

Word/Sentence Embeddings – Random (Ecostate)

vs Trained Models

Vijay Mallidi

19635574

A report submitted for

300597 Master Project 1

in partial fulfillment of the requirements for the degree of

Master’s in Data science

Supervisor: Laurence Park

School of Computing, Engineering and Mathematics

Western Sydney University

June 2020

 i

ABSTRACT

Word embeddings is one of the major advancements in the fields of machine learning and

Natural Language processing systems. word embedding is the conversion words to high

dimensional vectors, where all the words with similar meaning stays close to each other in

the vector space. Word embeddings deals with the possibility that the words can have

multiple degrees of similarities. One approach to Word embeddings is to train the model

using large set of documents corpus that consumes a lot of time that invites scalability

issues. The other approach is to use the models that does not require any training (pre

trained models) that are called Random Ecostate models. One of the best way to compare

these two approaches is to use the SentEval, an Evaluation tool kit for universal sentence

representations. SentEval performs set of tests on the results produced by both the

approaches to get the accuracy which can be used to compare.

 ii

ACKNOWLEDGMENTS

I would like to take time and express my gratitude and appreciation to all who gave me this

wonderful platform to complete the report. A special thanks to my mentor, Mr. Laurence

Park of the school of Computing, Engineering and Mathematics at the Western Sydney

University for continuous suggestions and encouragement throughout this unit and

especially in writing this report.

I would like to thank my parents without which none of this would have been possible for

me. I am also thankful to my friends who have been continuously assisting me throughout

my time in Sydney and been with me during thick and thin.

 iii

TABLE OF CONTENTS

Chapter Page

ABSTRACT ... i

ACKNOWLEDGMENTS .. ii
TABLE OF CONTENTS ... iii
LIST OF TABLES ... iv
LIST OF FIGURES .. v
CHAPTER I: INTRODUCTION .. 1

CHAPTER II: LITERATURE REVIEW ... 3

2.1 Latent Semantic Analysis ... 3

Understanding LSA .. 3
Information retrieval ... 4
Synonym Tests .. 5

2.2 Probabilistic Latent Semantic Analysis .. 6

Maximum likelihood ... 7
Evaluation ... 7

Experimental Results .. 8
2.3 Latent Dirichlet Allocation ... 10

Inference and Learning ... 12

Experiments with LDA ... 14
CHAPTER III: GATHERING THE DATA ... 16

CHAPTER IV: MODELS FOR WORD EMBEDDINGS ... 19
4.1 Trained model ... 19

4.2 Random Ecostate models .. 21
CHAPTER V: ACCURACY TEST FOR THE TRAINED AND RANDOM MODELS 22
CHAPTER VI: RESEARCH PLAN ... 23

REFERENCES ... 24
APPENDIX: PYTHON CODE USED FOR THE ANALYSIS 26

 iv

LIST OF TABLES

Table Page

Table 1: Various Tests performed in SentEval .. 22

 v

LIST OF FIGURES

Figure Page

Figure 1: Precision recall curves for matching the terms on all four document collections9

Figure 2: Average Precision results for all four document collections 9
Figure 3:Perplexity results for LSA and PLSA on the dataset collections (a) for MED and

(b) for LOB corpus.. 10
Figure 4:Graphical model representation of LDA .. 12
Figure 5: The Dirichlet Parameters (on the left) where γ_i>0 and top 15 words from the

respective topic. .. 14

Figure 6: Application in twitter... 18

Figure 7: Vector space in which the word “trump” is stored in.. 20
Figure 8: Similar words for trump, good, fun and bad ... 21
Figure 9: Gantt chart for research plan ... 23

 1

CHAPTER I: INTRODUCTION

In the earlier days most of the Language Processing Systems uses hand coded sets of rules

such as grammar rules or heuristic rules. Since late 1980’s and mid 1990’s most of the

natural language processing systems depend on machine learning where the system

automatically learns the rules for Language processing through analysis of large sets of

documents. Although this approach offers simplicity and robustness, it has many

limitations such as the amount of relevant data for speech recognition that can be obtained

from representing the words with similar meaning closer in a vector space.

word embeddings start the concept that the words can be represented as the dimensional

vectors, where all the words with similar meaning stays close to each other in the vector

space. According to this approach words can have multiple degrees of similarity. Results

obtained by Learning high dimensional embeddings from a large data are the most accurate.

