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Abstract

With the popularity of cloud computing, it has become crucial to provide
on-demand services dynamically according to the users requirements. Re-
liability and energy efficiency are two key challenges in cloud computing
systems (CCS) that need careful attention and investigation. The recent
survey articles are either focused on the reliability techniques or energy effi-
ciency methods in cloud computing. This paper presents a thorough review
of existing techniques for reliability and energy efficiency and their trade-off
in cloud computing. We also discuss the classifications on resource failures,
fault tolerance mechanisms and energy management mechanisms in cloud
systems. Moreover, various challenges and research gaps in trade-off be-
tween reliability and energy efficiency are identified for future research and
developments.
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1. Introduction

Cloud computing is the ongoing revolution in information and commu-
nication technology (ICT) that uses virtualization technology to provide a
powerful and flexible computing environment. In a Gartner report pub-
lished in January 2013, the growth of public cloud services will make it a
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$155 billion market and by the end of 2016, it is expected to grow to $210
billion. Although cloud computing makes the computing reliable, dynamic,
fast and easy, it is still facing numerous challenges because of its large-scale
and complex architecture. Considering the scale and complexity of cloud
data centres, reliability and energy efficiency are two key challenges that
need careful attention and investigation. Reliability of cloud computing sys-
tems (CCS) can be defined in the context of security or in the context of
resource and service failures. Due to the complexity of the cloud architec-
ture, failures are inevitable. It has been shown that a system with 100000
processors experiences a failure every couple of minutes [1]. In cloud com-
puting, failures could occur due to multiple reasons such as hardware failure,
software failure, etc. (Figure 3). A failure in the services of a cloud costs sig-
nificantly for both providers and customers. In a survey of 63 Data Centres
done by Ponemon institute [2] in 2016, it has been reported that the average
down-time cost of each data centre rose to $740,357 from $500,000 in 2010
(38% increase). Every hour, the business sector is expected to lose around
$108,000 and according to the Information week, each year IT outages re-
sult in the revenue loss of more than $26.5 billion1. Provisioning of cloud
resources accurately according to the demand of the applications plays a cru-
cial role to make the CCS reliable and energy efficient. In cloud computing,
it is hard to predict the requirement of resources accurately before or during
submission of an application or task. Sometimes the provisioned resources
remain underutilized or become over utilized. The average utilization of
resources in cloud based data centers is only between 6 to 12%2. In case of
underutilized resources, task or virtual machine consolidation is performed
by migrating the running virtual machines to other physical resources in or-
der to put the underutilized resources on sleep mode or to turn them off so
as to reduce the energy consumption or other running costs [3]. In the case
of overutilization, the running tasks are migrated to other resources to keep
the load of over-utilized resources below to a specific threshold to immunise
them from failures or crashes.

On the other hand, the energy requirement to operate the cloud infras-
tructure is also increasing in proportion to the operational costs. Approxi-
mately 45 percent of the total operational expenses of IBM data centres goes

1http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-
true-costs.html

2http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-
of-energy-belying-industry-image.html
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in electricity bills [4]. According to the Gartner, the electricity consumption
by cloud based data centres will increase to 1012.02 Billion kWh by 2020. In
2013, data centers alone in U.S. consumed 91 billion kilowatt-hours, which
is enough to power all the households of New York City twice over and if
this trend will continue then the consumption will reach 140 billion kWh
by 2020, a 35% increase3. The energy that the U.S. based data centers are
consuming is equal to the electricity produced by 34 power plants each of
500 megawatts capacity and if this can’t be reduced then 17 new power
plants will need to be established by 2020 to power the data centers4. The
electricity or energy consumption in cloud infrastructures is very inefficient
and there are several types of wastes at different levels such as infrastruc-
ture level or system level [5]. At the infrastructure level, half of the energy
provided to a data centre is consumed by the cooling infrastructure and at
the system level, 50% of the energy is consumed when systems are in idle
state. These types of waste cause financial loss to both providers and users.

Cloud computing infrastructure is a major contributor to the carbon
content of the environment. Along with many contributors of carbon emis-
sions in the environment, the contribution of IT infrastructure is equal to
the aviation industry. U.S. based data centers emit 100 million metric tonne
of carbon content each year and will increase to 1034 metric tonne by 2020
[6]. As the energy consumption, heat release and carbon footprint from
large computing infrastructures has increased, researchers are under great
pressure to find new ways of decreasing energy consumption. In the last
few decades, the primary focus of researchers and designers was on optimiz-
ing the performance of the system in terms of speed, space and efficiency.
However, concerns about the energy consumption and carbon footprint in-
tensified recently. In January 2015, Amazon has announced the construction
of 150 MW wind farm which will produce approximately 500000 MWh of
wind power5. The operations of plant are expecting to start in December
2016. The energy generated by the wind farm will be used to power the
current and future cloud based AWS (Amazon Web Services) data centers.
Microsoft had also made a carbon neutral commitment in 2012 by promising
to achieve zero emission of carbon content by their data centers, software
development labs etc6. Google, IBM and other cloud vendors are also work-

3http://www.vox.com/2014/12/14/7387945/sony-hack-explained
4http://www.computerworld.com/article/2598562/data-center/data-centers-are-the-

new-polluters.html
5http://aws.amazon.com/about-aws/sustainable-energy
6http://blogs.msdn.com/b/microsoft-green/archive/2012/05/08/going-carbon-
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ing to make the cloud services and cloud based data centers energy efficient
and eco-friendly.

All the above facts and figures of failure and energy consumption lead
to the requirement of management of cloud resources in a fault-tolerant and
energy-efficient way. In response to this, various researchers worldwide have
proposed many architectures, algorithms and policies to make the cloud
computing environment reliable and energy efficient. However, there is very
limited research on the trade-off between reliability and energy efficiency in
CCS (section 6). Considering both parameters at the same time would open
new opportunities and challenges in the area of resource management and
resource provisioning in cloud systems. This paper gives a comprehensive
survey of the research done in the field of reliability and energy efficiency
followed by an analysis of the trade-off between these two metrics in CCS.

