
HYBRID CLOUD RESOURCE PROVISIONING POLICY IN
THE PRESENCE OF RESOURCE FAILURES

Bahman Javadi
University of Western Sydney, Australia

Jemal Abawajy
Deakin University, Australia

Richard O. Sinnott
The University of Melbourne, Australia

1

The 4th IEEE International Conference on Cloud Computing Technology and Science
Taiwan, December 2012

AGENDA

¢  Introduction
¢ System Context
¢ Hybrid Cloud Architecture
¢ Proposed Provisioning Policies
¢ Performance Evaluation
¢ Simulation Results
¢ Conclusions

2

IEEE CloudCom 2012

INTRODUCTION

¢ Hybrid Cloud Systems
�  Public Clouds
�  Private Clouds

¢ Resource Provisioning in Hybrid Cloud
�  Users’ QoS (i.e., deadline)
�  Resource failures

¢ Taking into account
�  Workload model à workflows in a scientific project
�  Failure correlations à real failure traces

¢  Knowledge-free approach: not any information about the
failure model

3

IEEE CloudCom 2012

SYSTEM CONTEXT

¢ Our policies are proposed in the context of the
Australian Urban Research Infrastructure
Network (AURIN) project

�  An e-Infrastructure supporting research in urban and
built environment research disciplines

�  Web Portal Application (portlet-based)
¢  A lab in a browser (http://portal.aurin.org.au)
¢  Access to the federated data source

¢  Web Feature Service (WFS)
¢  Workflow environment based on Object Modeling System

(OMS)
¢  NeCTAR NSP and Research Cloud

4

IEEE CloudCom 2012

 THE AURIN ARCHITECTURE

5

IEEE CloudCom 2012

HYBRID CLOUD ARCHITECTURE

¢ Based on InterGrid components
¢ Using a Gateway (IGG) as the broker

6

InterGrid Gateway

P
e

rs
is

te
n

c
e

 D
B

J
a

v
a

 D
e

rb
y

C
o

m
m

u
n

ic
a

ti
o

n
 M

o
d

u
le

M
e

s
s

a
g

e
-P

a
s

s
in

g

Management & Monitoring
JMX

Scheduler

(Provisioning Policies & Peering)

Virtual Machine Manager

Emulator
Local

Resources
IaaS

Provider
Grid

Middleware

IEEE CloudCom 2012

IGG

WORKLOAD MODEL

¢ Workflows in the AURIN project
�  Potentially large number of resources over a short

period of time.
�  Several tasks that are sensitive to communication

networks and resource failures (tightly coupled)

¢ User Requests
�  Type of virtual machine;
�  Number of virtual machines;
�  Estimated duration of the request;
�  Deadline for the request.

7

IEEE CloudCom 2012

FAILURES IN USER REQUESTS

¢ Resource failure is inevitable
�  Redundant components in public Clouds

¢  highly reliable service

�  Leads to service failure in private Clouds

¢ Correlation in Failures à overlapped failures
�  Spatial
�  Temporal

8

IEEE CloudCom 2012

FAILURES IN USER REQUESTS (CONT.)

¢ The sequence of overlapped failures

¢ Downtime of the service

9

applications are examples of such applications. Each application can include
several tasks and they are sensitive to communication networks in terms of
delay and bandwidth. Therefore, they may not benefit heavily from resource
co-allocation from multiple provides in virtualized environments [14], and
must be served with resources from a single resource provider. Moreover,
these sort of applications usually are not scalable in terms of required pro-
cessing elements and provide their best performance for a specific number
of processing elements (virtual machines). Hence, we consider a case where
there is a profile of the application execution to determine the number of
virtual machines. So, users do not need to specify S as an input parameter
for the required number of VMs.

In our problem, one request corresponds to an individual job whereas an
application can include several jobs. The user’s request can be thought of
as a rectangle whose length is the request duration (T) and the width is the
number of required VMs (S) as is depicted in Figure 1. Note that R is the
estimated duration of the request while T is the actual request duration. In
Section 5.4, the relation between these two parameters is investigated.