Word embeddings has shown the promising results in processing the syntactic and semantic

information which makes it useful in wide range of applications. However, this approach

offers the best results, training the methods using large data sets makes it very challenging

and raises scalability issues. Random Ecostate approach eliminates the complexity of the

training the models and may provide similar results while using a very less data as

compared to the previous trained model approach.

Testing these 2 models possesses next challenge with easy solution provided by SentEval.

SentEval has 1 set of evaluations and evaluation pipeline that has a fixed standard

hyperparameters which helps in avoiding the discrepancies in results.

 2

Many researchers have done the work on any one of these two approaches. However, there

is no solid evidence that favours the one approach over the other, so I intend to compare

the accuracy of these two techniques. Although Random Ecostate isn’t trained, it might be

as good as the Trained models because the work in high dimensional spaces, Random

Projections provide a good method for dimension reduction with very little loss in

accuracy.

 3

CHAPTER II: LITERATURE REVIEW

Many researchers have done solid research and provided many useful insights that led to

the development of word embeddings.

2.1 Latent Semantic Analysis

The Authors of the paper on Introduction to Latent Semantic Analysis Landauer, T. K.,

Foltz, P. W., & Laham, D describes Latent Semantic Analysis as a method that can be used

to extract and represent the contextual-usage meaning of the words by statistical

computations applied to a large corpus of text. The author describes greatly about the

similarity of the meaning of the words by aggregating all the word contexts that does and

does not appear. Latent Semantic Analysis (LSA) processes the large sample of words

combined together to form meaningful sentences and passages, and represents the words

used in these sentences and passages as points in a very high dimensional Semantic space.

Latent Semantic Analysis’s similarity estimates are derived from a powerful mathematical

analysis which can deal with even more deeper relations. Out of many limitations of LSA

some of them are that LSA does not use the order of the words, does not have any logic or

relations. Even with the many limitations, LSA manages to get the decent results in getting

the similarity of the meaning of the words.

Understanding LSA

Authors of this papers explained that the Latent Semantic Analysis (LSA) can be

constructed in 2 ways such as “(1) a practical method of obtaining the estimates of words

and similarities among the words or (2) as a model of the computational process and

 4

representations underlying substantial portions of the acquisition and utilization of

knowledge”.

As a practical expedient, LSA is used to measure the relations between word to word, word

to passage and passage to passage that can be easily related with human understanding

involving semantic similarity. These relations produced from LSA are close to how humans

interpret the meaning of the words on daily basis and also the word choice of the writers

which further helps in approximating the human judgements of the similarity between

words and predict the impact of these similarities has on the similarities between the

passages. The predictions made by LSA are based on powerful mathematical analysis and

can be used in deeper relations and produces results much better than the conventional

Natural language predictors.

Information retrieval

Information retrieval can be explained as a searcher have something in mind which he or

she express in their own words and then the system try to find the text that has the same

meaning as what he or she searched for. Instead of matching these words with the

documents that has same words in them, Latent Semantic Indexing matches with the

documents that has the similar meaning as of the words used in the query. Singular Value

Decomposition (SVD) offers better results in matching the documents as compared to the

other previously used method. For information retrieval, the text of the documents database

is represented in matrix form and subjected to SVD where each word and document are

represented in small dimensional vector. The search query is also represented in a pseudo

document where the weighted average of the vectors of the words used in the query.

 5

Synonym Tests

Latent Semantic Analysis (LSA) represents similar words in similar ways but when it

comes to large text corpora its not entirely true as the relationship between some words in

LSA space can be mysterious such as the words ‘verbally ’ and ‘sadomasochism’ are very

close to each other but are not supposed to. It is hard to point to the exact reason for these

occurrences but it is possible that for some words that have more than one contextual

meaning have average high dimensional placement and some words are sampled too thin

so that they can be placed in proper way. It is also possible because that Latent Semantic

Analysis’s bag of words methods does not follow any syntactical, logical, and non-

linguistic pragmatic entailments, it misses the complete meaning of the words and get them

scrambled across the LSA space.