The rest of this paper is organized as follows: Backround of cloud com-
puting and virtualization has been explained in section 2. In section 3, we
introduce the causes of the failures in parallel and distributed computing
environments like CCS. Section 4 highlights the research efforts done in the
field of reliability and failure management. In section 5, we present the sur-
vey of the research done to make the CCS energy efficient. Finally section
6 analyse the trade-off between the reliability and energy efficiency followed
by the various challenges for determining the suitable equilibrium between
them. A taxonomy corresponding to each section has been developed.

2. Background

Cloud computing is a simple concept that has emerged from heteroge-
neous distributed computing, grid computing, utility computing and auto-
nomic computing. National Institute of Standards and Technology (NIST)
has given a very comprehensive and widely accepted definition of cloud com-
puting systems. According to NIST [7]

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service
provider interaction.

In cloud computing paradigm, end users avail computing as a service or
utility from the remote infrastructure just like water, electricity, telephone

neutral-and-putting-an-internal-price-on-carbon.aspx
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Figure 1: Virtualization/Cloning Methods

etc. and pays for the usage. Users and businesses are able to access the com-
puting services according to their requirements with minimum intervention
such that without knowing where the services are coming from and how they
are getting delivered. For keeping the scope of this survey limited to relia-
bility and energy efficiency in cloud computing, only the term virtualization
from cloud computing perspective has been explained briefly because of its
intensive use in further sections. A thorough review about the history and
trends in cloud computing can be seen in [8][9][10].

Virtualization is the engine of cloud computing paradigm. Virtualization
allows the running of multiple virtual machines (a software implementation
of a computing node) on a single node simultaneously with different soft-
ware stacks or configurations such as operating systems and application
softwares. Generally, a computing node on which virtual machines (VMs)
are running is termed as host machine and the running virtual machine is
termed as a guest machine. The number of running VMs on a host depends
upon the hardware configuration of the host and the configuration of VMs.
A virtual layer called virtual machine monitor (VMM) lies in the middle
of hardware and running VMs which ensures the isolation of the running
VMs from each other and takes other managerial decisions such as resource
scaling, resilience, fault tolerance, power management etc. With the great
adoption of cloud computing technology, businesses need to shift their IT
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operations which were initially running on in-house non-virtualized facility
to virtualized environment. This can be done in two ways (Figure 1): hot
virtualization (hot cloning) and cold virtualization (cold cloning) [11].

In hot virtualization or hot cloning, the physical machine remains online
or running while taking snapshot (creating disk image). Once the snapshot
has been taken, the image gets copied on a virtualized machine or server.
The benefit of hot virtualization is that we can keep the servers running all
the time during the creation of image rather than taking them offline. In
this way, the down time can be avoided and loss of business can be pre-
vented. However, while creating the image some of the opened files may
be left uncopied, which creates inconsistency between images. The alter-
nate of hot virtualization is cold virtualization, in which the system goes
offline and the disk image gets created. In cold virtualization, inconsistency
can be avoided, however, the systems need to go offline, which cause loss
to businesses [12]. Although hot virtualization has been preferred over the
cold virtualization because of no downtime, the choice matters on the re-
qirements of the organization. In virtualization, the running VMs can be
migrated from one server to another targeting different objectives such as
fault tolerance, energy efficieny, operational costs, security, environment etc.
Uses of VM migration to increase the reliability and to decrease the energy
consumption of cloud computing systems have been discussed in sections 4
and 5, respectively.

3. Failures in Cloud and Distributed Computing Environments

In this section, we review the classification of failures in cloud and dis-
tributed computing systems. The failure correlations as well as causes for
failures are also discussed. According to Javadi et al. [13]

A Failure is defined as an event in which the system fails to operate ac-
cording to its specifications. A system failure occurs, when a system deviates
from fulfilling its normal system function for which it was aimed at.

According to Google [14], the cost for each repair of failure includes $100
for technicians time and 10% of the total cost of server ($200), which reaches
to $300 per repair. Therefore the cost of repairing the hardware exceeds its
buying cost after only 7 repairs. Sound knowledge of the type of failure
and causes of failure will help computer scientists and computer engineers
to design more scalable algorithms and to deploy infrastructure in more
fault tolerable way. This will help to reduce the repair/replacement cost
and engineering expenditures and makes the computing, specifically service
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Figure 2: Classification of Failures

computing such as cloud computing, more reliable. Failures in CCS result
in loss of business due to the diversion of users to other vendors.

3.1. Classification of Failures

Based on the characteristics of the failures in cloud computing, we have
generated two different classes of failures: architecture based and occurrence
based (Figure 2). In the architecture based classification, the failures are
further divided into two categories, Resource Failure and Service Failure.
As name implies, resource failure is caused by the outage of some physical
resources like system breakdown, network or power outage, software error
etc. Most of the work on the failure tolerance in the literature has focused
on resource failures [15][16][17][18]. Resource failures could occur at the
provider or the client end. Service failure in cloud computing means that
the cloud provider is unable to provide, or the user is unable to get, the
services promised in the service level agreements (SLAs). Resource failure
could lead to a service failure but service could fail even in the presence of
working resources during peak loads (section 3.2.4).

The occurrence based classification of failures is all about the intercon-
nection between the failures, whether or not the occurrence of one failure
leads to the occurrence of another in the system. Occurrence based failures
are further divided into two categories independent failures and correlated
failures. Independent failures occur discretely. This type of occurrence is
hypothetical because the literature has demonstrated that there is a correla-
tion between failures [19][20][21][22]. In correlated failures, the occurrence of
a failure leads to the occurrence of other failures in the system. The failures
could be correlated in two different ways: spatial correlation and temporal
correlation. A complete survey about the correlated failures is discussed in
section 3.3.
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3.2. Causes of Failures

To make CCS more reliable and available all the time, it is very important
to understand the causes of the occurrence of the failures. Various causes
of failures in cloud computing are given below in figure 3.

