Performance Analysis of Preemption-aware Scheduling in Multi-Cluster Grid Environments

Mohsen Amini Salehi , Bahman Javadi, Rajkumar Buyya Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia mohsena, bahmanj, raj@csse.unimelb.edu.au

Introduction: InterGrid

- provides an architecture and policies for inter-connecting different Grids.
- Computational resources in each RP are shared between grid users and local users.
- Provisioning rights of the resources in a Grid are delegated to the InterGrid Gateway (IGG).
- Local users vs External users.
 - Local users have priority!

Contention between Local and External users

- When contention happens?
 - Lack of resource
- Solution for Contention:
 - Preemption of Ext. requests in favor of local requests
- Drawbacks of Preemption:
 - overhead to the underlying system (degrades utilization)
 - increases the response time of the grid requests

Contention Scenario in InterGrid

Lease based Resource Provisioning in InterGrid

- A lease is an agreement between resource provider and resource consumer whereby the provider agrees to allocate resources to the consumer according to the lease terms presented.
- Virtual Machine (VM) technology is a way to implement leasebased resource provisioning.
- VMs are able to get suspended, resumed, stopped, or even migrated.
- InterGrid makes one lease for each user request.
 - Best-Eort (BE)
 - Cancelable
 - Suspendable
 - Deadline-Constraint (DC)
 - Migratable
 - Non-preemptive

Problem Statement

- How to decrease the number of preemptions that take place in a multi-cluster Grid?
 - Analytical modeling of preemption in a multi-cluster Grid environment based on routing in parallel queues

Analysis: Correlation of Response time and Number of preemption

• Therefore, if we decrease response time the number of preemption also decreased!

Analysis: Minimize Response Time

$$T = \frac{1}{\Lambda} \sum_{j=1}^{N} \hat{\Lambda}_j \cdot T_j$$

Where the constrain is:

$$\hat{\Lambda}_1 + \hat{\Lambda}_2 + \dots + \hat{\Lambda}_N - \Lambda = 0.$$

Analysis: Optimal arrival Rate to each Cluster

Response time of Ext. requests for each cluster j (M/G/1 queue with preemption):

$$T_j = \frac{1}{1 - \rho_j} \left(\theta_j + \frac{\kappa_j m_j}{2(1 - u_j)} \right)$$

The input arrival rate to each cluster by using Lagrange multiplier:

$$\hat{\Lambda}_j = \frac{(1-\rho_j)}{\theta_j} - \frac{1}{\theta_j} \sqrt{\frac{(1-\rho_j)(\omega_j(1-\rho_j)) + \theta_j \lambda_j \mu_j}{2\theta_j(1-\rho_j)z + (\omega_j - 2\theta_j^2)}}$$

where z is the Lagrange multiplier.

Analysis: Finding out Lagrange multiplier (z)

Since we have:

$$\Lambda = \hat{\Lambda}_1 + \hat{\Lambda}_1 + \dots + \hat{\Lambda}_N,$$

Z can be worked out from the below equation:

$$\sum_{j=1}^{N} \frac{1}{\theta_j} \sqrt{\frac{(1-\rho_j)(\omega_j(1-\rho_j)) + \theta_j \lambda_j \mu_j}{2\theta_j(1-\rho_j)z + (\omega_j - 2\theta_j^2)}}$$
$$= \left(\sum_{j=1}^{N} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$$

Analysis: Using bisection algorithm for finding *z*

Since:

$$\hat{\varLambda}_j \geq 0$$
 i

Then:

$$z \ge \frac{\lambda_j \mu_j}{2(1-\rho_j)^2} + \frac{\theta_j}{(1-\rho_j)}$$

$$\sum_{j=1}^{N} \phi_j(lb) \ge \left(\sum_{j=1}^{N} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$$

upper bound also can be worked out as follows:

$$\sum_{j=1}^{N} \phi_j(ub) \le \left(\sum_{j=1}^{N} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$$