In an experiment, Singular Value Decomposition (SVD) was performed on text parts

containing about Five hundred characters (an average of about 73 words) from the first

portions of each of 30,743 articles that accumulate to 4.5 million text words that resulted

in sixty thousand words for a vector. In the Test of English as a Foreign Language (TOEFL)

Vocabulary text usually contains questions that has only one word and contains the four

alternative answers of one word each where the test taker chooses one answer that is most

similar to the question. LSA is able to get 65% which is identical to the large sample of

students who apply for entrance to USA from non-English speaking background country.

Errors of LSA has been compared with the errors of students. When LSA’s selection is

wrong and most of the students choose correct, it may be because that the LSA is more

sensitive to contextual associations and less to contrastive semantic features.

 6

2.2 Probabilistic Latent Semantic Analysis

The Author of the paper on Unsupervised method called Probabilistic Latent Semantic

Analysis (PLSA) Hofmann, T describes Probabilistic Latent Semantic Analysis as a novel

statistical technique for the analysis of two-mode and co-occurrence data. This has

applications in information retrieval, NLP, machine learning, and in related areas.

Statistical views presented on Latent Semantic Analysis leads to the Probabilistic Latent

Semantic Analysis where the probabilistic variable is well defined as a general model for

the data used.

A statistical model which is a Latent variable model for co-occurrence data called aspect

model is used in Probabilistic Latent Semantic Analysis (PLSA). Each observation of the

class variables is represented as 𝑧 ∈ 𝑍 = {𝑧1, 𝑧2, 𝑧3, 𝑧𝑘}. The joint probability of the

model is defined by the equation

𝑃(𝑑, 𝑤) = 𝑃(𝑑)𝑃(𝑤|𝑑), 𝑃(𝑤|𝑑) = ∑ 𝑃(𝑤|𝑧)𝑃(𝑧|𝑑)
𝑧∈𝑍

Where d is for documents and

W is for words

All the aspect models start as assumption of conditional independence that d and w are

conditioned independently on the state of respective latent variable. And since z has very

less number of elements as compared to the number of words in the collection it is easy to

predict the words if we use z as a bottle neck variable. Now the model can be parametrized

to be perfectly symmetric. The model can now be represented as

 7

𝑃(𝑑, 𝑤) = ∑ 𝑃(𝑧)𝑃(𝑑|𝑧)𝑃(𝑤|𝑧)

𝑧∈𝑍

Maximum likelihood

Maximum likelihood can be determined by using the Expectation Maximization algorithm.

As the name suggests, this algorithm has 2 steps 1) an expectation step – posterior

probabilities are calculated and 2) a maximization step – parameters are updated.

Equation for Expectation

𝑃(𝑧|𝑑, 𝑤) =
𝑃(𝑧)𝑃(𝑑|𝑧)𝑃(𝑤|𝑧)

∑ 𝑃(𝑧°)𝑃(𝑑|𝑧°)𝑃(𝑤|𝑧°)𝑧°∈𝑍

Equation for Maximization

𝑃(𝑧) ∝ ∑ ∑ 𝑛(𝑑, 𝑤)𝑃(𝑧|𝑑, 𝑤)

𝑤∈𝑊𝑑∈𝐷

Main difference between Probabilistic Latent Semantic Analysis and Latent Semantic

Analysis is the function in determining the optimal approximation. Where LSA uses the

Frobenius norm and PLSA depends upon the Maximum likelihood function.