3.2.1. Software Failure

As software systems and applications are getting complex day by day,
they became a significant reason of system breakdown which causes loss in
business and revenue. In October 2013, Knight Capitals7 cloud based auto-
matic stock trading software went down for 45 minutes because of an error in
trading algorithm which costed $440 million to the company. Sometimes an
unexpected error could occur during the process of updating the software,
causing the whole system to crash down. In 2013, cloud services of Microsoft
were interrupted for 16 hours. It was revealed that they were performing
a regular process of updating the firmware in a physical region of the data
centers. Something went wrong, which brought down the whole system8.
Another major service outage had seen in January 2015 for 20 mins, in which
Yahoo Inc. and Microsofts search engine, Bing, went down during the code
update9. After the crash, the roll back mechanism of Microsoft didnt work,
which forced the service to shut down from the linked servers to get the point
where the system was operating correctly. After a successful update or due
to the system maintenance, sometime reboots are scheduled by the service
provider about which the service users are informed in advance. Most of
the times during planned reboots, service providers consider some backup
measures to provide an uninterruptable service to users. On the other hand,
unplanned reboots happen after inconsistency in data integration after soft-
ware or hardware update and the average cost of an unplanned reboot is
$9000 per minute. According to Brain Proffitt10, up to 20% of attempts are
failing in the deployment of software as a service due to the problem of data
integration. So it is important to shift application design paradigms from
machine-based architecture to cloud-based architectures. Some of the other

7http://nypost.com/2013/10/26/knight-capital-computer-meltdown-just-waiting-to-
happen/

8http://www.datacenterdynamics.com/focus/archive/2013/03/overheating-brings-
down-microsoft-data-center

9http://techcrunch.com/2015/01/02/following-bing-coms-brief-outage-search-yahoo-
com-goes-down-too/

10http://readwrite.com/2013/03/05/software-as-a-service-the-dirty-little-secrets-of-
saas
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Figure 3: Causes of Failure in Cloud Computing

causes of system failure or performance degradation due to the softwares
are memory leakage, unterminated threads, data corruption, storage space
fragmentation and defragmentation [23].

3.2.2. Hardware Failure:

Hardware failure represents aroung 4% of all the failures occurred in
cloud based data centers. Among all the hardware failures/replacements,
78% are hard disk drives (Figure 4)[18]. In 2007, hard disk drives and
memory modules were the two most common hardware components sent by
Google for repair [14]. Hard disk failures increases as the size and age of
the clusters increase. K.V. Vishwanath et al. [18], has shown that with age,
failure in hard disk drives (HDD) grows exponentially, but after a saturation
point it becomes stable. HDD failures can be reduced by timely replacement,
and a increase in system reliability will result.

3.2.3. Scheduling:

In the cloud computing architecture, schedulers are responsible for schedul-
ing the requests on the provisioned resources meeting the user requirements.
Requests waiting to get scheduled are initially placed on an input queue. On
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the basis of the current computing and data resource availability, scheduler
schedule the requests in the form of tasks or subtasks to the resources. Being
a restricted data structure, queue has a limitation to store a specific number
of requests. Exceeding the number of requests than the length of queue will
cause drop of new requests and service will be unavailable to the users. This
is called overflow failure. To avoid the overflow of queues, timeout value is
assigned to each request. If the request waiting time in the queue exceeds
the specified time out value, then the request will be dropped from the one
to make way for fresh requests. This is called timeout failure. This will lead
to the service outage in terms of SLA violation due to the delay in cloud
computing services. Failure prediction [24] plays an vital role in identifying
system resources that are prone to failure. Scheduler can then avoid placing
tasks on those resources that are less reliable. The more accuracy of the
prediction means less failure in the services.

3.2.4. Service Failure:

In CCS, service failure can happen with or without resource failure. As
stated by Yuan-Shun Da et al. [25], the cause of the cloud service failure
depends upon the stage of the submitted job such that request stage and
executing stage. During the request stage, all the requests with service
requirements submitted by users are kept in the ready queue. During this
stage, users may not be able to access the services because of overflow or
time-out that happens due to overloading of resources such that during peak
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hours. In such case, the underlying resources are working fine but they are
unable to accommodate more requests and service failure happens. On the
other hand, at execution stage, requests are submitted to underlying physical
resources. If services get interrupted, it means the cause of service failure is
the outage of resources.

3.2.5. Power Outage:

In cloud based data centres, about 33% of the service degradation has
happened due to the power outage. This happens because of natural dis-
asters or war zones. In 2012, out of 27 major outages of cloud computing
services, 6 were caused by the hurricane Sandy alone11. In 2011, massive
tsunami in Japan put the whole country in power crisis for a long time, and
all the consumer services were affected. It is estimated that natural disas-
ters contribute around 22% in cloud computing service outage. An another
major cause of power outage is UPS system failures, which contributes 25%
of total power outage failures and cost around $1000 per incident.

3.2.6. Denser System Packaging:

Whatever the infrastructure was built ten years ago is now outdated be-
cause the data storage has increased exponentially. Designers have begun
to design very dense servers like blade servers to keep the storage space
low. Total floor space required to setup an IT infrastructure has reduced
by 65%12, which increased devise density per square feet and outage cost
has risen to $99 per square feet. As a result of the high devise density, heat
release increases, which causes a rise in temperature and this affects the
working of devices. Facebook has revealed that by packing the machines
densely, electrical current began to overheat and melt Ethernet sockets and
other crucial components. In 2013 data centers of Microsoft faced a severe
outage of 16 hours that affected its cloud services including Outlook, Hot-
mail, SkyDrive and Microsofts image sharing service13 due to overheating
issues.

11http://www.rightscale.com/blog/enterprise-cloud-strategies/lessons-learned-recent-
cloud-outages

12http://www.emersonnetworkpower.com/documentation/en-us/latest-
thinking/edc/documents/white%20paper/energylogicreducingdatacenterenergyconsumption.pdf

13http://www.datacenterdynamics.com/focus/archive/2013/03/overheating-brings-
down-microsoft-data-center
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3.2.7. Network Infrastructure:

In distributed computing architecture, specifically in the case of cloud
computing, all the services are provided by communication networks. The
whole information has been stored and exchanged between servers by using
the networks. The outage of the underlying network results in the outage
of the services of a CCS. For few cloud based applications such as real time
applications, performance of networks plays a key role. A small increment
in the network delay can be termed as an SLA violation which will be con-
sidered as a service failure. The network services could be broken physically
or logically. Around 3% of the service failures happened due to the loss
of network connectivity. There are various challenges corresponding to the
networks such as hop count, bandwidth, encryption, etc that need to be
taken care of to make cloud computing services reliable.