Figure 1: Serving a request in the presence of resource failures.

2.3. Failure Model

In this work, we take into account resource failures in the system where a
failure is defined as an event in which the system fails to operate according to
its specifications. We investigate a case where we are only faced with resource
failures in the private Cloud as public Cloud environments are usually able
to provide highly reliable services to their customers [15]. The public Cloud

5

Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T)
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1) Te(Ei)} (1)

where 1 i n � 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
X

8Fi2H

(max{Te(Fi)}�min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1� (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1�q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1� q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater

Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T)
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1) Te(Ei)} (1)

where 1 i n � 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
X

8Fi2H

(max{Te(Fi)}�min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1� (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1�q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1� q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater

IEEE CloudCom 2012

PROPOSED POLICIES

¢ Size-based Strategy
�  Spatial correlation : multiple failures occur on

different nodes within a short time interval
�  Strategy: sends wider requests to more reliable public

Cloud systems
�  Mean number of VMs per request

¢  P1: probability of one VM
¢  P2: probability of power of two VMs

¢  Request size: two-stage uniform distribution (l,m,h,q)

10

Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T)
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1) Te(Ei)} (1)

where 1 i n � 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
X

8Fi2H

(max{Te(Fi)}�min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1� (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1�q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1� q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater

Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T)
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1) Te(Ei)} (1)

where 1 i n � 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
X

8Fi2H

(max{Te(Fi)}�min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1� (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1�q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1� q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater

IEEE CloudCom 2012

PROPOSED POLICIES (CONT.)

¢ Time-based strategy
�  Temporal correlation: the failure rate is time-

dependent and some periodic failure patterns can be
observed in different time-scales

�  Request duration: are long tailed.

11

•  The mean request duration
•  Lognormal distribution in a

parallel production system

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

IEEE CloudCom 2012

PROPOSED POLICIES (CONT.)

¢ Area-based strategy
�  Making a compromise between the size-based and

time-based strategy
�  The mean area of the requests

�  This strategy sends long and wide requests to the
public Cloud,

�  It would be more conservative than a size-based
strategy and less conservative than a time-based
strategy.

12

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

IEEE CloudCom 2012

SCHEDULING ALGORITHMS

¢ Scheduling the request across private and public
Cloud resources

¢ Two well-know algorithms where requests are
allowed to leap forward in the queue
�  Conservative backfilling
�  Selective backfilling

¢ VM Checkpointing
�  VM stops working for the unavailability period
�  The request is started from where it left off when the

node becomes available again

13

IEEE CloudCom 2012

gateway to manage and monitor resources such as Java applications. The
Communication Module provides an asynchronous message-passing mecha-
nism, and received messages are handled in parallel by a thread-pool. That
makes gateway loosely coupled and allows for more failure-tolerant commu-
nication protocols.

Figure 3 shows the main interactions in the system when the user sends
a request to the DVE manager. The local IGG tries to obtain resources
from the underlying VIEs. This is the point where the IGG must make
decision about selecting resource provider to supply the user’s request, so
the resource provisioning policies come to the picture. As it can be seen in
Figure 3, the request is redirected to the remote IGG to get the resource from
the public Cloud provider (i.e., Amazon’s EC2). Once the IGG has allocated
the requested VMs, it makes them available and the DVE manager will be
able to access the VMs and finally deploy the user’s application.

4.3. Fault-Tolerant Scheduling Algorithms

As depicted in Figure 4, we need an algorithm for scheduling the requests
for the private and public Clouds. For this purpose, we utilize a well-known
scheduling algorithm for parallel requests, which is called selective backfill-
ing [33]. Backfilling is a dynamic mechanism to identify the best place to
fit the requests in the scheduler queue. In other words, Backfilling works
by identifying hole in the processor-time space and moving forward smaller
requests that fit those holes. Selective backfilling grants reservation to a
request when its expected slowdown exceeds a threshold. That means, the
request has waited long enough in the queue. The expected slowdown of a
given request is also called eXpansion Factor (XFactor) and is given by the
following equation:

XFactor =
Wi + Ti

Ti

(7)

where Wi and Ti is the waiting time and the run time of request i, respec-
tively. We use the Selective-Di↵erential-Adaptive scheme proposed in [33],
which lets the XFactor threshold to be the average slowdown of previously
completed requests. It has been shown that selective backfilling outperforms
other types of backfilling algorithms [33].