Evaluation

The performance between the training data and the unseen test data will always be

different. The problem with the statistical learning theory is to generate conditions to

 8

generalize unseen data. This can be achieved by generalizing the maximum likelihood for

the models also known as Tampered Expectation Maximization (TEM). The Estimation

step in EM algorithm is re derived as

𝐹𝛽 = −𝛽 ∑ 𝑛(𝑑, 𝑤) ∑ 𝑃°(𝑧; 𝑑, 𝑤) log 𝑃(𝑑, 𝑤|𝑧) 𝑃(𝑍)

𝑧𝑑,𝑤

+ ∑ 𝑛(𝑑, 𝑤) ∑ 𝑃°(𝑧; 𝑑, 𝑤)𝑙𝑜𝑔𝑃°(𝑧; 𝑑, 𝑤)

𝑧𝑑,𝑤

Where 𝑃°(𝑧; 𝑑, 𝑤) =
[𝑃(𝑧)𝑃(𝑑|𝑧)𝑃(𝑤|𝑍)]𝛽

∑ [𝑃(𝑧)𝑃(𝑑|𝑧)𝑃(𝑤|𝑧)]̀̀̀ 𝛽
𝑧̀

To genialize the unseen test data, the TEM algorithm is implemented by following the

below 4 steps

Step 1 – Set 𝛽 < −1 then perform Estimation Maximisation.

Step 2 – Reduce 𝛽 < −𝑛𝛽 (where n<1) and perform an iteration

Step 3 – As long as performance on help-out data is non-negligible continue TEM iterations

otherwise go to step 2.

Step 4 – Stop when decreasing of 𝛽 does not show any further improvements.

Experimental Results

Hofmann concentrated mainly on two tasks as part of evaluating the model such as 1)

automatic indexing of the documents and 2) Perplexity Evaluation.

 9

For automatic indexing of the documents Hofmann has used 4 different medium sized

collection of documents namely MED, CRAN, CACM and CISI. The precision recall

graphs has been shown in Figure 1 while the results of average precision recall for 9 levels

one for each variance of 10% till 90% is shown in figure 2.

Figure 1: Precision recall curves for matching the terms on all four document collections

Figure 2: Average Precision results for all four document collections

 10

Two documents collections that has been used for perplexity evolution are MED that has

1033 documents and LOB corpus that has 1674 documents. The goal is to predict the

occurrences of the words in a document and to predict the conditioned nouns for the

adjectives. Figure 3 shows the probability curves for both the dataset collections (a) for

MED and (b) for LOB corpus.

Figure 3:Perplexity results for LSA and PLSA on the dataset collections (a) for MED and (b) for

LOB corpus

2.3 Latent Dirichlet Allocation

The Authors of the paper on Latent Dirichlet Allocation Blei, D.M., Ng, A.Y. and Jordan,

M.I describes LDA as a model for collections of discrete data that provides full generative

probabilistic semantics for documents. In LDA documents are modelled using a Dirichlet

random variable which can be describes as a probability distribution on a latent low-

dimensional topic space. The distribution of the words of a document which hasn’t been

 11

seen yet is treated as a continuous mixture over all the documents space and a discrete

mixture over all possible topics. This paper mostly concentrates on finding the correct

document during the search using the words rather than just similarity between the words.

Through out the paper authors text modelling as an example as its broadly applicable to

discrete data. The general assumption in LDA is that there are k latent topics based on

which all the documents are generated, and topic is represented as multinomial distribution

over the |v| words in the vocabulary. Then the document can be generated by selecting a

sample for these mixtures of topics and words from that mixture.

To create a document with N words w = {w1, w2, w3 . . .wN}. From Dirichlet distribution

𝜃 is sampled. Then for each word in the document a topic 𝑧𝑛 ∈ {1, . . , 𝑘} is sampled from

multinomial distribution. The probability of a document can be written as the following

equation. The graphical model is represented in figure 4.

