* Lecture 1: Introduction
|

Topics

= Aim, Objectives

= Mode of delivery

= What's a computer
Fundamental model

= Instruction Set Architecture (ISA)
MIPS [ARM, RISC-V, x86]

= Assembly programming
SPIM simulator, First SPIM program

Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au

Objectives — cont.

Undertake a programming task at the hardware/software
interface, carry out such task in the assembly language
programming of the example processor.

Identify the hardware mechanisms which support
interrupt/exception/trap handling, and explain how
interrupts are used to implement I/O control.
Understand the basics of logic circuit design, including
fundamental building blocks, and minimisation of logic
expressions using Karnaugh maps (K-maps).

Construct ALU (Arithmetic Logic Unit) using logic gates.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Teaching Staff

= Subject/Unit Coordinator + Lecturer + Tutor:
Jamie Yang

Room ER.G.12, Parramatta

E-mail: j.yang@westernsydney.edu.au
Phone: 9685 9233

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

i Objectives (summary)

Describe the internal
representation of DATA
[different types]

Identify the major
components
Describe the basic
organlsatlon
Describethe assembly
tation of programming
constructs and data structures
Dlscuss CPU

organisation, memory
%dressmg,'and ISA

Undertake assembly

ramming tasks at
ehogHWI Sw?nterface

explain how to use
interrupts to implement

1/0 control ~“Understand the basics

of logic circuit design
and ALU

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Aim

= Assumed knowledge:
= as specified in the subject outline for pre-requisites

= This subject is designed for students:
= interested in systems programming, and
= interested in hardware development.

= Learn about the interface between the hardware and
software of a computer system
= this will involve study of some aspects of computer architecture

= students will gain insight into CPU organisation at the assembly
language level.

Aims

Pre-requisites/Co-requisites - SW .
Systems programming

COMP1005 Programming Fundamentals OR

Equivalent Computer architecture

CPU organisation
Assembly language

Hardware development
MATH1006 Discrete Mathematics OR equivalent.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Learning outcomes

= After completing this subject students will be able to:
= identify major components of a computer system,

= describe representation of different types of data, and understand
different number representations,

use fundamental high-level programming constructs and data structures,
program at the hardware/software interface in the assembly language

understand a simple CPU organisation and Instruction Set Architecture
(ISA) design, instruction formats, addressing modes,

explain how interrupts are used to implement I/O control, understand
interrupt / exception / trap handling,

use mathematical expressions to describe the functions of simple
combinational and sequential logic circuits, explain function of ALU.

With small adjustment the skills and knowledge gained
apply to any computer architecture and any computer
organisation.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Objectives

Describe the internal representation of different types of
data, and discuss the effects of fixed-length number
representation on accuracy and precision.

Identify the major components of a computer system, and
describe the basic organisation of the von Neumann
machine (data and instructions in the same memory).
Describe how fundamental high-level programming
constructs and data structures are implemented at the
assembly language level.

Discuss a simple CPU organisation and Instruction Set
Architecture (ISA) design, including instruction formats,
and addressing modes.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery

Lectures: 1 x 2 hour per week
= COME to lectures with lecture notes (printed or on-screen)
= PLEASE behave so that others can listen

Format

= Lecture notes couldn’t cover all the details

= Some material may not be readily available elsewhere - expanded
topics, sample exam questions, etc. will be explained during
lectures, but are NOT included in provided notes
Some sub-topics will be set for self study
Lecture recordings available online for convenient access to the
lecture contents

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery — cont.

= Labs: 1 x 2 hour per week, starting week 2

= Read a lab instructions, study recommended materials, and do the
preparation BEFORE coming to the lab. When you start a lab you
will get mark for preparation part (but not later).

= If you come to a lab completely unprepared, you will waste your
time, and risk getting mark 0

= Be ready to ask questions, and get help from tutor
= Submit work on time (extension policy refers to the subject
learning guide)
= Format
= 11 assessable tasks. No labs in intra session break.
= No work will be accepted via e-mail
= See lab 1 sheet for additional info

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Online Access (Table of Contents; Modules)

vUWS will be used extensively as a means of getting information to
students

subject materials and announcements will be available online

Check the subject website at least twice a week, and once before the
lecture every week

[GeneralData [UnitOutline | LeamingGuide | TzachingSchedule | Aligning Assessments ¥ |

ExtraMaterials | ascil_chartodf | bias representation.pdf | RP_ApoA.o | instruction decoding.od | masking help.pd | PCSpIm.pdf |
PCSpim Portable Version | Library materials

+ Subject f0 later modifications if needed.