We used another scheduling algorithm, aggressive backfilling [41], in our
experiments as the base algorithm. In the aggressive backfilling (EASY),
only the request at the head of the queue, called the pivot, is granted a
reservation. Other requests are allowed to move ahead in the queue as long

14

PERFORMANCE EVALUATION

¢ CloudSim Simulator
¢ Performance Metrics

�  Deadline violation rate
�  Slowdown

�  Cloud Cost on EC2

�  Workload Model

¢  Parallel jobs model of a multi-cluster system (i.e., DAS-2)

14

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL

Input Parameters Distribution/Value
Inter-arrival time Weibull (↵ = 23.375, 0.2 � 0.3)

No. of VMs Loguniform (l = 0.8,m, h = log2Ns, q = 0.9)
Request duration Lognormal (2.5 µ 3.5,� = 1.7)

P1 0.02
P2 0.78

where Hpl is the Cloud usage per hour for the policy pl. That
means, if a request uses a VM for 45 minutes for example,
the cost of one hour is considered. Mpl is the fraction of
requests which are redirected to the public Cloud. Hu is the
startup time for initialization of operating systems on a VM
which is set to 80 seconds [29]. We take into account this
value as Amazon commences charging users when the VM
process starts. Bin is the amount of data which needs to be
transferred to the Amazon EC2 for each request. This is set to
100 MB per request. The cost of one specific instance on the
EC2 is determined as Cn and considered as 0.085 USD per
VM per hour for a small instance. The cost of data transfer to
the Amazon EC2 is also considered as Cx which is 0.1 USD
per GB. It should be noted that we consider a case where
requests’ output are very small and can be transferred to the
local resources for free [1].

A. Experimental Setup

Considering workflow applications in the AURIN project
as the parallel applications, we used the parallel job model
of the DAS-2 system which is a multi-cluster Grid [22] as
the workload model for evaluation scenarios. Based on the
workload characterization, the inter-arrival time (based on
Weibull distribution), the request size (based on Loguniform
distribution), and the request duration (based on Lognormal
distribution). These distributions with their parameters are
listed in Table I.

For each simulation experiment, statistics were gathered for
a two-month long period of DAS-2 workloads. The first week
of workloads during the warm-up phase were ignored to avoid
bias before the system reached a steady-state. Each data point
represents the average of 30 simulation rounds. The number
of resources in the private and the public Cloud were set
equally to Ns = Nc = 64 with a homogeneous computing
speed of 1000 MIPS6. The time to transfer the application
(e.g., configuration file or input file(s)) for the private Cloud is
negligible as the local resources are interconnected by a high-
speed network, so Ls = 0. However, to execute the application
on the public Cloud we must send the configuration file as well
as input file(s). Given this, we consider a network transfer time
of Lc = 80 sec., which is the time to transfer of 100 MB data
on a 10 Mbps network connection.

The failure trace for the experiments is obtained from the
Failure Trace Archive [20]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for a duration of 18

6This assumption is made just to focus on performance degradation due to
failure.

months, which includes on average 800 events per node. The
average availability and unavailability time in this trace archive
is 22.26 hours and 10.22 hours respectively.

In order to generate different workloads, we systematically
modified three parameters of the workload model. To change
the inter-arrival time, we modified the second parameter of
the Weibull distribution (the shape parameter �) as shown in
Table I. To have requests with different durations, we changed
the first parameter of the Lognormal distribution between 2.5
and 3.5 as described in Table I. Moreover, we also varied
the middle point of the Loguniform distribution (i.e., m) to
generate workloads with different number of VMs per request
where m = h�! and ! is between 1.5 to 3.3. Thus the larger
value of !, the fewer VMs required to service requests. The
same scheduling algorithms are used for the private and public
Cloud providers in all scenarios.