3.2.8. Cyber Attacks:

Cyber attacks are the fastest growing reason of the data center outages.
According to Poneman Institute report [2], the percentage of data center
outages due to cyber attacks was 2% in 2010, which had risen to 18% by
2013 and the latest percentage is 22%. The average downtime cost of outage
by cyber attacks is $822,000. IBM’s report on cyber security intelligence14

has argued that 55% of cyber crimes or threats were from people having
access to organization’s systems, such that employs. Among other techni-
cal issues such as trojan attacks and software loopholes, social engineering
[26] is a major cause of cyber attacks. In social engineering attackers play
with human psyche by exploiting them with emotions, fear, greed, etc and
manipulate them to leak the confidential information.

3.2.9. Human Errors:

Along with cyber attacks, human errors also has a big weight (22%) for
the causes of failures in CCS with average cost of $489 per incident. But
it has been argued by Bianca Schroeder et al. [22] that the lack of expe-
rience is a main reason of occurrance of human errors. In the survey done
by Bianca, it has been seen that the proportion of human errors is higher
during the initial days of deployment of infrastructur. This clearly shows
that administrators gains more experience with the time, which reduces the
occurrence of human errors. Similar to cyber attacks, social engineering is
also a reason for human errors.

14http://public.dhe.ibm.com/common/ssi/ecm/se/en/sew03073usen/SEW03073USEN.PDF?
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Figure 5: Spatial and Temporal Failure Correlation

3.3. Failure Correlation

Correlation is all about the interdependency of activities. If a failure
has happened in a part of the system that leads to failures in other parts
of the system, which could results in the failure of whole system then it can
be said that there is some correlation between these failures. In distributed
computing systems such as clouds and grids, if multiple computing compo-
nents are affected by a common failure then that set or group of computing
components is called a shared risk group or shared risk domain because they
share a common failure risk [27] just like a communication medium in the
network topologies. If the communication medium breaks down then all the
data transfer between the nodes using same communication medium will go
down. Earlier, most of the research to make cloud environments reliable
has been done by considering the independent distribution of failures [28],
which makes the evaluation simpler but error prone in practice. It has been
proved that a single faulty node can influence the working of whole system
[29]. Even the co-occurrence of failures reduces the effectiveness of various
fault tolerance mechanisms such as encoding schemes, replication and back-
ups [30]. Failure correlation can be based on time (temporal correlation) or
space (spatial correlation).
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3.3.1. Space Correlated Failures

Failures are called spatially-correlated if occurs within a short time inter-
val on different nodes of the same system (Figure 5). Occurrence of failures
in a failure burst could be correlated in space and proven empirically or
numerically. To prove the correlation between the failures in space, gen-
eral numerical methods are required. As a result, Matthieu Gallet et al.
[20], proposed a numerical method or model based on three lognormal dis-
tribution based aspects such that downtime due to failures, group arrival
and group size so as to find the space-correlation between failures occurring
during short time intervals. In the given model, a moving window based
method has been used to the find the correlation between the failures in the
empirical data. The data was taken from Failure Trace Archive (FTA)[31],
a public failure repository. It has been found that seven traces out of fif-
teen shows a strong correlation between the occurrence of failures which has
challenged the assumption that the occurrence of the component failures are
independently distributed.

3.3.2. Temporal Correlated Failures

Temporal correlation is about finding the periodicity in the pattern of
occurrence of failures. One of the best methods to find temporal correlation
is Auto-Correlation Function (ACF). As shown in figure 5, if the value of
ACF is near to zero then the occurrence will be considered as random and
if value is equal to or nearly equal to 1, it means there is some periodicity.
Ramendra K. Sahoo et al. [30], have identified that the failures occurred
in large scale distributed computing systems are not uniformly distributed
to all the nodes. Only small number of nodes (less than 4%) are prone
to 70% of the failures occurred in the system. They also found a strong
time varying failure correlation in the pattern of occurrence of failures on
these nodes. Nezih Yigitbasi et al. [21], measure the degree of correlation
of the failure information gathered from various failure traces with different
time lags by using an autocorrelation function. In their work, they shift the
plot generated from the failure information according to different lags such
as hours, days and weeks to find a repeated pattern. In their work they
measured the behaviour of failures by varying the time in large distributed
systems. To characterize the repetition pattern of the failures and peaks in
failures, a formal method has been proposed by the authors to identify the
periods that are responsible for the downtime of the system.
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Figure 6: Design Principles for Reliable Cloud Computing Services

4. Reliable Cloud Computing Services

Reliability in cloud computing is how consistently a cloud computing
system is able to provide its services without interruption and failure. Gen-
erally the reliability is defined as

The ability of an item to perform a required function under stated con-
ditions for a stated time period. [32]

Cloud computing is a service-oriented architecture so the attributes of
the reliability rely on service models such as, Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). To
make cloud services reliable, both service providers and service users have
their own responsibilities that vary according to the service model. To avoid
service failure and to provide resiliency, three different design principles for
reliable services (Figure 6) have been proposed by Mike Adams et al. [33]
from Microsoft Corporation. Good design following the given principles
will minimize the effect of failures and enhance system resilience so that
there is minimal interruption to services. If a failure event has occurred
at a particular instance, then partial or even delayed services need to be
delivered. Once the failure has happened, important measures to recover
the service from the degradation due to failure also needs attention. The
recovery should be done with minimum intervention of human. Various
mechanisms such as checkpointing, redundancy, etc. (section 4.1) have been
proposed to recover the services of cloud computing upon failure. During
the event of failure and process of recovery from the failure, data integration
is a big concern. To avoid inconsistency in the data, mechanisms have
to be implemented. On the other hand, data security is also an issue in
these days. There are various incidents in history such as the Sony pictures
entertainment hack, Dropbox leakage and icloud leakage that highlights the
need to preserve the integrity of the data to make the services reliable and
trustable.
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Figure 7: Failure Management in Cloud Computing

4.1. Service Failure Management in Cloud Computing

To provide reliable services in cloud computing, one needs to manage
service failures. All the proposed architectures and techniques designed for
well-behaved cloud environment have to be redesigned for a failure-prone
cloud environment. To manage resource failures in computing environment
for reliability assurance, various techniques and methods have been proposed
and implemented (table 1). Since the service-oriented architecture is used by
cloud computing, all the techniques and methods need to be explored from
the perspective of service reliability. All the failure management techniques
are categorized into two groups (Figure 7)

