
 Aim, Objectives
 Mode of delivery
 What’s a computer

Fundamental model
 Instruction Set Architecture (ISA)

MIPS [ARM, RISC-V, x86]
 Assembly programming

SPIM simulator, First SPIM program

Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture 1: Introduction

Teaching Staff

 Subject/Unit Coordinator + Lecturer + Tutor:
Jamie Yang

Room ER.G.12, Parramatta
E-mail: j.yang@westernsydney.edu.au
Phone: 9685 9233

2Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Aim

 Assumed knowledge:
 as specified in the subject outline for pre-requisites

 This subject is designed for students:
 interested in systems programming, and
 interested in hardware development.

 Learn about the interface between the hardware and
software of a computer system
 this will involve study of some aspects of computer architecture
 students will gain insight into CPU organisation at the assembly

language level.

3Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Pre-requisites/Co-requisites
COMP1005 Programming Fundamentals OR
Equivalent

MATH1006 Discrete Mathematics OR equivalent.

Computer architecture
CPU organisation
Assembly language
… …

HW SW Aims
Systems programming

Hardware development

Objectives

 Describe the internal representation of different types of
data, and discuss the effects of fixed-length number
representation on accuracy and precision.

 Identify the major components of a computer system, and
describe the basic organisation of the von Neumann
machine (data and instructions in the same memory).

 Describe how fundamental high-level programming
constructs and data structures are implemented at the
assembly language level.

 Discuss a simple CPU organisation and Instruction Set
Architecture (ISA) design, including instruction formats,
and addressing modes.

4Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Objectives – cont.

 Undertake a programming task at the hardware/software
interface, carry out such task in the assembly language
programming of the example processor.

 Identify the hardware mechanisms which support
interrupt/exception/trap handling, and explain how
interrupts are used to implement I/O control.

 Understand the basics of logic circuit design, including
fundamental building blocks, and minimisation of logic
expressions using Karnaugh maps (K-maps).

 Construct ALU (Arithmetic Logic Unit) using logic gates.

5Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Objectives (summary)

6Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Learning outcomes

 After completing this subject students will be able to:
 identify major components of a computer system,
 describe representation of different types of data, and understand

different number representations,
 use fundamental high-level programming constructs and data structures,

program at the hardware/software interface in the assembly language
 understand a simple CPU organisation and Instruction Set Architecture

(ISA) design, instruction formats, addressing modes,
 explain how interrupts are used to implement I/O control, understand

interrupt / exception / trap handling,
 use mathematical expressions to describe the functions of simple

combinational and sequential logic circuits, explain function of ALU.

 With small adjustment the skills and knowledge gained
apply to any computer architecture and any computer
organisation.

7Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery

 Lectures: 1 x 2 hour per week
 COME to lectures with lecture notes (printed or on-screen)
 PLEASE behave so that others can listen

 Format
 Lecture notes couldn’t cover all the details
 Some material may not be readily available elsewhere - expanded

topics, sample exam questions, etc. will be explained during
lectures, but are NOT included in provided notes

 Some sub-topics will be set for self study
 Lecture recordings available online for convenient access to the

lecture contents

8Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Mode of delivery – cont.

 Labs: 1 x 2 hour per week, starting week 2
 Read a lab instructions, study recommended materials, and do the

preparation BEFORE coming to the lab. When you start a lab you
will get mark for preparation part (but not later).

 If you come to a lab completely unprepared, you will waste your
time, and risk getting mark 0

 Be ready to ask questions, and get help from tutor
 Submit work on time (extension policy refers to the subject

learning guide)
 Format

 11 assessable tasks. No labs in intra session break.
 No work will be accepted via e-mail
 See lab 1 sheet for additional info

9Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Assessment Structure

 Lecture Quizzes (in lecture) 10% = 2@5%
 Laboratory Work 40%
 Final Examination (open book) 50%

10Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Lecture Quizzes

Laboratory Work

Final Examination

(open book)

The Textbook

 Hennessy and Patterson “Computer Organization &
Design” the best textbook of this type, used by hundreds
of Universities. Now in 6th edition.

 Reference to Text:
 Text HP6 (or PH6), Section 2.8 and Appendix A-22
 Text HP4 (or PH4), Section 2.8 and Appendix B-22
 Text HP2 (or PH2), Section 3.6 and Appendix A-22

 We do NOT go chapter by chapter, and NOT in sequence!
 Recommended: print HP_AppA.pdf (available on vUWS). It

is 84 pages, but you will be using almost all of them, also
during the exam (open book).