To generate the request deadlines we utilize the same
techniques given in [18], which provide a feasible schedule for
jobs. To obtain deadlines, we conducted experiments based on
scheduling requests on local resources without failure events
using aggressive backfilling. We used the following equations
to calculate the deadline for each request i:

di =

(
sti + (f · tai), if [sti + (f · tai)] < cti

cti, otherwise
(9)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., cti � sti).
We define f as a stringency factor that indicates how urgent
deadlines are. If f = 1, then the request’s deadline is uses
an aggressive backfilling scenario to ensure completion. We
evaluate strategies with different stringency factors, however
only report results where f = 1.3 (i.e., a normal deadline).

B. Results and discussions
The results of simulating violation rates versus different

workloads are depicted in Figure 3 for different provisioning
policies. In each figure, three brokering strategies are plotted
for a scheduling algorithm. In all the figures, Size, Time, and
Area refer to size-based, time-based and area-based broker-
ing strategies, respectively. Moreover, CB and SB stand for
Conservative and Selective Backfilling, respectively.

Based on Figure 3, by increasing the workload intensity
(i.e., arrival rate, duration or size7 of requests), we observe
an increase in the violation rate for all provisioning policies.
As illustrated in this figure, the size-based brokering strategy
yields a very low violation rate where the area-based strat-
egy also shows a comparable performance. The time-based
strategy has the worst performance in terms of violation rate
especially when the workload intensity increases.

It is worth noting that the violation rate of size-based broker-
ing strategy, in contrast to others, has an inverse relation with
the request size, i.e., we observe an increase in the number
of fulfilled deadlines by reducing the size of requests. This
behavior is due to increasing the number of redirected requests

7The larger value of !, the fewer VMs required to service requests.

IEEE CloudCom 2012

PERFORMANCE EVALUATION (CONT.)

¢ Failures from Failure Trace Archive (FTA)
�  Grid’5000 traces

¢  18-month
¢  800 events/node
¢  Average availability: 22.26 hours
¢  Average unavailability: 10.22 hours

¢ Synthetic Deadline

�  f: stringency factor
�  f>1 is normal deadline (e.g., f=1.3)

¢ Ns = Nc = 64
15

TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL

Input Parameters Distribution/Value
Inter-arrival time Weibull (↵ = 23.375, 0.2 � 0.3)

No. of VMs Loguniform (l = 0.8,m, h = log2Ns, q = 0.9)
Request duration Lognormal (2.5 µ 3.5,� = 1.7)

P1 0.02
P2 0.78

where Hpl is the Cloud usage per hour for the policy pl. That
means, if a request uses a VM for 45 minutes for example,
the cost of one hour is considered. Mpl is the fraction of
requests which are redirected to the public Cloud. Hu is the
startup time for initialization of operating systems on a VM
which is set to 80 seconds [29]. We take into account this
value as Amazon commences charging users when the VM
process starts. Bin is the amount of data which needs to be
transferred to the Amazon EC2 for each request. This is set to
100 MB per request. The cost of one specific instance on the
EC2 is determined as Cn and considered as 0.085 USD per
VM per hour for a small instance. The cost of data transfer to
the Amazon EC2 is also considered as Cx which is 0.1 USD
per GB. It should be noted that we consider a case where
requests’ output are very small and can be transferred to the
local resources for free [1].

A. Experimental Setup

Considering workflow applications in the AURIN project
as the parallel applications, we used the parallel job model
of the DAS-2 system which is a multi-cluster Grid [22] as
the workload model for evaluation scenarios. Based on the
workload characterization, the inter-arrival time (based on
Weibull distribution), the request size (based on Loguniform
distribution), and the request duration (based on Lognormal
distribution). These distributions with their parameters are
listed in Table I.