4.1.1. Reactive Failure Management

In reactive failure management, measures are taken after the occurrence
of failure. The working of reactive failure management techniques is similar
to the working of reactive routing protocols in networks [34]. In reactive
routing protocols, there are no routing tables. All the routes are created on
demand. In the same way, whenever failures have occurred in cloud services,
the required measures will be taken by restarting the services from the last
execution instance recorded earlier using checkpointing or logging.
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Checkpointing. is a widely adopted reactive fault tolerance technique, in
which the current state of a running process is saved on some backup re-
sources and on the occurrence of failure, the process will be restarted or
rolled back by using the last saved state. It has proved that the systems
running without checkpointing take exponential time to complete the task
[35]. By using checkpointing, the exponential time becomes linear. On the
basis of the working principle, checkpointing has divided into three different
categories [36] such as Uncoordinated Checkpointing (Random Checkpoint-
ing), Coordinated Checkpointing (Periodic Checkpointing) and Communica-
tion Induced Checkpointing (Figure 7). Various cloud management software
suits such as UniCloud by Oracle, Intels Data Center Manager (DCM) are
incorporated with the checkpointing mechanism to provide uninterruptable
cloud computing services. It has been argued that in the large-scale systems
like clouds, checkpointing mechanisms could create large overheads as well, if
performed frequently [16]. It has been estimated that the checkpointing cre-
ates overhead of 151 hours for a job of 100 hours in the petaflop systems [17].
However, if a running program check pointed infrequently after long inter-
vals, then it will make the re-execution of program lengthy after the failure,
which will increase the total execution time of the program. The problem of
determining the intervals for checkpointing is called optimal checkpoint in-
terval problem. In the literature, finding the optimal checkpointing interval
attracts many researchers [37][38].

Replication. is another reactive method to provide fault tolerance in which
the backup resources are used to run replicas of the running processes. On
the basis of updating of running replicas to handle the inconsistency, replica-
tion has divided into two categories called Primary Backup (Passive) repli-
cation and Active replication(Figure 7). Various cloud computing providers
use replication mechanism to provide fault tolerance at different levels. Mi-
crosofts Azure uses virtual machine replication to provide fault tolerance at
the cloud level. In the case of the failure of a virtual machine, Azure always
keeps replicated VMs to take charge of the failed VM. At Infrastructure as
a Service level, OpenStack, an open-source cloud computing platform uses
data replication to store data by writing the files and objects at multiple
disks spread throughout the servers in the data centers. There are many
more examples where the replication is in use like DFS replication, Apache
Hadoop, Amazon EBS etc. A complete survey of replication mechanisms
has been done by Rachid Guerraoui et al. [39]. The biggest challenge to run
the replicas of a process is to maintain the consistency between the replicas
and propagation of update messages. Various methods and mechanisms to
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handle the challenges and use of replicas in cloud computing environment
can be seen in Table 1.

Logging. or message logging protocols. Each process is recorded or saved
in its present state and messages are sent periodically as the logs at some
stable storage. When a process crashes, a new process is created on the
place of a crashed process by using the recorded logs. To get the pre-
failure state of a crashed process, all the logged messages are evaluated in
the same order in which they were generated. Once the new process has
created after a crash, the state of the new process should be consistent with
other running processes. If the state of the process remains inconsistent
then the process will be known as orphan process. To reduce the overhead
of logging, checkpointing is incorporated with logging (Table 1). Once the
checkpoint has been saved for the state of a process then all the logged
messages before the checkpoint can be removed to save storage space. We
classify the process of logging into two classes: Orphan process based and
Storage based. These are further combined with each other to make more
classifications [40] (Figure 7). In the upper sections, various coordinated
methods are used to provide fault tolerance in distributed systems. Because
of the overhead generated by the coordination between the processes, they
have scalability issues. The uncoordinated methods such as message logging
seems to be a good option in terms of application makespan for CCS. Pierre
Lemarinier et al. [41], have shown that if the mean time between failures
(MTBF) is less than 9 hours then messaging logging is a better option than
the coordinated checkpoint because of less overheads.

4.1.2. Proactive Failure Management

Due to the large overhead and expensive implementation of reactive fail-
ure management mechanisms, cloud service providers have begun to adopt
proactive failure management mechanisms. In proactive failure manage-
ment, the prevention measures have been taken before the occurrence of
failure. The productivity of proactive failure management methods depends
upon the prediction of the occurrence of the failures [19][42]. On the basis
of the failure prediction results, the running processes are migrated from
the suspected resource to other healthy resource for an uninterruptable ex-
ecution. The accurate prediction of the occurrence of failure will make the
failure management more efficient and reliable. Failure prediction is classi-
fied into two categories: offline failure prediction and online failure predic-
tion. A complete survey about the failure prediction methods has done by
Felix Salfner et al. [24]. After the results of the failure prediction methods,
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suitable actions are taken by proactive fault tolerance mechanisms. Migra-
tion is the method that is used to provide fault tolerance by incorporating
failure prediction methods. With the introduction of high speed networks
and distributed architecture of computing, the migration of running tasks
became possible. With the emergence of cloud computing, the migration has
divided into the process migration [43] and virtual machine migration. By
considering the dynamic nature of the cloud infrastructure, only virtual ma-
chine (VM) migration based fault-tolerance methods have been considered
in table 1. To migrate the running VMs from a faulty server to health one,
two methods have been proposed in the literature: Pre-Copy and Post-Copy
(Figure 7).

Pre-copy VM Migration Approach. The pre-copy approach [44] has
two different phases: Warm-up Phase and Stop-and-copy Phase. In warm
up phase, hypervisor copies the state of the running VMs such as CPU
state, memory state, and state of other devices from a faulty server to the
destination server. As the warm-up phase completes, the virtual machine
stops at the source machine and stop and copy phase initiates. The stop and
copy phase copies the remaining files or pages (if any) in the memory that
gets modified (dirty pages) during the warm-up phase. After the transfer of
all the pages the virtual machine resumes its execution over the destination
machine. The time between the suspension of a virtual machine from the
source node and resumption over the destination node is called down-time.
Many of the hypervisors such as VMware, Xen, KVM are using pre-copy
migration approach [45].

