
DECENTRALIZED ORCHESTRATION OF DATA-CENTRIC
WORKFLOWS USING THE OBJECT MODELING SYSTEM

Bahman Javadi
School of Computing, Engineering and Mathematics
University of Western Sydney, Australia

 Martin Tomko and Richard O. Sinnott

 The University of Melbourne, Australia 1

The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

AGENDA

¢  Introduction
¢ Object Modeling System (OMS)
¢ AURIN Project
¢ OMS-based Workflows
¢ OMS Service Orchestrations
¢ Experimental Results
¢ Conclusions

2

INTRODUCTION

¢ Service-oriented Architecture
�  Web services

¢ Workflow Technologies
�  Coordinate a collection of services

¢ Workflow implementation approaches
�  Service Orchestration

¢  Centralized engine

�  Service Choreography
¢  Distributed control

¢ Goal: a new framework to implement data-centric
workflows based on Object Modeling System
(OMS)

3

à bottleneck for data-centric workflows

OBJECT MODELING SYSTEM (OMS)

¢ A framework to implement science model
�  Object oriented (component-based)
�  Pure Java
�  Last version: OMS 3.0

¢ Main features
�  Non-invasive

¢  Annotation of existing languages

�  Multi-threading
¢  Able to be deployed on multi-core Cluster/Cloud

�  Domain Specific Language (DSL)
¢  Groovy language

4

COMPONENTS IN OMS

¢ Components
�  PJO + annotation

¢ Annotations
�  @In
�  @Out
�  @Execute
�  ….

¢ Multi-purpose
components

¢ Automatic manual
generation

5

The results of data selection and analysis can be fed to
a variety of visual data analytics components, supporting
visual exploration of spatio-temporal phenomena. 2D (and
soon 3D) visualization of spatial data, their temporal filtering,
and multidimensional data slicing and dicing are amongst
the most sought-after components of AURIN, that will be
integrated with a collaborative environment. Thus will allow
researchers from geographically remote locations to collabo-
rate and coordinate on their research problems.

AURIN is also leveraging the resources of other Australian-
wide research e-Infrastructures such as the National eResearch
Collaboration Tools and Resources (NeCTAR)6 project, which
provides infrastructure services for the research community,
and the Research Data Storage Infrastructure (RDSI)7 project,
which provides large-scale data storage. At the moment, the
AURIN portal is running on several virtual machines (VMs)
within the NeCTAR NSP (National Servers Program) while
we utilize NeCTAR Research Cloud as the processing infras-
tructure to execute complex workflows.

III. OBJECT MODELING SYSTEM

The Object Modeling System (OMS) is a pure Java and
object-oriented modeling framework that enables users to
design, develop, and evaluate science models [11]. OMS
version 3.0 (OMS3) provides a general-purpose framework
to make easier integration of such models in a transparent
and scalable manner. OMS3 is a highly inter-operable and
lightweight modeling framework for component-based model
and simulation development on different computing platforms.
The term component is a concept in software engineering
which extends the reusability of code from the source level to
the binary executable. OMS3 simplifies the design and devel-
opment of model components through programming language
annotations which capture metadata to be used by the model.
Interested readers can refer to [3], [11] for more information
about the OMS3 architecture.

The main features of the OMS3 framework are:
• OMS3 adopts a non-invasive approach for model or

component integration based on annotating ’existing’
languages. In other words, using and learning new data
types and traditional application programming interfaces
(API) for model coupling is mostly eliminated.

• The framework utilizes multi-threading as the default
execution model for defined components. Moreover,
component-based parallelism is handled by synchroniza-
tions on objects passed from and to components. There-
fore, without explicit programming by the developer, the
framework is able to be deployed on multi-core Cluster
and Cloud computing environments.

• OMS3 simplifies the complex structure for model de-
velopment by leveraging recent advantages in Domain
Specific Languages (DSL) provided by the Groovy pro-
gramming language. This feature helps assembling model
applications or model calibration and optimization.

6http://nectar.org.au
7http://rdsi.uq.edu.au

A. Components in the Object Modeling System

Components are basic elements in OMS3 which represent
self-contained software packages that are separated from the
framework. OMS3 takes advantage of language annotations for
component connectivity, data transformation, unit conversion,
and automated document generation. A sample OMS3 com-
ponent to calculate the average of a given vector is illustrated
in Listing 1. All annotations start with @ symbol.