11

Algorithm 1: Preemption-Aware Scheduling Policy (PAP). **Input**: $\bar{\Lambda}_i, \theta_i, \omega_i, \lambda_i, \tau_i, \mu_i$, for all $1 \leq j \leq N$. **Output**: (\hat{A}_i) load distribution of grid requests to different clusters, for all $1 \leq j \leq N$. 1 for $i \leftarrow 1$ to N do **2** $\psi_j = \frac{\lambda_j \mu_j}{2(1-\rho_j)^2} + \frac{\theta_j}{(1-\rho_j)};$ 3 Sort (ψ) : 4 $k \leftarrow 1$; 5 while k < N do **if** $\sum_{j=1}^{k} \phi_j(\psi_k) \ge \left(\sum_{j=1}^{k} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$ then 6 break; 7 else 8 $\begin{array}{c|c} \mathbf{s} & \text{else} \\ \mathbf{9} & \bigsqcup k \leftarrow k+1; \end{array}$ 10 $lb \leftarrow \psi_k$; 11 ub = 2 * lb: 12 while $\sum_{j=1}^{k} \phi_j(ub) > \left(\sum_{j=1}^{k} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$ do **13** ub = 2 * ub;14 while $ub - lb > \epsilon$ do $z \leftarrow (lb + ub)/2;$ 1516 if $\sum_{j=1}^{k} \phi_j(z) \ge \left(\sum_{j=1}^{k} \frac{(1-\rho_j)}{\theta_j}\right) - \Lambda$ then 17 | $lb \leftarrow z;$ else 18 $ub \leftarrow z;$ 19 20 for $j \leftarrow 1$ to k do **21** $\hat{\Lambda}_j = \frac{(1-\rho_j)}{\theta_j} - \frac{1}{\theta_j} \sqrt{\frac{(1-\rho_j)(\omega_j(1-\rho_j)) + \theta_j \lambda_j \mu_j}{2\theta_j(1-\rho_j)z + (\omega_j - 2\theta_j^2)}};$ 22 for $j \leftarrow k+1$ to N do $\hat{A}_j = 0;$ $\mathbf{23}$

12

Preemption-aware Scheduling Policy

- The analysis provided is based on the following assumption:
 - each cluster was an M/G/1 queue. However, in InterGrid we are investigating each cluster as a G/G/M_i queue.
 - all requests needed one VM. InterGrid requests need several VMs for a certain amount of time.
 - each queue is run in FCFS fashion while we consider conservative backfilling.

Implementation details

• To support several VMs, the service time of ext. and local requests on cluster *j* is calculated:

$$\theta_j = \frac{\bar{v}_j \cdot \bar{d}_j}{M_j s_j} \qquad \tau_j = \frac{\bar{\zeta}_j \cdot \bar{\varepsilon}_j}{M_j s_j}$$

• *CV* is used to obtain second moment:

$$\omega_j = (\alpha_j \cdot \theta_j)^2 + \theta_j^2$$
$$\mu_j = (\beta_j \cdot \tau_j)^2 + \tau_j^2$$

Experiment Set up

- GridSim Simulator
- 3 clusters with 32, 64, and 128 nodes
- Conservative backfilling scheduler as LRM
- 100 Mbps network bandwidth
- Different ext. request types:
 - BE-Suspendable:40% and BE-Cancelable:10%
 - DC-Nonpreemptable:40% and DC-Migratable:10%.

Baseline Policies

- Round Robin Policy (RRP)
- Least Rate Policy (LRP)

• DAS-2 workload model

Input Parameter	Distribution	Values Grid Requests	Values Local Requests
No. of VMs	Loguniform	$(l = 0.8, 1.5 \le m \le 3, h = 5, q = 0.9)$	(l = 0.8, m = 3, h = 5, q = 0.9)
Request Duration	Lognormal	$(1.5 \le a \le 2.6, b = 1.5)$	(a = 1.5, b = 1.0)
Inter-arrival Time	Weibull	$(0.7 \le \alpha \le 3, \beta = 0.5)$	$(\alpha = 0.7, \beta = 0.4)$
Pone	N/A	0.2	0.3
P_{pow2}	N/A	0.5	0.6

Experimental Results: Number of VM Preemptions

17

Experimental Results: Resource Utilization

Experimental Results: Average Response Time

Conclusions and Future Work

- we explored how we can minimize the number of preemptions in InterGrid.
- We proposed a preemption-aware scheduling policy (PAP)
- Experiments show that PAP resulted in up to 1000 less VM preemptions (22.5% improvement) comparing with other policies.

•Questions?

