "Hello World"

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 code similar to lab 1
 only two comments (# …)

SPIM Program No 1 - a bit better

.text #

.globl main #

main: #

li $v0, 4 #

la $a0, hello #

syscall #

.data #

.globl hello #

hello: .asciiz "Hello World" #

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 # comments!

SPIM Program No 1 - best version

Actual start of the main program to print "Hello World“

.text

.globl main # note ‘globl’ directive

main: # main has to be a global label

addu $s7, $0, $ra # save the return address in ra

Output the string "Hello World" on separate line

.data # note ‘data’ directive

.globl hello

hello: .asciiz "\nHello World\n“ # string to print

.text # note ‘text’ directive

li $v0, 4 # print_str (system call 4)

la $a0, hello # takes string address as argument

syscall

Usual stuff at the end of the main

addu $ra, $0, $s7 # restore the return address

jr $ra # return to the main program

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 # comments!

SPIM Program No. 1 – in PCSpim

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No. 1 – in PCSpim

[0x00400000] 0x8fa40000 lw $4, 0($29) ; 102: lw $a0, 0($sp) # argc

[0x00400004] 0x27a50004 addiu $5, $29, 4 ; 103: addiu $a1, $sp, 4 # argv

[0x00400008] 0x24a60004 addiu $6, $5, 4 ; 104: addiu $a2, $a1, 4 # envp

[0x0040000c] 0x00041080 sll $2, $4, 2 ; 105: sll $v0, $a0, 2 addu $a2, $a2, $v0

[0x00400010] 0x00c23021 addu $6, $6, $2 ; 106: addu $a2, $a2, $v0 jal main

[0x00400014] 0x0c100008 jal 0x00400020 [main] ; 107: jal main li $v0 10

[0x00400018] 0x3402000a ori $2, $0, 10 ; 108: li $v0 10

[0x0040001c] 0x0000000c syscall ; 109: syscall # syscall 10 (exit)

[0x00400020] 0x34020004 ori $2, $0, 4 ; 5: li $v0, 4

[0x00400024] 0x3c011001 lui $1, 4097 [hello] ; 6: la $a0, hello

[0x00400028] 0x34240000 ori $4, $1, 0 [hello]

[0x0040002c] 0x0000000c syscall ; 7: syscall

DATA

[0x10000000]...[0x1000fffc] 0x00000000

[0x1000fffc] 0x00000000

[0x10010000] 0x6c65480a 0x57206f6c 0x646c726f 0x0000000a

[0x10010010]...[0x10040000] 0x00000000
30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 text and data segments

Overview: Programs for SPIM

 comments start with “#”
 some lines start with “.”

 assembler directives
 some directives have parameters

 some lines start with a letter
 assembler instructions (or pseudoinstructions)
 mostly have parameters separated by commas
 some parameters start with “$” (registers)
 instruction names are reserved keywords

 labels are terminated with “:”
 label is a symbol corresponding to a specific memory address

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Some assembler directives

 .text
 the instructions to execute

 .data
 the data in memory

 both can be used as many times as needed
 the assembler will combine all instructions in one predefined area

of memory,
 and all data in another predefined area of memory

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Data directives

 .byte b1, b2, … , bn
 store values b1, b2 … in n successive locations of memory

 .word w1, w2, … , wn
 as above for words

 .space n
 allocate n bytes of space in memory

 .ascii “string”
 store string in memory

 .asciiz “string”
 store string in memory followed by a null byte ie. a byte

containing all zeros (00000000)

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Other directives

 .kdata and .ktext
 relate to special instructions and data accessible in privileged

mode only
 .globl abc

 declares symbol abc as global, so it can be used in other files

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Revision: A top-down view of computer
organisation

 A top-down view

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Time 1 min 5min 90 min

Contents

What’s a
computer?

Learning objectives Introduction

 Recommended reading:
 Text readings are listed in Teaching Schedule and Learning Guide
 HP6, HP5, HP4 chap 1 “Computer Abstractions and Technology”
 HP6, HP5, Appendix A, part A.9; HP4, Appendix B, part B.9; or part

A.9 of HP_AppA.pdf on vUWS.

 Recommended: get Spim Simulator, install it on ur machine
 run the simplest “program No 1” which prints text on screen,

experiment with options, observe what PCSpim/QtSpim does
 make some changes: different text, new lines (\n), enter a

nonexisting instruction and observe ‘parser error’
 get instructions for lab 1, study all recommended materials
 do some lab 1 tasks before the lab.

Before the next lecture and first lab

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