Listing 1: A sample OMS3 component
package oms . components ;
im por t oms3 . a n n o t a t i o n s .⇤ ;

@Desc r ip t i on (” Average o f a g i v e n v e c t o r . ”)
@Author (name = ”Bahman J a v a d i ”)
@Keywords (” S t a t i c t i c , Average ”)
@Status (S t a t u s . CERTIFIED)
@Name(” a v e r a g e ”)
@License (” G e n e r a l P u b l i c L i c e n s e V e r s i o n 3 (GPLv3) ”)

p u b l i c c l a s s AverageVec to r {
@Desc r i p t i on (” The i n p u t v e c t o r . ”)
@In
p u b l i c L i s t<Double> inVec = n u l l ;

@Desc r i p t i on (” The a v e r a g e o f t h e g i v e n v e c t o r . ”)
@Out
p u b l i c Double outAvg = n u l l ;

@Execute
p u b l i c v o i d p r o c e s s () {

Double sum ;
i n t c ;
sum = 0 . 0 ;
f o r (c = 0 ; c < inVec . s i z e () ; c ++)

sum = sum + inVec . g e t (c) ;
outAvg = sum / inVec . s i z e () ;

}

As one can see, the only dependency on OMS3 packages is
for annotations (import oms3.annotations.*), which
minimizes dependencies on the framework. This enables
multi-purposing of components, which is hard to accomplish
with the traditional APIs. In other words, components are
Plain Java Objects (PJO) enriched with descriptive metadata
by means of language annotations. Annotations in OMS3 have
the following features:

• Dataflow indications are provided by using @In and
@Out annotations.

• The name of the computational method is not important
and must be only tagged with @Execute annotation.

• Annotations can be used for specification and documen-
tation of the component (e.g., @Description).

In the AURIN application of OMS3, we have developed a
package to generate a html-based document for each compo-
nent, which is itself accessible through the system portal.

B. Model in the Object Modeling System

As mentioned before, OMS3 leverages the power of a
Domain Specific Language (DSL) to provide a flexible in-
tegration layer above the modeling components. To do this,
OMS3 gets benefit from the builder design-pattern DSL, which
is expressed as a Simulation DSL provided by the Groovy
programming language. DSL elements are simple to define

WORKFLOW/MODEL TEMPLATE IN OMS

6

¢ Components : declaration of all components
¢ Parameters: input parameters
¢ Connect: connection of components

outAvg = sum / inVec . s i z e () ;
}

As one can see, the only dependency on OMS3 packages is for annotations (import oms3.annotations.*), which
minimizes dependencies on the framework. This enables multi-purposing of components, which is hard to accomplish with
the traditional APIs. In other words, components are Plain Java Objects (PJO) enriched with descriptive metadata by means
of language annotations. Annotations in OMS3 have the following features:

• Dataflow indications are provided by using @In and @Out annotations.

• The name of the computational method is not important and must be only tagged with @Execute annotation.

• No explicit marshaling or un-marshaling of component variables is needed.

• Annotations can be used for specification and documentation of the component (e.g. @Description).

In the AURIN application of OMS3, we have developed a package to generate a html-based document for each component,
which is itself accessible through the system portal.

3.2 Model in the Object Modeling System

As mentioned before, OMS3 leverages the power of a Domain Specific Language (DSL) to provide a flexible integration
layer above the modeling components (see Figure 2). To do this, OMS3 gets benefit from the builder design-pattern DSL,
which is expressed as a Simulation DSL provided by the Groovy programming language. DSL elements are simple to define
and use in development of model applications, which is very useful to create complex workflows.

A model/workflow in OMS3 has three parts that need to be specified (see Listing 2):

• components: to declare the required components;

• parameter: to initialize the component parameters;

• connect: to connect the existing components.

Listing 2: Model/Workflow template in OMS3
/ / c r e a t i o n o f t h e s i m u l a t i o n o b j e c t
sim = new oms3 . S i m B u i l d e r (l o g g i n g : ’OFF ’) . sim (name : ’ t e s t ’) {

/ / t h e model space
model {

/ / space f o r t h e d e f i n i t i o n o f t h e r e q u i r e d components
components {
}

/ / i n i t i a l i z a t i o n o f t h e p a r a m e t e r s
p a r a m e t e r {
}

/ / c o n n e c t i o n o f t h e d i f f e r e n t components
c o n n e c t {
}

}
}
/ / s t a r t o f t h e s i m u l a t i o n t o o b t a i n t h e r e s u l t s
r e s u l t s = sim . run () ;

Since OMS3 supports component-based multi-threading, each component is executed in its own separate thread managed by
the framework runtime. Each thread communicates to other threads through @Out and @In fields, which are synchronized
using a producer/consumer-like synchronization pattern.