Lecture Topic
/* Lecture videos online *% */
==Leaming Zone=— Vi i jisted in Lecture Notes and i i i iuities)

Practical Task
Lab Sheet and Code

| Others

Lect 01:[Slde| [A tabutar organisation of the unit contents is more convenient for access. While @
an browse individual modules listed below, you are recommended fo check
the "Table of Gontents™ link directly

Table of Contents.
Leaming Modules Introduction: T
structure.

Recordings (Panoplo)

To Table of Cantants (for the unit leaming guide. teaching materials, and teaching actviies)
Readings & Resources Basic compt

Lect. 02: [Slide:

Module 01 - Introduction: Detailed outline of the unit, approach to teaching,
assessment structure

ISAMIPS:MIP Module 02 - ISA-MIPS: MIPS assembly language. R. 1. J instructions, decision
making

[Module 03 - Sonstants.
processing text

loops, arrays and pointers,

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Assessment Structure

= Lecture Quizzes (in lecture) 10% = 2@5%
= Laboratory Work 40%
= Final Examination (open book) 50%

M Lecture Quizzes
M Laboratory Work

Final Examination
(open book)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Major Components of a Computer

2 N "
el Identify the major
0200
Wiats =
Describe the basic
organisation ...

1/0
System

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

The Textbook

Hennessy and Patterson “Computer Organization &
Desrgn the best textbook of this type, used by hundreds
of UnNersrtles ‘Now in 6th edition.

Reference to. ;ext.f

= Text HP6 (or PH6), Section 2.8 and Appendix A-22
= Text HP4 (or PH4), Section 2.8 and Appendix B-22
= Text HP2 (or PH2), Section 3.6 and Appendix A-22

We do NOT go chapter by chapter, and NOT in sequence!

Recommended: print HP_AppA.pdf (available on vUWS). It
is 84 pages, but you will be us’ing almost all of them, also
during the exam (open book):.

General Data UnitOutline | LeamingGuide | Teaching Schedule | Aligning Assessments ¥ |

ExtraMaterials | ascii_chart,pdf | bias_re presentation.pdf | HP_AppA.pd | instruction decoding.pdf | masking help pdf | PCSpim_pdf |
PCSpim Portable Version | Library materials

= Print 2pgs/page and double sided?

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Major Components — More Details

Main

Interrupts Memory

Processor

I/0
Controller

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

I/0 I/0
Controller Controller

HP6, Appendix A = HP4, Appendix B

Assemblers, Linkers,
and the SPIM
Simulator

AP P E N x Assemblers,
Linkers,
and the SPIM

Simulator

Text HP4,
Appendix B
[e-copy not
available]

Text HP6, HP5,

HP3, Appendix A

[e-copy available]
Jarmes R. Larus

Microsoft Research
Microsoft

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Major Components — Alternative View

COMPUTER

Processor i
Memory Devices Keyboard,

Control Mouse

(where
programs, data
live when
running)

-z:: .
—s Display,

Printer

Datapath

Road Map:

= Control: Chap 4, 6, Appendix C

= Datapath: Chap 3, 4, 6, Append C
= Memory: Chap 5

=« I/O: Chap5, 6

(is1a)
Aowsy
Atepuodas

Computer Organisation COMP2008, Jamie Yang: i.yana@westernsydney.edu.au

i What is a computer?

= Major components = Another view
= control (processor) = processor
= datapath (processor) = input (mouse, keyboard)
= memory = output (display, printer)
input storage
» disk »« main memory (DRAM, SRAM)

» keyboard » secondary (long-term)
= mouse storage (disks, tapes etc)

output
» disk
= monitor
= printer

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Policy of Registers Use Convention

= Important — keep a copy of this page!
Name Register Usage Preserve on
Number call?
$zero 0
$at 1
$v0 - $v1 2-3 returned values no
$a0 - $a3 arguments yes
$t0 - $t7 temporaries no
$s0 - $s7 saved values(declared variables) yes
$t8 - $t9 temporaries no
$kO, $k1 reserved for OS kernel n.a.
$gp 28
$sp 29
$fp 30 frame pointer

$ra 31 return address (hardware)
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

constant 0 (hardware) n.a.
reserved for assembler n.a.

global pointer

stack pointer

Components of a processor

Datapath

N

Register file
(architecture
registers)

Arithmetic / Logic Unit Program Counter PC

[ALU]

Other special
registers

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

i What is MIPS?

= MIPS Technologies, Inc. see: http://www.mips.com

= MIPS (originally an acronym for Microprocessor without
Interlocked Pipeline Stages)

= Instruction Set Architecture (ISA)
= 32- and 64-bit RISC (Reduced Instruction-Set Computing)
microprocessor architectures and cores for embedded
systems.
= license intellectual property and computer architecture.