Post-copy VM Migration Approach. In post copy approach [46], the
running VMs gets suspended at the source nodes and migrated to the des-
tination nodes with partial attributes of the execution state such that CPU
state, register usage etc. After getting the destination, the VMs resumes
with the execution. In parallel the source machine also stay active serving
the migrated VMs. Whenever a VM do not find a page in its local memory,
it generates a page fault (network fault). On the generation of a network
fault or page fault, destination machine redirects the page request to the
source machine which in-turn responds with the faulted page. In general,
the memory image can be transferred in the background after execution of
VM at destination or it can be transferred on-demand in response of network
fault.

As stated earlier, along with providing reliability to the services and op-
timized resource utilization, virtual machine migration has also been proved
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Figure 8: Levels of Energy Efficiency Enhancement

as a very promising technique to manage the energy consumption in CCS.
Thorough details about the mechanisms used to manage the energy con-
sumption in cloud computing paradigm are discussed in the next section.

5. Energy Management in Cloud Computing

Along with the reliability of cloud computing services, energy consump-
tion by the underlying complex infrastructure providing cloud services is
also a big concern for cloud service providers. As increasing the reliabil-
ity of cloud services makes it profitable by attracting more users or clients,
decrease in the energy consumption will make it even more profitable by
reducing the operational expenses of underlying infrastructure in terms of
electricity bills. Besides the construction of data centers by adding tem-
perature monitoring equipments, optimized air vent tiles, putting plates to
block cold air passing through the racks, designing of optimized software
systems is also very important for the proper utilization of resources of
cloud infrastructure to increase the energy efficiency. As shown in figure 8,
energy consumption can be optimized at the hardware level, software level
and intermediate level. In the following sections, we have explored differ-
ent techniques and methods to regulate the energy consumption in CCS.
A complete list of the existing most energy efficient distributed computing
systems is provided by Green50015.

In some studies, problem of high power consumption and high energy
consumption has considered separately [61]. But because of the direct pro-
portional relation between the energy and power consumption (equation 1),

15http://www.green500.org/greenlists
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Table 1: Survey of Failure Management Mechanisms in Cloud Computing

A
u
t
h
o
r
s

S
e
r
v
ic

e
F
a
il
u
r
e

M
a
n
a
g
e
m

e
n
t

F
a
il
u
r
e

M
a
n
a
g
e
m

e
n
t

M
e
t
h
o
d

O
b
je

c
t
iv

e
s

A
r
c
h
it
e
c
t
u
r
e

W
o
r
k
lo

a
d

B
a
k
h
ta

M
e
ro

u
fe

l
e
t

a
l.
[4

7
]

R
e
a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g

S
y
st

e
m

A
v
a
il
a
b
il
it

y
C

lo
u
d

C
o
m

m
u
n
ic

a
ti

o
n

In
d
u
c
e
d

S
o
n
g

F
u

e
t

a
l.

[1
6
]

P
ro

a
c
ti

v
e

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

V
ir

tu
a
li
se

d
C

lu
st

e
rs

H
P

C

J
o
h
n

P
a
u
l

W
a
lt

e
rs

e
t

a
l.
[4

8
]

R
e
a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g
,

R
e
p
li

c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

V
ir

tu
a
li
se

d
C

lu
st

e
rs

H
P

C

R
a
c
h
id

G
u
e
rr

a
o
u
i

e
t

a
l.
[3

9
]

R
e
a
c
ti

v
e

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d
s

R
a
v
i

J
a
w

a
h
a
r

e
t

a
l.

[4
9
]

P
ro

a
c
ti

v
e

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d
s

M
u
lt

ip
le

A
iq

ia
n
g

G
a
o

e
t

a
l.
[5

0
]

R
e
a
c
ti

v
e

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
C

lo
u
d

W
e
b

D
a
-W

e
i

S
u
n

e
t

a
l.
[5

1
]

R
e
a
c
ti

v
e

D
a
ta

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

A
n
ju

B
a
la

e
t

a
l.

[5
2
]

P
ro

a
c
ti

v
e

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
C

lo
u
d

S
c
ie

n
ti

fi
c

N
ic

o
la

s
B

o
n
v
in

e
t

a
l.
[5

3
]

R
e
a
c
ti

v
e

V
M

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

H
a
ik

u
n

L
iu

e
t

a
l.

[5
4
]

R
e
a
c
ti

v
e
,

P
ro

a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g
,

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

V
ir

tu
a
li
z
e
d

C
lu

st
e
rs

W
e
b

M
o
h
a
m

m
e
d

A
.

A
lz

a
in

e
t

a
l.
[5

5
]

R
e
a
c
ti

v
e

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

S
e
c
u
ri

ty
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

M
u
lt

i-
C

lo
u
d
s

X
ia

n
q
in

g
Y

u
e
t

a
l.
[5

6
]

R
e
a
c
ti

v
e

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

S
y
st

e
m

S
e
c
u
ri

ty
P

u
b
li
c

C
lo

u
d

T
u
n
g

N
g
u
y
e
n

e
t

a
l.
[5

]
R

e
a
c
ti

v
e

R
e
p
li
c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

M
u
lt

ip
le

B
re

n
d
a
n

C
u
ll
y

e
t

a
l.
[5

7
]

R
e
a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g
,

R
e
p
li

c
a
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
V

ir
tu

a
li
se

d
S
y
st

e
m

s
W

e
b

D
a
e
y
o
n
g

J
u
n
g

e
t

a
l.

[5
8
]

P
ro

a
c
ti

v
e

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

M
u
lt

ip
le

B
a
h
m

a
n

J
a
v
a
d
i

e
t

a
l.

[1
3
]

R
e
a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

V
ir

tu
a
li
se

d
C

lu
st

e
rs

P
a
ra

ll
e
l

B
a
h
m

a
n

J
a
v
a
d
i

e
t

a
l.

[1
5
]

R
e
a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

H
y
b
ri

d
C

lo
u
d
s

H
P

C

W
il
li
a
m

V
o
o
rs

lu
y
s

e
t

a
l.

[5
9
]

R
e
a
c
ti

v
e
,

P
ro

a
c
ti

v
e

C
h
e
c
k
p

o
in

ti
n
g
,

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

C
o
m

p
u
te

-I
n
te

n
si

v
e

L
in

Y
a
o

e
t

a
t.