5

AURIN PROJECT

¢ Australian Urban Research Infrastructure
Network (AURIN)
�  National e-Research Project (2010-2014)
�  An e-Infrastructure supporting research in urban and

built environment research disciplines
�  Web Portal Application (portlet-based)

¢  A lab in a browser
¢  AAF Access: http://portal.aurin.org.au
¢  Data discovery
¢  Data visualization (Mapping service)
¢  Access to the federated data source

¢  Web Feature Service (WFS)
¢  NeCTAR NSP and Research Cloud
¢  RDSI Storage

7

 THE AURIN ARCHITECTURE

8

OMS-BASED WORKFLOWS

¢ Annotation of existing code
�  Embedded metadata using annotations
�  Attached metadata using annotations (e.g., XML file)

¢ Basic Components
�  Web Feature Service (WFS) Client
�  Statistical Data and Metadata eXchange (SDMX)

Client
�  Basic statistical functions

¢ Workflow Composition
�  A standalone portlet
�  Save a workflow through web portal

¢  Save as an OMS script
 9

OMS-BASED WORKFLOWS

¢ Workflow in the AURIN portal

10

OMS WORKFLOW WITH ONE WFS CLIENT

¢ WFS client example
�  Dataset: Landgate WA
�  Bounding box (bbox): geographical area

¢ DSL makes the workflow very descriptive

11

Listing 2: An OMS workflow with one WFS client
/ / t h i s i s an example f o r a wfs query
d e f s i m u l a t i o n = new oms3 . S i m B u i l d e r (l o g g i n g : ’ALL ’) . sim (name : ’ w f s t e s t ’) {

model {

components {
’ w f s c l i e n t 0 ’ ’ w f s c l i e n t ’

}
p a r a m e t e r {

’ w f s c l i e n t 0 . da t a se tName ’ ’ABS�078 ’
’ w f s c l i e n t 0 . w f s P r e f i x ’ ’ s l i p ’
’ w f s c l i e n t 0 . d a t a s e t R e f e r e n c e ’ ’ Landga te ABS ’
’ w f s c l i e n t 0 . datasetKeyName ’ ’ s s c c o d e ’
’ w f s c l i e n t 0 . d a t a s e t S e l e c t e d A t t r i b u t e s ’ ’ s sc code , e m p l o y e d f u l l t i m e , e m p l o y e d p a r t t i m e ’
’ w f s c l i e n t 0 . bbox ’ ’ 129.001336896 , �38.0626029895 ,141.002955616 , �25.996146487500003 ’

}
c o n n e c t {
}}
}
r e s u l t = s i m u l a t i o n . run () ;

To address this, we take advantage of the OMS3 architecture,
which is deliberately designed to be flexible and lightweight.
To do this, we utilize the OMS3 core and a command-
line interface that includes a workflow script and libraries
of annotated components to execute a workflow. In many
respects, workflow enactment can be thought of as simple
execution of a shell script on the command-line. Therefore,
when a user requests to enact a workflow from the AURIN
portal, the workflow script along with the OMS3 core is
sent to the processing infrastructure. In this case, the output
of a service invocation can be sent directly to where it is
subsequently required in the workflow. This can be considered
as a decentralized service orchestration or a hybrid model
of service orchestration and service choreography. Using this
approach, we can decrease the amount of intermediate data
and potentially improve the performance of workflows.

Figure 3 shows a decentralized architecture to execute
the same workflow as in Figure 2 utilizing a processing
infrastructure offered through the Cloud. Here, the data flow
is not being passed through the workflow portlet. Rather we
delegate the OMS3 core to enact the workflows and receive
the data in a place where they are going to be analyzed with
computational scalability. Therefore, the decentralized service
orchestration can decrease intermediate data and as a result
decreases network traffic.