 Print 2pgs/page and double sided?
11Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

HP6, Appendix A = HP4, Appendix B

12Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Text HP6, HP5,
HP3, Appendix A
[e-copy available]

Text HP4,
Appendix B
[e-copy not
available]

Online Access (Table of Contents; Modules)

13Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 vUWS will be used extensively as a means of getting information to
students

 subject materials and announcements will be available online
 Check the subject website at least twice a week, and once before the

lecture every week

Major Components of a Computer

14Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Major Components – More Details

15Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

Major Components – Alternative View

16Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Road Map:
 Control: Chap 4, 6, Appendix C
 Datapath: Chap 3, 4, 6, Append C
 Memory: Chap 5
 I/O: Chap 5, 6

Processor
Control

Datapath

Memory
(where
programs, data
live when
running)

Devices

Output

Input

COMPUTER

Keyboard,
Mouse

Disk

Display,
Printer

What is a computer?

 Major components
 control (processor)
 datapath (processor)
 memory
 input

 disk
 keyboard
 mouse

 output
 disk
 monitor
 printer

 Another view
 processor
 input (mouse, keyboard)
 output (display, printer)
 storage

 main memory (DRAM, SRAM)
 secondary (long-term)

storage (disks, tapes etc)

17Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Components of a processor

18Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Arithmetic / Logic Unit

[ALU] Register file
(architecture

registers)

Program Counter PC

Datapath

Other special
registers

control

Memory abstraction

19Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 n is word size (architecture size) in bits
 32-bit architecture (232 = 4G); 64-bit architecture

 address space - total number of addresses available

cell address
0
1
2
3
4
5
6

2n-2
2n-1

8 bits (byte) per cell

MIPS organisation

20Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Policy of Registers Use Convention

21Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 Important – keep a copy of this page!
Name Register

Number
Usage Preserve on

call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values(declared variables) yes

$t8 - $t9 24-25 temporaries no

$k0, $k1 26, 27 reserved for OS kernel n.a.

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address (hardware) yes

What is MIPS?

 MIPS Technologies, Inc. see: http://www.mips.com
 MIPS (originally an acronym for Microprocessor without

Interlocked Pipeline Stages)

 Instruction Set Architecture (ISA)

 32- and 64-bit RISC (Reduced Instruction-Set Computing)
microprocessor architectures and cores for embedded
systems.
 license intellectual property and computer architecture.
 Used in: Sony PlayStation 1, 2, 3, Cisco routers, HP laser printers,

embedded industrial controllers, broadband and cable hardware,
satellite hardware, DVD products, and many more.

22Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Instruction Set Architecture

 A very important abstraction
 Interface between hardware and lowest level software
 Standard instructions, machine language bit patterns, etc.
 Advantage: different implementations of the same architecture

[Binary compatibility]
 Disadvantage: sometimes prevents using innovations

[Fit into the ISA]

23Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Undertake assembly

programming tasks at
the HW/SW interface

Simulation, SPIM, PC Spim

 Better environment
 building, testing new systems easy
 easily modified (changes only in software!)
 detect more errors
 provide debugging features not available in raw hardware

 Useful tool for studying computers, designing new
computers
 PCSpim/QtSpim - a simulator of the MIPS processor

 The classic PCSpim isn’t outdated; rather its operation style helps
reveal many technical details.

 You have free choice of other simulators though.
 prepare assembly language programs with a TEXT EDITOR
 You will use it in each lab to run and debug your programs.

 Disadvantages: it is not the real thing
24Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Example: C program

/* actual start of the main program */

/* to print "Hello World“ */

main () /* function name (no arguments) */

{ /* opening brace is used */

/* to delimit body of function */

printf (“Hello World”); /* one statement */

} /* closing brace is used */

/* to delimit body of function */

25Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

... would this be also OK:

main () { printf (“Hello World”); }

SPIM Program No 1 - Very Simple

.text # what to do

.globl main

main:

li $v0, 4

la $a0, hello

syscall

.data # data to be used to do it

.globl hello

hello: .asciiz "Hello World"

26Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 code similar to lab 1
 only two comments (# …)

SPIM Program No 1 - a bit better

.text #

.globl main #

main: #

li $v0, 4 #

la $a0, hello #

syscall #

.data #

.globl hello #

hello: .asciiz "Hello World" #

27Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 # comments!