[6
0
]

P
ro

a
c
ti

v
e

V
M

M
ig

ra
ti

o
n

S
y
st

e
m

A
v
a
il
a
b
il
it

y
,

R
e
so

u
rc

e
U

ti
li
z
a
ti

o
n

C
lo

u
d

21



Figure 9: Energy/Power Management Methods

both energy and power have been used interchangeably in this study and
this has done by many studies in this domain [62].

E = PT (1)

5.1. Static Power Management

Also known as offline energy management deals more with circuitry sys-
tems. It is more engineering oriented approach. In static management of
power, whole optimization takes place at the system level during the design
time. It deals with the geographical distribution of the processing centers,
circuit manipulation, redesigning of architectures, instruction sets, transis-
tor sizing, path balancing and factorization[63]. The main goal of the static
power management is to keep the energy consumption or power consump-
tion low by using low power usage components. In this category, the energy
consumption is managed at two levels: CPU level and System level. It has
been proven that among all the computing components, CPU consumes 35-
50% and provides a big scope to optimize energy consumption [64]. At CPU
level, the optimization could be done at register level or at instruction set
level. At the register level, all measures to reduce the energy/power con-
sumption are taken by optimizing the register transfer level (RTL) activities
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and at the instruction set level, different types of instruction set architec-
tures (ISA) have been proposed to reduce the power consumption such as
reduced bit-width ISA. Work has been done on instruction set optimization
by various researchers to optimize the power consumption [65].

Along with CPU, there are other components who are also big contribu-
tors to the overall power consumption of the system such as memory compo-
nents, network facility and software systems. System level static power man-
agement methods have been used to regulate the energy/power consumption
by such components. System level power optimization also deals with setup
techniques. Questions such as how to choose the right components during
the setup phase of cloud systems to minimize the asynchronization between
different components, how to place the servers to minimize the delays, choice
of operating systems and application softwares are answered using system
level power management methods. Architectures such as FAWN [66] and
Gordon [67] have been proposed to couple the low power CPUs with local
flash storage and data centric powering systems to balance the computation
and I/O activities to make the cloud computing architectures more perfor-
mance and energy efficient. Geographic distribution of the machines [68],
choosing components with maximum compatibility and network topologies
to minimize the power consumption belongs to system level power optimiza-
tion.

5.2. Dynamic Power Management Mechanisms

Dynamic power management (DPM) deals with the regulation of energy
consumption by using software based policies. Each type of server com-
ponents provides a different dynamic power range such as the difference
between the maximum power consumption and minimum power consump-
tion. In the figure 10, it has shown that CPUs can consume around 30%
of their peak power consumption in the low activity modes which gives the
range of 70% to scale up and down. On the other hand, memory and disk
drives have the dynamic range of 50% and 25%, respectively followed by
the network facilities such as switches or routers, which have the range of
only 15% [61]. On the basis of dynamic range of power consumption, the
working of components can be scaled up or scaled down to regulate the
power/energy consumption. On the basis of approach used to reduce the
power/energy consumption, the classification of DPM methods is done in
two levels, Hardware Level (using Power-scalable components) and Software
Level (using Power-scalable resource management).
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Figure 10: Dynamic Range of Power Consumption of Various Server Components

5.2.1. Dynamic Power Management using Power-scalable Components

At the component level, all the components supporting low activity
modes are considered as the power scalable components such as CPU and
can be manipulated using DPM methods. As stated earlier, CPU is the
major power consuming component followed by the memory units. So in
majority of cases, DPM methods are using two components such that CPU
and memory for power/energy regulation.

Power Scalable CPUs. use the relation between the power supply, oper-
ational frequency and voltage (equation 2) to regulate the power utilization
in processors (Figure 10). Advancement in the processor architectures make
CPUs able to run at different activity modes using different voltage and
frequency rates.

Pdynamic = aCfV 2 (2)

where, a is the logical or switching activity, C is the capacitance, f is the oper-
ational frequency and V is the supply voltage. In complementary metal oxide
semiconductor (CMOS) circuits, the energy consumption increases quadrac-
tically as the supply voltage increases. All the above mentioned power man-
agement techniques expolit this factor by reducing the supply voltage (DVS),
operational frequency (DFS) or both at the same time (DVFS) [69] [70].
There are many ways to scale down the high voltage supply to decrease the
high energy consumption but one of the best is to exploit the stall time.
Due to the speed gap between the main memory and the processor, signif-
icant amount of clock speed of processor has been wasted whilst waiting
to get the required data from the main memory. During the waiting time
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(stall time), the processor frequency can be brought down by manipulat-
ing the supply voltage to the processor to save the excessive energy/power
consumption [71]. Many semiconductor chip makers are using given voltage
and frequency scaling techniques at different levels and in different devices.
Intels Woodcrest Xeon Processors works at eight different operating frequen-
cies by reducing the maximum operational frequency by 8.3%, 16.5%, 25%,
33.3%, 41.6%, 50.0%, 58.3%, 66.6%, 77.7%, 88.9% and 100% [72]. By using
CPU throttling, Intel has developed SpeedStep CPU throttling technology
and AMD has developed two CPU throttling technologies: CoolnQuiet and
PowerNow!. Along with the frequency scaling of the CPUs, AMD has also
implemented frequency throttling in Graphical Processing Units (GPU) as
AMD PowerTune and AMD ZeroCore Power.

Power Scalable Storage Systems. regulates the activity of storage de-
vices such as disk drives to reduce power consumption. In the distributed
computing systems, energy consumption by disk drives is significant. It has
been estimated that around one-third of the total electricity supplied to
the data centers is required for the mechanical operations of disk storage
systems [73]. Typically, when a disk is in standby, it consumes about one
tenth of the power that it consumes during the spinning mode. The energy
consumption by storage systems in large data centers need to be considered
seriously because the requirement of the storage systems is increasing by
60% annually [74]. In large cloud based data centers, disk drives usually
remains underutilized and use less than 25% of their total storage capacity.
This provides large scope to reduce the energy consumption by disk drives
by increasing the utilization and by turning off the unnecessary disks [75].
Various methods to make storage system power efficient are given in figure
9. A thorough survey on the energy efficiency of the disk drives has been
done by Tom Bostorn et al. [76].