𝑝(𝑤) = ∫ (∏ ∑ 𝑝(𝑤𝑛|𝑧𝑛; 𝛽)𝑝(𝑧𝑛|𝜃))𝑝(𝜃; 𝛼)𝑑𝜃

𝑘

𝑧𝑛

𝑁

𝑛=1𝜃

Where 𝑝(𝜃; 𝛼) is Dirichlet,

 𝑝(𝑧𝑛|𝜃) is multinomial parameterized by 𝜃

 𝑝(𝑤𝑛|𝑧𝑛; 𝛽) is multinomial over the words

 12

Figure 4:Graphical model representation of LDA

Inference and Learning

Expanding Equation 2.3.1 we have:

𝑝(𝑊; 𝛼, 𝛽) =
𝜏(∑ 𝛼𝑖)𝑖

∏ 𝜏(𝛼𝑖)𝑖
∫ (∏ 𝜃𝑖

𝛼𝑖−1

𝑘

𝑖=1

) (∏ ∑ ∏(𝜃𝑖𝛽𝑖𝑗)𝑤𝑛
𝑖

|𝑉|

𝑗=1

𝑘

𝑖=1

) 𝑑𝜃

𝑁

𝑛=1𝜃

Since the text collection is large and requires fast inferencing variational approach has been

utilized in approximating the likelihood in equation 2.3.2 and the equation is re written as

below:

log 𝑝(𝑤; 𝛼, 𝛽) = log ∫ ∑ 𝑝(𝑤|𝑧; 𝛽)𝑝(𝑧|𝜃)𝑝(𝜃; 𝛼)
𝑞(𝜃, 𝑧; 𝛾, ∅)

𝑞(𝜃, 𝑧; 𝛾, ∅)
𝑑𝜃

𝑧𝜃

 ≥ 𝐸𝑞[log 𝑝(𝑤|𝑧; 𝛽) + log 𝑝(𝑧|𝜃) + log 𝑝(𝜃; 𝛼) − log 𝑞(𝜃, 𝑧; 𝛾, ∅)]

Where 𝑞(𝜃, 𝑧; 𝛾, ∅) is fully factorized variational distribution

 13

 𝑞(𝜃; 𝛾) is Dirichlet and

 𝑞(𝑧𝑛; ∅𝑛) is Multinomial

To obtain the best approximation 𝑝(𝑤; 𝛼, 𝛽), bounds of 𝛾 𝑎𝑛𝑑 ∅ can be maximized. Since

the Dirichlet distribution is not computable nor differentiable, (k-1) dimensional integral

over 𝜃 which is computable is used. The two below equations will be used further:

∅𝑛𝑖 ∝ 𝛽𝑖𝑤𝑛
𝑒(𝜑(𝛾𝑖)− 𝜑 (∑ 𝛾𝑗))𝑘

𝑗=1

𝛾𝑖 = 𝛼𝑖 + ∑ ∅𝑛𝑖

𝑁

𝑛=1

Where 𝜑 is the first derivative of the log 𝜏 function and the resulting variational parameters

can also be used to interpret as an approximation of the parameters of the true posterior.

By variating Estimation and maximizing the lower bound on log likelihood of the

Estimation Maximization (EM) Algorithm for the collection of documents D = {w1, w2 .

. ., wM}. The equation 2.3.3 can be re written as below:

log 𝑝(𝐷) ≥ ∑ 𝐸𝑞𝑚
[𝑙𝑜𝑔𝑝(𝜃, 𝑧, 𝑤)] − 𝐸𝑞𝑚

[𝑙𝑜𝑔𝑞𝑚(𝜃, 𝑧)]

𝑀

𝑚=1

The Maximization step of EM algorithm on the above equation can be calculated with the

help of the M step update equation as below:

𝛽𝑖𝑗 ∝ ∑ ∑ ∅𝑚𝑛𝑖𝑤𝑚𝑛
𝑗

|𝑤𝑚|

𝑛=1

𝑀

𝑚=1

 14

Applying Newton-Raphson

𝜕𝑙

𝜕𝛼𝑖
= ∑ (𝜑(∑ 𝛼𝑗) − 𝜑(𝛼𝑖)) + (𝜑(𝛾𝑚𝑖) − 𝜑 (∑ 𝛾𝑚𝑗))

𝑘

𝑗=1

𝑘

𝑗=1

𝑀

𝑚=1

Experiments with LDA

LDA was tested using 2 corpora’s (1) TREC AP corpus that consisting 2500 news articles

and 37,871 words. And (2) is the CRAN corpus, consisting of 1400 abstracts and 7747

words. After examining the posterior distribution on the topic mixture, topics that

contributes most words to a particular document. Examining these multinomials gives

more information about these topics.