For each simulation experiment, statistics were gathered for
a two-month long period of DAS-2 workloads. The first week
of workloads during the warm-up phase were ignored to avoid
bias before the system reached a steady-state. Each data point
represents the average of 30 simulation rounds. The number
of resources in the private and the public Cloud were set
equally to Ns = Nc = 64 with a homogeneous computing
speed of 1000 MIPS6. The time to transfer the application
(e.g., configuration file or input file(s)) for the private Cloud is
negligible as the local resources are interconnected by a high-
speed network, so Ls = 0. However, to execute the application
on the public Cloud we must send the configuration file as well
as input file(s). Given this, we consider a network transfer time
of Lc = 80 sec., which is the time to transfer of 100 MB data
on a 10 Mbps network connection.

The failure trace for the experiments is obtained from the
Failure Trace Archive [20]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for a duration of 18

6This assumption is made just to focus on performance degradation due to
failure.

months, which includes on average 800 events per node. The
average availability and unavailability time in this trace archive
is 22.26 hours and 10.22 hours respectively.

In order to generate different workloads, we systematically
modified three parameters of the workload model. To change
the inter-arrival time, we modified the second parameter of
the Weibull distribution (the shape parameter �) as shown in
Table I. To have requests with different durations, we changed
the first parameter of the Lognormal distribution between 2.5
and 3.5 as described in Table I. Moreover, we also varied
the middle point of the Loguniform distribution (i.e., m) to
generate workloads with different number of VMs per request
where m = h�! and ! is between 1.5 to 3.3. Thus the larger
value of !, the fewer VMs required to service requests. The
same scheduling algorithms are used for the private and public
Cloud providers in all scenarios.

To generate the request deadlines we utilize the same
techniques given in [18], which provide a feasible schedule for
jobs. To obtain deadlines, we conducted experiments based on
scheduling requests on local resources without failure events
using aggressive backfilling. We used the following equations
to calculate the deadline for each request i:

di =

(
sti + (f · tai), if [sti + (f · tai)] < cti

cti, otherwise
(9)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., cti � sti).
We define f as a stringency factor that indicates how urgent
deadlines are. If f = 1, then the request’s deadline is uses
an aggressive backfilling scenario to ensure completion. We
evaluate strategies with different stringency factors, however
only report results where f = 1.3 (i.e., a normal deadline).

B. Results and discussions
The results of simulating violation rates versus different

workloads are depicted in Figure 3 for different provisioning
policies. In each figure, three brokering strategies are plotted
for a scheduling algorithm. In all the figures, Size, Time, and
Area refer to size-based, time-based and area-based broker-
ing strategies, respectively. Moreover, CB and SB stand for
Conservative and Selective Backfilling, respectively.

Based on Figure 3, by increasing the workload intensity
(i.e., arrival rate, duration or size7 of requests), we observe
an increase in the violation rate for all provisioning policies.
As illustrated in this figure, the size-based brokering strategy
yields a very low violation rate where the area-based strat-
egy also shows a comparable performance. The time-based
strategy has the worst performance in terms of violation rate
especially when the workload intensity increases.

It is worth noting that the violation rate of size-based broker-
ing strategy, in contrast to others, has an inverse relation with
the request size, i.e., we observe an increase in the number
of fulfilled deadlines by reducing the size of requests. This
behavior is due to increasing the number of redirected requests

7The larger value of !, the fewer VMs required to service requests.

IEEE CloudCom 2012

SIMULATION RESULTS

¢ Violation rate

16

Request arrival rate Request size

Request duration

IEEE CloudCom 2012

SIMULATION RESULTS (CONT.)

¢ Slowdown

17

Request arrival rate

Request duration

Request size

IEEE CloudCom 2012

SIMULATION RESULTS (CONT.)

¢ Cloud Cost on EC2

18

Request arrival rate

Request duration

Request size

IEEE CloudCom 2012

CONCLUSIONS

¢ QoS-based resource provisioning in a failure-
prone hybrid Cloud system

¢ Three different flexible brokering strategies
based on failure correlation and workload model

¢ Knowledge free approach
¢ Using time-based strategy (high load),

�  20% violation rate
�  ~1200 USD per month on EC2

¢ Future Work
�  Use a set of real workflow applications from the

AURIN project and run real experiments.

19

IEEE CloudCom 2012

20

IEEE CloudCom 2012