= Used in: Sony PlayStation 1, 2, 3, Cisco routers, HP laser printers,
embedded industrial controllers, broadband and cable hardware,
satellite hardware, DVD products, and many more.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Memory abstraction

address

= N is word size (architecture size) in bits
= 32-bit architecture (232 = 4G); 64-bit architecture

address space - total number of addresses available

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Instruction Set Architecture

= A very important abstraction
= Interface between hardware and lowest level software
= Standard instructions, machine language bit patterns, etc.
= Advantage: different implementations of the same architecture
[Binary compatibility]
= Disadvantage: sometimes prevents using innovations
[Fit into the ISA]

Undertake assembly
programming tasks at
the HW/SW interface

[

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

MIPS organisation

I/o
System

1
Coprocessor 1 (FPU)

Registers Registers

$0 $0

==

Arithmetic ‘ Multiply ‘

unit divide

Arithmetic
Lo Hi 1 unit

Coprocessor O (traps and memory)
Registers

‘ BadVAddr ‘ ‘ Cause ‘
[smws | [e |

Computer Organisation COMP2008, Jamie Yang:].yang@westernsydney.edu.au

Simulation, SPIM, PC Spim

= Better environment
= building, testing new systems easy
= easily modified (changes only in software!)
= detect more errors
= provide debugging features not available in raw hardware
= Useful tool for studying computers, designing new
computers
= PCSpim/QtSpim - a simulator of the MIPS processor

» The classic PCSpim isn't outdated; rather its operation style helps
reveal many technical details.

= You have free choice of other simulators though.
= prepare assembly language programs with a TEXT EDITOR
= You will use it in each lab to run and debug your programs.
= Disadvantages: it is not the real thing

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Example: C program

/* actual start of the main program */
/* to print "Hello World“ */

main () /* function name (no arguments) */
{ /* opening brace is used */

/* to delimit body of function */

printf (“Hello World”);
/* closing brace is used */

/* to delimit body of function */

/* one statement */

... would this be also OK:

main () { printf (“Hello World”); }

Computer Organisation COMP2008, Jamie Yang: i.yang@westernsydney.edu.au

SPIM Program No. 1 —in PCSpim

Eile Simulotor Window Help

=lg] 5lo| 3]

EPC - 00000000 Couse - 00000000 Badvaddr- 00000000
HI Lo - paooonan
General Registere

RrE R16 (=0) - 00000000 R24 (t8) - 00DO0O0D
RS (c - R2S

RiD (£2) t - RZ2E

Ri1 (£3) - R27

R12 =) - 0 R28

R13 RZ29

R14 - R30

R1S (£7) - 00000000 R23 (=7) - 00000000 R31

0x8£a40000 1w S4, 0(529)
S11 52, $4,
addu’$6, 8, 52
0 jal DxDO0BODOG [main)
ori 52. 50. 10

0x0040001c] 0xD0D00D0G syseall ;109 syscall # syseall 10 (exit)

KERMNEL
[0%8000008D] 0200014821 addu $27. $0. S1 : 57: move Skl Sat # Save sat
H1

DATA
[0210000000] . . . [0%10040000] 0200000000

STACK
[0s7eEFaEfC] 0200000000
KERNEL DATA
0578452020 0x74706563 Dx20626£69 0x636£2000
0372727563 061206465 Dz6920646e D0z726fBe67
[0x90000020] 0200026465 0x495h2020 Dx7265746s 0%74707572

]
[EPIM Version 6.3 of December 25. 2000
os . Larus (larus@cs.wisc.edu).

oris by David A. Carley (dac@cs.wise.edu).
Zhers. Inc.

[Lomd=d: C:NProgrem Filss<PCSpimntrap.handler

L
For Help, press F1
Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No 1 - Very Simple

= code similar to lab 1
= only two comments (# ...)

.text # what to do
.globl main

1i $vo0, 4
la $a0, hello
syscall

.data # data to be used to do it
.globl hello
hello: .asciiz "Hello World"

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No. 1 —in PCSpim

= text and data segments
[0x00400000] 0x8fa40000 Iw $4, 0($29) ; 102: Iw $a0, 0($sp) #argc
[0x00400004] 0x27a50004 addiu $5, $29, 4 ; 103: addiu $a1, $sp, 4 # argv
[0x00400008] 0x24a60004 addiu $6, $5, 4 ; 104: addiu $a2, $a1, 4 #envp
[0x0040000c] 0x00041080 sl $2, $4, 2 ; 105: sll $v0, $a0, 2 addu $a2, $a2, $v0
[0x00400010] 0x00c23021 addu $6, $6, $2 ; 106: addu $a2, $a2, $vO0 jal main
[0x00400014] 0x0c100008 jal 0x00400020 [main] ; 107: jal main li $v0 10
[0x00400018] 0x3402000a ori $2, $0, 10 ; 108: 1i $v0 10
[0x0040001c] 0x0000000c syscall ; 109: syscall # syscall 10 (exit)
[0x00400020] 0x34020004 ori $2, $0, 4 ; 5:1i $v0, 4
[0x00400024] 0x3c011001 Iui $1, 4097 [hello] ; 6: la $a0, hello
[0x00400028] 0x34240000 ori $4, $1, 0 [hello]
[0x0040002c] 0x0000000c syscall ; 7: syscall
DATA
[0x10000000]...[0x1000fffc] 0x00000000
[0x1000fffc] 0x00000000
[0x10010000] 0x6c65480a 0x57206f6¢c 0x646c726f 0x0000000a
[0x10010010]...[0x10040000] 0x00000000

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No 1 - a bit better

= # comments!