SPIM Program No 1 - best version

Actual start of the main program to print "Hello World“

.text

.globl main # note ‘globl’ directive

main: # main has to be a global label

addu $s7, $0, $ra # save the return address in ra

Output the string "Hello World" on separate line

.data # note ‘data’ directive

.globl hello

hello: .asciiz "\nHello World\n“ # string to print

.text # note ‘text’ directive

li $v0, 4 # print_str (system call 4)

la $a0, hello # takes string address as argument

syscall

Usual stuff at the end of the main

addu $ra, $0, $s7 # restore the return address

jr $ra # return to the main program

28Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 # comments!

SPIM Program No. 1 – in PCSpim

29Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

SPIM Program No. 1 – in PCSpim

[0x00400000] 0x8fa40000 lw $4, 0($29) ; 102: lw $a0, 0($sp) # argc

[0x00400004] 0x27a50004 addiu $5, $29, 4 ; 103: addiu $a1, $sp, 4 # argv

[0x00400008] 0x24a60004 addiu $6, $5, 4 ; 104: addiu $a2, $a1, 4 # envp

[0x0040000c] 0x00041080 sll $2, $4, 2 ; 105: sll $v0, $a0, 2 addu $a2, $a2, $v0

[0x00400010] 0x00c23021 addu $6, $6, $2 ; 106: addu $a2, $a2, $v0 jal main

[0x00400014] 0x0c100008 jal 0x00400020 [main] ; 107: jal main li $v0 10

[0x00400018] 0x3402000a ori $2, $0, 10 ; 108: li $v0 10

[0x0040001c] 0x0000000c syscall ; 109: syscall # syscall 10 (exit)

[0x00400020] 0x34020004 ori $2, $0, 4 ; 5: li $v0, 4

[0x00400024] 0x3c011001 lui $1, 4097 [hello] ; 6: la $a0, hello

[0x00400028] 0x34240000 ori $4, $1, 0 [hello]

[0x0040002c] 0x0000000c syscall ; 7: syscall

DATA

[0x10000000]...[0x1000fffc] 0x00000000

[0x1000fffc] 0x00000000

[0x10010000] 0x6c65480a 0x57206f6c 0x646c726f 0x0000000a

[0x10010010]...[0x10040000] 0x00000000
30Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

 text and data segments

Overview: Programs for SPIM

 comments start with “#”
 some lines start with “.”

 assembler directives
 some directives have parameters

 some lines start with a letter
 assembler instructions (or pseudoinstructions)
 mostly have parameters separated by commas
 some parameters start with “$” (registers)
 instruction names are reserved keywords

 labels are terminated with “:”
 label is a symbol corresponding to a specific memory address

31Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Some assembler directives

 .text
 the instructions to execute

 .data
 the data in memory

 both can be used as many times as needed
 the assembler will combine all instructions in one predefined area

of memory,
 and all data in another predefined area of memory

32Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Data directives

 .byte b1, b2, … , bn
 store values b1, b2 … in n successive locations of memory

 .word w1, w2, … , wn
 as above for words

 .space n
 allocate n bytes of space in memory

 .ascii “string”
 store string in memory

 .asciiz “string”
 store string in memory followed by a null byte ie. a byte

containing all zeros (00000000)

33Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Overview: Other directives

 .kdata and .ktext
 relate to special instructions and data accessible in privileged

mode only
 .globl abc

 declares symbol abc as global, so it can be used in other files

34Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Revision: A top-down view of computer
organisation

 A top-down view

35Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

Time 1 min 5min 90 min

Contents

What’s a
computer?

Learning objectives Introduction

 Recommended reading:
 Text readings are listed in Teaching Schedule and Learning Guide
 HP6, HP5, HP4 chap 1 “Computer Abstractions and Technology”
 HP6, HP5, Appendix A, part A.9; HP4, Appendix B, part B.9; or part

A.9 of HP_AppA.pdf on vUWS.

 Recommended: get Spim Simulator, install it on ur machine
 run the simplest “program No 1” which prints text on screen,

experiment with options, observe what PCSpim/QtSpim does
 make some changes: different text, new lines (\n), enter a

nonexisting instruction and observe ‘parser error’
 get instructions for lab 1, study all recommended materials
 do some lab 1 tasks before the lab.

Before the next lecture and first lab

36Computer Organisation COMP2008, Jamie Yang: j.yang@westernsydney.edu.au