C. Cloud-based Execution
Cloud computing environments provide easy access to scal-

able high-performance computing and storage infrastructures
through Web services. One particular type of Cloud services,
which is known as Infrastructure-as-a-Service (IaaS), provides
raw computing and storage in the form of virtual machines,
which can be customized and configured based on application
demands [23]. We utilize Cloud resources as the processing
infrastructure to execute the complex workflows for both
centralized and decentralized approaches.

As noted, OMS3 supports parallelism at the component
level without any explicit knowledge of parallelization and

Fig. 3: Decentralized service orchestration using the OMS3
core.

threading patterns from a developer. In addition to multi-
threading, OMS3 can be scaled to run on any Cluster and
Cloud computing environment. Using Distributed Shared Ob-
jects (DSO) in Terracotta10, created workflows can share data
structures and process them in parallel within a workflow.
These features enable us to enact any OMS workflow on Cloud
infrastructures as illustrated in Figure 2 and Figure 3.

As we discussed in Section II, the AURIN project is also
running in the context of many major e-Infrastructure invest-
ment activities that are currently taking place across Australia.
One of these projects is NeCTAR which has a specific focus
on eResearch tools, collaborative research environment, and
Cloud infrastructure. The NeCTAR Research Cloud [15] is
aiming to offer three types of VMs to Australian researchers
as follows:

• Small: 1 core, 4GB RAM, 30GB storage

10http://www.terracotta.org/

OMS SERVICE ORCHESTRATION

¢ Workflow Enactment
�  Running OMS scripts by the OMS3 engine
�  Centralized service orchestration

12

OMS SERVICE ORCHESTRATION

¢ Take advantage of the OMS3 architecture
�  Flexible and lightweight (CLI for the OM3 core)
�  Decentralized service orchestration

13

CLOUD-BASED EXECUTION

¢ OMS3 Features
�  Supports component-level parallelism
�  Terracotta for distributed shared memory systems
�  Run on any Cluster and IaaS Cloud

¢ Developed Interfaces
�  NeCTAR Research Cloud

¢  Small Instance: 1-core, 4GB RAM
¢  Medium Instance: 2-core, 8GB RAM
¢  Extra-Large Instance: 8-core, 32GB RAM

�  Amazon’s EC2

14

EXPERIMENTAL SETUP

¢  AURIN Portal is deployed in NeCTAR NSP (4 VMs)

¢ Real workflow for typical urban analysis
�  Create topological spatial relationship
�  Relation: touch
�  Output: a topology graph shows the adjacencies of

suburbs/LGA

¢  Input datasets

15

TABLE I: Number of geometries per state in Australia.

State No. of Geometries
Suburbs LGA

Western Australia (WA) 952 142
South Australia (SA) 946 136
Tasmania (TAS) 402 28
Queensland (QLD) 2112 160
Victoria (VIC) 1833 111
New South Wales (NSW) 3146 178

TABLE II: Workflows for the experiments.

Workflow Data size (MB)
Geometries Graph

WA 33.02 2.97
WA, SA 66.44 5.90
WA, SA, TAS 119.75 6.30
WA, SA, TAS, QLD 170.35 21.53
WA, SA, TAS, QLD, VIC 244.97 33.90
WA, SA, TAS, QLD, VIC, NSW 399.04 69.43

• Medium: 2 cores, 8GB RAM, 60GB storage
• Extra-Large: 8 cores, 32GB RAM, 240GB storage
At the moment, we use all types of NeCTAR instances

as the processing infrastructures based on complexity of the
workflows. In addition to NeCTAR Cloud, we developed an
interface to execute the OMS workflows on Amazon’s EC2 [2].
This provides an opportunities to utilize Cloud resources
from other providers in case of unavailability of the national
research Cloud. The OMS3 core is very portable and flexible
and can be adopted in any Cloud infrastructure.

V. PERFORMANCE EVALUATION

In order to validate the proposed framework, a set of perfor-
mance analysis experiments have been conducted. We analyze
the execution of some realistic data-centric workflows in the
urban research domain on two different Cloud infrastructures.

A. Experimental Setup
The workflows that have been considered for the perfor-

mance evaluation are the initial part of a typical urban analysis
task. Spatial data analysis workflows typically start with a
data intensive stage where multiple datasets are gathered, and
prepared for analysis by building computationally efficient
data structures. Most types of spatial analysis include the
interrogation of fundamental topological spatial relationships
between the constituent spatial objects, such as when two
objects touch or overlap [13]. These relationships fundamen-
tally underpin applications in the spatial sciences, from spatial
autocorrelation analysis [8], trip planning [12] and route di-
rections communication [22]. Graph-based data structures are
efficient representations supporting the encoding of topological
relationships and their computational analysis. (e.g., least-cost
path algorithms [16]).