Figure 5: The Dirichlet Parameters (on the left) where γ_i>0 and top 15 words from the respective

topic.

To compare the performance of Latent Dirichlet Allocation with other models, perplexity

is calculated for the datasets, AP and CRAN corpora. For any M number of documents,

perplexity (𝐷𝑡𝑒𝑠𝑡) can be calculated as:

 15

exp (− ∑ 𝑙𝑜𝑔𝑝(𝑤𝑚)/ ∑ |𝑤𝑚|)

𝑚𝑚

 16

CHAPTER III: GATHERING THE DATA

Now, our project to do the comparison for the two approaches the data required is very

large. So, I choose to work with one of the most popular social networking sites, Twitter.

Getting Tweet data is very easy and very understandable to most of the audience. Twitter

data have five data objects that comprises of different fields:

• Tweet has the fields id, text, attachments, author_id, created_at, entities, geo,

in_reply_to_user_id, lang, possibly_sensitive, referenced_tweets, source,

public_metrics, withheld.

• Media has the fields media_key, type, duration_ms, height, preview_image_url,

url, width.

• Poll has the fields id, options, duration_minutes, end_datetime, voting_status.

• Place has the fields id, full_name, contained_within, country, country_code, geo,

name, place_type.

• User has the fields id, name, username, created_at, description, entities, location,

pinned_tweet_id, profile_image_url, protected, url, verified, withheld.

For the trained models, first we need to divide the twitter data into 2 parts as training data

set and testing dataset. Training data set is used to train the model we are going to use, and

testing data set is used to get the output. Whereas for random ecostate we just run the testing

dataset through the random ecostate to obtain the results.

 17

Python offers tweepy to easily access twitter API. This API provides access to entire twitter

restful API methods. Tweepy supports both authentication processes such as (1)

application-user that uses ‘tweepy.OAuthHandler()’ and (2) application-only that uses

‘tweepy.AppAuthHandler()’ but for our purpose we will use ‘tweepy.OAuthHandler()’

twitter authentication process. A twitter Application has been created that will allow us to

download the data from twitter. The application details are as shown in figure 6. Once the

application has been created we now have the details required for authentication such as

consumer key, consumer secret, access token, access token secret. Using these details we

can authorise the twitter account to download the data.

The data downloaded is in json format and has a lot of unwanted fields and noise that are

not essential for our analysis. For our analysis we are only interested in tweet text so all the

tweet texts has been extracted from twitter data and saved separately in a text file. Still the

tweet text is not ready for analysis as the tweets contain a lot of data that cannot be

interpreted by the Natural language processors.

Cleaning the Data

Most of the tweets contains data that is unclear to NLP’s as the tweets contains emoticons,

emojis, numbers, hashtags, web addresses etc., To deal with this unwanted data we have

used regular expressions. Regular Expression is used to check if a particular string matches

with a given expression and can be included or excluded for the data based on the

requirement. Using regular expression, we have deleted all the emoticons, emojis,

numbers, hashtags, web addresses etc., In order to make it easy for the system to undersand

 18

the words we have also converted all the capital letters to small letters. Now the data is

finally in form which we can analyse.

Figure 6: Application in twitter

 19

CHAPTER IV: MODELS FOR WORD EMBEDDINGS

word embedding is the technique of converting the words to high dimensional vectors,

where all the words with similar meaning stays close to each other in the vector space.

According to this approach words can have multiple degrees of similarity. Results obtained

by Learning high dimensional embeddings from a large data are the most accurate. In this

paper we concentrate on two different approaches/models (1) Trained models and (2)

Random (Ecostate) Model.

4.1 Trained model

Word2Vec is a word embedding technique used to generate vectors from given words.

Unlike humans, machines can only understand numbers. The words need to be represented

in numeric format and Word2Vec does exactly that. Using deep learning and network

based techniques, Word2Vec converts the words into vectors in such a way that the words

with similar meaning are close to each other in multi-dimensional vector space. The classic

example of perfect implementation of Word2Vec is that when a man is subtracted from a

king and women is added gives queen.