.text
.globl main

1i $vo0, 4
la $a0, hello
syscall

.data #

.globl hello #
hello: .asciiz "Hello World" #

Computer Organisation COMP2008, Jamie Yang: j.yana@westernsydney.edu.au

Overview: Programs for SPIM

= comments start with “#”
= some lines start with *.”
= assembler directives
= some directives have parameters
= some lines start with a letter
= assembler instructions (or pseudoinstructions)
= mostly have parameters separated by commas
= some parameters start with “$” (registers)
= instruction names are reserved keywords
= labels are terminated with ™:”
= label is a symbol corresponding to a specific memory address

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No 1 - best version

= # comments!
Actual start of the main program to print "Hello World"
.text
.globl main # note ‘globl’ directive
main has to be a global label
addu $s7, $0, $ra # save the return address in ra
Output the string "Hello World" on separate line
.data # note ‘data’ directive
.globl hello
.asciiz "\nHello World\n“ # string to print
.text # note ‘text’ directive
1i $v0, 4 # print_str (system call 4)
la $a0, hello # takes string address as argument
syscall
Usual stuff at the end of the main
addu $ra, $0, $s7 # restore the return address
jr $ra # return to the main program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Some assembler directives

= text
= the instructions to execute
= .data
= the data in memory
= both can be used as many times as needed
= the assembler will combine all instructions in one predefined area
of memory,
= and all data in another predefined area of memory

Computer Organisation COMP2008, Jamie Yang: i.yana@westernsydney.edu.au

Overview: Data directives

= .byte bl, b2, ..., bn
= store values b1, b2 ... in n successive locations of memory
= .word wl, w2, ..., wn
= as above for words
= .Space n
= allocate n bytes of space in memory
= .ascii “string”
= store string in memory
= .asciiz “string”

= store string in memory followed by a null byte ie. a byte
containing all zeros (00000000)

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 33

Overview: Other directives

= .kdata and .ktext

= relate to special instructions and data accessible in privileged
mode only

= .globl abc

= declares symbol abc as global, so it can be used in other files

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 34

Revision: A top-down view of computer
organisation

= A top-down view

Time 1 min 5min 90 min
What's a Learning objectives Introduction
computer? Tt ™ "“"" ﬂ‘
{ eoseaimoA) Memory
i) m

]

o Nm;m:zﬂn/ | # Actual start of the main program to
Contents | ‘ Bty | | text
1 ooy |
%) 4 sttt e -globl main # note
r mﬁ\\ﬁ——/ Fmain: # main |
/o “ \- i ! addn §s7, §0, Sra 4 save
System \ # Output the string "Hello World" on
\ sl | | .
it S i | ~data
\ TN e/ _globl hello
m Lhello: .asciiz "\nfiello World\n"
{ engstsigemes) S Jtext # ote
ol (" dgcoutdem 1i §v0, 4 # print
aiky -
Computer Organisation COMP2008, Jamie Yang: i.yana@westernsydney.edu.au 35

Before the next lecture and first lab

= Recommended reading:

= Text readings are listed in Teaching Schedule and Learning Guide

= HP6, HP5, HP4 chap 1 “Computer Apst?actions and Technology”

= HP6, HP5, Appendix A, part A.9; I;i4, Appendix B, part B.9; or part
A.9 of HP_AppA.pdf on vUWS.”

General Data UnitOutline | Lsa‘r‘r\‘ir‘\‘g‘Guiaé‘|‘Teaching gcl\’e;uls | Aligning Assessments ¥ |

Extra Materials ascii_chart.pdf | bias_representation.pdf | HP_AppA.odf | instruction decoding.ndf | masking help.odf | PCSpim.pdf |

PCSpim Portable Version | Library materials

= Recommended: get Spim Simulator, install it on ur machine

= run the simplest “program No 1” which prints text on screen,
experiment with options, observe what PCSpim/QtSpim does

= make some changes: different text, new lines (\n), enter a
nonexisting instruction and observe ‘parser error’

= get instructions for lab 1, study all recommended materials
= do some lab 1 tasks before the lab.

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au 36