In our use case, the collection of suburb and LGA (Lo-
cal Government Area)11 boundaries for each of the major

11Each LGA contains a number of suburbs.

Australian states are considered as the input datasets. Each
boundary is presented as a geometry encoded in the Geography
Markup Language [19] (and XML encoding of geographic
features). The number of geometries for each state are listed
in Table I. The datasets for each individual state originate from
the Australian Bureau of Statistics (ABS)12 and are provided
through a OGC WFS service provided by Landgate WA (see
Listing 2). The series of WFS getFeature queries result in
individual feature collections (records) for suburbs/LGAs of
each state. The result sets are combined into a single feature
collection as part of the workflow, and their topology, based
on the spatial relationship (i.e., touch) have been computed.
The result of the workflow is a topology graph representing
adjacencies between suburbs/LGAs with a computational task
with a complexity of O(n2) (unless optimized by a spatial
index). This graph then serves as a basic structure for further
analysis by urban researchers.

The series of test workflows based on the aforementioned
scenarios is listed in Table II where each workflow generates
a topology graph for a different number of Australian states.
Moreover, the size of input geometries and output graph for
these workflows reveal that they are good examples of realistic
data-centric workflows.

The AURIN portal has been deployed in VMs hosted
by NeCTAR NSP, and for each experiment, we enact the
workflow on a Cloud infrastructure through this portal. We
utilize Extra-Large instances from NeCTAR Research Cloud
and Hi-CPU Extra-Large instances from Amazon’s EC2 [2]13.
The characteristics of these two instances in terms of CPU
power, memory size, and operation system (i.e., Linux) are
similar (see Section IV-C). Each workflow was executed 50
times on both Cloud infrastructures where results are accurate
within a confidence level of 95%.

B. Results and Discussions
The experimental results for the centralized and decentral-

ized approach for given workflows on the NeCTAR and EC2
Cloud are depicted in Figure 4. In these figures, y-axis and
x-axis display execution time and the total data transferred
to the Cloud resources for each workflow listed in Table II,
respectively. It should be noted that in both architectures, the
result of the workflow enactment (i.e., topology graph) must
be returned to the AURIN portal, so it is not shown in these
figures.

These figures reveal that decentralized service orchestration
reduces the workflow execution time in all cases compared
to centralized orchestration. For the case of the EC2 Cloud
(Figure 4(b)), we can observe more significant difference
between the two architectures, due to limited network band-
width in Amazon instances. Therefore, decreasing the network
traffic using decentralized architecture substantially reduces
the execution time of the data-centric workflows. For the
results in Figure 4(a), the system portal and Cloud resources

12http://www.abs.gov.au/
13We choose Asia Pacific region (ap-southeast) to reduce the network

latency.

EXPERIMENTAL SETUP

¢ Data-size for workflows
�  Data-centric Workflows

16

TABLE I: Number of geometries per state in Australia.

State No. of Geometries
Suburbs LGA

Western Australia (WA) 952 142
South Australia (SA) 946 136
Tasmania (TAS) 402 28
Queensland (QLD) 2112 160
Victoria (VIC) 1833 111
New South Wales (NSW) 3146 178

TABLE II: Workflows for the experiments.

Workflow Data size (MB)
Geometries Graph

WA 33.02 2.97
WA, SA 66.44 5.90
WA, SA, TAS 119.75 6.30
WA, SA, TAS, QLD 170.35 21.53
WA, SA, TAS, QLD, VIC 244.97 33.90
WA, SA, TAS, QLD, VIC, NSW 399.04 69.43

• Medium: 2 cores, 8GB RAM, 60GB storage
• Extra-Large: 8 cores, 32GB RAM, 240GB storage
At the moment, we use all types of NeCTAR instances

as the processing infrastructures based on complexity of the
workflows. In addition to NeCTAR Cloud, we developed an
interface to execute the OMS workflows on Amazon’s EC2 [2].
This provides an opportunities to utilize Cloud resources
from other providers in case of unavailability of the national
research Cloud. The OMS3 core is very portable and flexible
and can be adopted in any Cloud infrastructure.