King – Man + Women = Queen

As already mentioned, Word2Vec model is implemented on Python with the help of

Python’s Gensim library. The data collected and cleaned will now be used to train the

Word2Vec model. The clean tweet text data is now tokenized to individual words as the

input to the Word2Vec model is words. The list of words collected and cleaned from twitter

is passed to the Word2Vec model of Genism package. The Word2Vec model has a

 20

min_count parameter that allows you to select the words that needs to be included for the

conversion based on the number of times the word has appeared in the text corpus. Now

we have our own Word2Vec model and figure 7 shows the vector space in which the word

“Trump” stored in.

Figure 7: Vector space in which the word “trump” is stored in

The similarity of the few words has been provided below in Figure 8. We can see that the

results produced are not as expected. This is because the data set chosen is not big enough.

So, it is clear that we have to choose the data that’s big enough to train the model in order

to produce expected results.

 21

Figure 8: Similar words for trump, good, fun and bad

4.2 Random Ecostate models

Trained models provide the best results but the scalability of the training method requires

a lot of time and introduces scalability issues. To avoid these challenges the Random

Ecostate approach can be followed which may provide similar results while using a very

less data as compared to the trained model approach. Random ecostate networks are

designed for sequence prediction problems. We can diverge the Ecostate state Network

from sequence prediction to sentence/word prediction. Since no training is required in this

technique, we can directly get the similarities of a particular word.

 22

CHAPTER V: ACCURACY TEST FOR THE TRAINED AND

RANDOM MODELS

To test the accuracy of the two approaches, trained model and Random Model we use an

evaluation Toolkit for Universal Sentence Representations called SentEval. SentEval

performs various tests as shown in the below Table 1. All the sentences manually classified

with values from 1 to 5.

Table 1: Various Tests performed in SentEval

But since our output is represented in vectors for all the words, we will have to convert the

words stored in vectors to a meaningful sentence that we have used in SentEval. Then the

outputs of both the techniques can be compared with the sentences in SentEval to get the

accuracy of both the techniques.

After the comparison of both the techniques I expect that the trained models will be more

accurate. If the accuracy of Randomly assigned model (Ecostate) is close to what we have

from trained models it would be very efficient option to choose Randomly assigned model

for word embeddings.

Name Task

MR Sentiment(Movies)

CR Product Reviews

SUBJ Subjectivity/Objectivity

MPQA Opinion Polarity

TREC Question-Type

SST-2 Sentiment(Movies)

SST-5 Sentiment(Movies)

 23

CHAPTER VI: RESEARCH PLAN

The plan for the current session is shown in below Gantt Chart:

Figure 9: Gantt chart for research plan

In the current session as an analysis, small twitter data has been downloaded and model

has been trained using the same data, but the results are not as expected because of

insufficient data. In the next session I will collect large amount of data from twitter and

train the model again. Once we have the trained model, I will have to test the results from

the Random Ecostate model and the accuracy of both using SentEval on Python.

 24

REFERENCES

Achlioptas, D., 2001, May. Database-friendly random projections. In Proceedings of the

twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems (pp. 274-281).

Blei, D.M., Ng, A.Y. and Jordan, M.I., 2002. Latent dirichlet allocation. In Advances in

neural information processing systems (pp. 601-608).

Blei, D.M., Ng, A.Y. and Jordan, M.I., 2003. Latent dirichlet allocation. Journal of

machine Learning research, 3(Jan), pp.993-1022.

Conneau, A. and Kiela, D., 2018. Senteval: An evaluation toolkit for universal sentence

representations. arXiv preprint arXiv:1803.05449.

Hofmann, T., 2013. Probabilistic latent semantic analysis. arXiv preprint arXiv:1301.6705.

Landauer, T.K., Foltz, P.W. and Laham, D., 1998. An introduction to latent semantic

analysis. Discourse processes, 25(2-3), pp.259-284.