V. PERFORMANCE EVALUATION

In order to validate the proposed framework, a set of perfor-
mance analysis experiments have been conducted. We analyze
the execution of some realistic data-centric workflows in the
urban research domain on two different Cloud infrastructures.

A. Experimental Setup
The workflows that have been considered for the perfor-

mance evaluation are the initial part of a typical urban analysis
task. Spatial data analysis workflows typically start with a
data intensive stage where multiple datasets are gathered, and
prepared for analysis by building computationally efficient
data structures. Most types of spatial analysis include the
interrogation of fundamental topological spatial relationships
between the constituent spatial objects, such as when two
objects touch or overlap [13]. These relationships fundamen-
tally underpin applications in the spatial sciences, from spatial
autocorrelation analysis [8], trip planning [12] and route di-
rections communication [22]. Graph-based data structures are
efficient representations supporting the encoding of topological
relationships and their computational analysis. (e.g., least-cost
path algorithms [16]).

In our use case, the collection of suburb and LGA (Lo-
cal Government Area)11 boundaries for each of the major

11Each LGA contains a number of suburbs.

Australian states are considered as the input datasets. Each
boundary is presented as a geometry encoded in the Geography
Markup Language [19] (and XML encoding of geographic
features). The number of geometries for each state are listed
in Table I. The datasets for each individual state originate from
the Australian Bureau of Statistics (ABS)12 and are provided
through a OGC WFS service provided by Landgate WA (see
Listing 2). The series of WFS getFeature queries result in
individual feature collections (records) for suburbs/LGAs of
each state. The result sets are combined into a single feature
collection as part of the workflow, and their topology, based
on the spatial relationship (i.e., touch) have been computed.
The result of the workflow is a topology graph representing
adjacencies between suburbs/LGAs with a computational task
with a complexity of O(n2) (unless optimized by a spatial
index). This graph then serves as a basic structure for further
analysis by urban researchers.

The series of test workflows based on the aforementioned
scenarios is listed in Table II where each workflow generates
a topology graph for a different number of Australian states.
Moreover, the size of input geometries and output graph for
these workflows reveal that they are good examples of realistic
data-centric workflows.

The AURIN portal has been deployed in VMs hosted
by NeCTAR NSP, and for each experiment, we enact the
workflow on a Cloud infrastructure through this portal. We
utilize Extra-Large instances from NeCTAR Research Cloud
and Hi-CPU Extra-Large instances from Amazon’s EC2 [2]13.
The characteristics of these two instances in terms of CPU
power, memory size, and operation system (i.e., Linux) are
similar (see Section IV-C). Each workflow was executed 50
times on both Cloud infrastructures where results are accurate
within a confidence level of 95%.

B. Results and Discussions
The experimental results for the centralized and decentral-

ized approach for given workflows on the NeCTAR and EC2
Cloud are depicted in Figure 4. In these figures, y-axis and
x-axis display execution time and the total data transferred
to the Cloud resources for each workflow listed in Table II,
respectively. It should be noted that in both architectures, the
result of the workflow enactment (i.e., topology graph) must
be returned to the AURIN portal, so it is not shown in these
figures.

These figures reveal that decentralized service orchestration
reduces the workflow execution time in all cases compared
to centralized orchestration. For the case of the EC2 Cloud
(Figure 4(b)), we can observe more significant difference
between the two architectures, due to limited network band-
width in Amazon instances. Therefore, decreasing the network
traffic using decentralized architecture substantially reduces
the execution time of the data-centric workflows. For the
results in Figure 4(a), the system portal and Cloud resources

12http://www.abs.gov.au/
13We choose Asia Pacific region (ap-southeast) to reduce the network

latency.

RESULTS

¢ Execution time of Workflows on NeCTAR Cloud
�  Extra-Large Instance 8-core, 32GB RAM

17

RESULTS

¢ Execution time of Workflows on Amazon’s EC2
�  Hi-CPU Extra-Large instances 8-core, 17GB RAM
�  ap-southeast region (Singapore)

18

RESULTS

¢ Average performance improvement

19

CONCLUSIONS

¢ A new framework to implement data-centric
workflows based on OMS

¢ Using decentralized service orchestration to
bypass the bottleneck of centralized engine

¢ Substantially improvement the performance of
data-centric workflows,
�  20% on NeCTAR
�  100% on EC2

¢ Future Work
�  Automate provisioning of Cloud resources for OMS-

based workflows

20

21