Landauer, T.K. and Dumais, S.T., 1997. A solution to Plato's problem: The latent semantic

analysis theory of acquisition, induction, and representation of knowledge. Psychological

review, 104(2), p.211.

Li, P., Hastie, T.J. and Church, K.W., 2006, August. Very sparse random projections.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 287-296).

 25

Malik, U. (2019). Implementing Word2Vec with Gensim Library in Python. [online] Stack

Abuse. Available at: https://stackabuse.com/implementing-word2vec-with-gensim-

library-in-python/ [Accessed 15 Jun. 2020].

radimrehurek.com. (2019). gensim: topic modelling for humans. [online] Available at:

https://radimrehurek.com/gensim/models/word2vec.html [Accessed 15 Jun. 2020].

Wieting, J. and Kiela, D., 2019. No training required: Exploring random encoders for

sentence classification. arXiv preprint arXiv:1901.10444.

 26

APPENDIX: PYTHON CODE USED FOR THE ANALYSIS

#####################Downloading the data from twitter#######################

#pip install tweepy==3.8.0

import tweepy

#from tweepy import OAuthHandler

import json

from tweepy import Stream

from tweepy.streaming import StreamListener

import re

consumer_key='492T056Vq4TeUnDKDTs01amTC'

consumer_secret='0gDOGaHpVWlFxEYhQxCcSoeAb5ntonIlGOLqyyum1NTP3CtazY'

access_token='1384285812-QvXHCDqfFd5kRTbtpEx7SlGRgvS6mCmqF5GwWNi'

access_token_secret='RhOz3iGtQujSVFrO7PQN2ZIDOqm8LFh2hMz8bOMmO9by9'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

searchTerm = input("Enter topic: ")

limit = int(input("Enter the maximum number of tweets: "))

tweets = tweepy.Cursor(api.search,q=searchTerm,count=limit, lang="en",

tweet_mode='extended').items(limit)

f3 = open('test.txt', 'w', encoding="utf-8")

with open('tweets.json', 'w', encoding='utf8') as file:

 for tweet in tweets:

 data = tweet._json['full_text']

 print(data)

 f3.write(data)

f3.close()

 27

#####################Pre-processing the downloaded data#####################

import nltk

import string

import re

from nltk.corpus import stopwords

nltk.download('punkt')

with open('C:/Users/vijju/vj.txt', 'r+', encoding = 'utf-8') as fh:

 data = fh.read()

 fh.close()

data2 = ''.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)","",data))

data2 = data2.lower()

data2 = re.sub(r'\d+', '', data2)

stop_words = set(stopwords.words('english'))

from nltk.tokenize import word_tokenize

tokens = word_tokenize(data2)

result = [i for i in tokens if not i in stop_words]

from gensim.models import Word2Vec

word2vec = Word2Vec(result, min_count=3)

vocabulary = word2vec.wv.vocab

print(vocabulary)

v1 = word2vec.wv['covid']

 28

#################### Training the model using Word2Vec #####################

import nltk

import string

import re

from nltk.corpus import stopwords

#nltk.download('punkt')

from gensim.models import Word2Vec

with open('C:/Users/vijju/vj.txt', 'r+', encoding = 'utf-8') as fh:

 data = fh.read()

 fh.close()

data2 = ''.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)","",data))

data2 = data2.lower()

data2 = re.sub(r'\d+', '', data2)

all_sentences = nltk.sent_tokenize(data2)

all_words = [nltk.word_tokenize(sent) for sent in all_sentences]

for i in range(len(all_words)):

 all_words[i] = [w for w in all_words[i] if w not in stopwords.words('english')]

my_w2v = Word2Vec(all_words, min_count=3)

vocabulary = my_w2v.wv.vocab

print(vocabulary)

v1 = my_w2v.wv['trump']

sim_words_for_trump = my_w2v.wv.most_similar('trump')

sim_words_for_good = my_w2v.wv.most_similar('good')

sim_words_for_fun = my_w2v.wv.most_similar('fun')

sim_words_for_bad = my_w2v.wv.most_similar('bad')