Power Scalable Memories. are addressed least among all the compo-
nents addressed to minimize the energy consumption in large scale dis-
tributed computing systems. According to David Howard et al. [77], under
specific workloads, memory unit can consume 23% on average, of the total
power consumption. In figure 10, the dynamic range of power consump-
tion of memories is 50%, which provides plenty of scope to increase the
power/energy efficiency of memory units. Like CPUs, the concept of low
frequency and less voltage for power reduction (DVFS) is also applicable
to memory units. In the case of DRAMs, the power consumption of some
of the components such as storage arrays of DRAM can be scaled by V
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and some of the components can be scaled by V 2. Making energy aware
memory components and using them in cloud computing environment gives
rise to new challenges. Making power efficient memories will be achieved at
the price of performance. The power aware techniques used in the memory
units should be leveraged to save overall power consumption of the large
scale systems without effecting the performance of the systems. In response
to this, a software platform called Memory Management Infrastructure for
Energy Reduction (Memory MISER) consists of a modified Linux kernel and
implementation of a PID controller has proposed by Matthew R. Tolentino
et al. [78]. The proposed architecture has been proved to reduce energy
consumption of memories by up to 70% and up to 30% for the overall sys-
tem.

5.2.2. Dynamic Power Management using Power-scalable Resource Man-
agement

With the adoption of energy efficient components in the infrastructure
of the cloud systems and, due to the vast amount of data for processing, the
management and monitoring of the resources is very important. Wise man-
agement of the resources including resource provisioning, task scheduling,
performance monitoring leads to less energy consumption and more profit-
aware computing. Although the management of the resources is a general
term for the distributed computing environment but in the context of cloud
computing it is more associated with virtualization technology. The em-
ployment of the virtualization technology makes it possible to minimize the
number of working resources by keeping the utilization of resources high by
executing more virtual machines processing different workloads.

In this section, various mechanisms that execute the tasks on cloud com-
puting infrastructure in an energy efficient manner will be highlighted. This
section answers several questions such as how to provision the resources in
an energy aware manner, How to distribute or schedule the workload among
the provisioned computing components in an energy efficient way, When
to migrate the running tasks from one underutilized resource to other to
save the power consumption, When and how many computing components
need to be turned on or turned off to save energy. In the literature, many
algorithms, heuristics or architectures are proposed to handle the issues
of power/energy consumption in cloud computing environments (Table 2).
Mechanisms to reduce the energy consumption by using software techniques
are divided into three different categories: Reactive, Proactive and Hybrid
[79]. These can be implemented in centralized and decentralized ways.
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Reactive Managment of Resources. takes all the measures to man-
age the energy consumption according to the current state of the system.
The reactive mechanisms are based on feedback or monitoring. The con-
tinuous monitoring of the system is done and according to the pre-defined
constraints such as thresholds the corrective actions are taken by migrating
or consolidating the workload to regulate the energy consumption of the
system. The productivity of the reactive management of energy consump-
tion depends upon the accuracy of the monitoring procedure. In virtualized
computing environments like clouds, when the resources are not fully uti-
lized the migration or consolidation of the running virtual machines to some
other resource is possible and promised as the best technique to reduce the
energy consumption. Along with regulating the energy consumption, with
the efficient utilization of the resources, the carbon emission rate is also a
concern. As the energy consumption will be increasing, the temperature
will rise and more power will be required to run the cooling infrastructure
to keep the temperature low. For the generation of each unit of electricity,
fuel has to burn that adds to the carbon emission. This is also a main factor
that is under consideration in these days. United Nations and governments
of various countries like Japan16 are imposing the penalties and developing
protocols such as UNs Kyoto Protocol17 to reduce the carbon footprints by
the cloud based data centers. A thorough survey of work on the energy con-
sumption by using the reactive resource management mechanisms is given
in Table 2.

Proactive Management for Resources. also known as predictive man-
agement of resources use the information about the average behaviour of
the system rather than the current state of the system. The decision about
choosing the optimized resources in terms of performance, energy consump-
tion and reliability has been taken on the basis of the data collected during
the previous runs. By using the collected data, predictions are done about
the behaviour of the system to make the adequate decisions about the al-
location of resources to minimize the energy consumption. In the literature
various prediction models are proposed to minimize the energy consumption
[80]. Similar methods using predictive approach to reduce energy utilization
in cloud computing environment is present in Table 2.

16http://www.jdcc.or.jp/english/
17http://unfccc.int/resource/docs/convkp/kpeng.pdf
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Hybrid Management of Resources. use both predictive behaviour of
proactive methods and monitoring behaviour of reactive methods to tune
the energy consumption and resource utilization. Due to the dependency
on the results of the prediction mechanisms, methods in proactive resource
management always lags because as mentioned in section 4.1, it is hard
to predict the behaviour of the system accurately including the energy con-
sumption as well. On the other hand, due to the large overhead, the reactive
energy efficiency resource management methods possess delays, which add to
the power inefficiency of the whole system. By combining the merits of reac-
tive and proactive methods, the hybrid methods have been designed. In the
literature (Table 2), some work has been done by various authors combining
both reactive and proactive methods to reduce the energy consumption of
the CCS.

6. Trade-off between Reliability and Energy Efficiency in Cloud
Computing

We have observed in previous sections that most of the research has
focused either on service reliability or energy efficiency in cloud comput-
ing environments. As analysed, existing mechanisms do provide reliability
to cloud computing services and have proved to be very efficient and opti-
mized [37][3]. By using these methods, cloud computing service providers
are claiming on the one hand that their cloud services are more than 99%
available in terms of uptime alowing only 80 hours of downtime per year,
approximately. However, all the given methods require extra back-up and
storage resources to store logs and checkpoints to allow last state system
recovery in the case of failure or interruption. Adding extra resources to
the infrastructure increases the energy consumption at a greater rate than
reliability gains and has a direct impact on the profit margins of the service
providers and users and negatively impacts natural environment.

Energy management mechanisms that regulate system performance and
hardware resources reduce the system energy consumption. The key tech-
niques used to reduce energy consumption is running the resources on low
power scaling level or by turning off the idle resources such as back-up, which
will reduce the reliability of the system. For example, in the case of virtual
machine consolidation (key techniqe to reduce energy consumption in CCS),
if a physical machine fails due to some hardware or software issues before
the completion of tasks and there are no recovery resources, then all the
virtual machines and their corresponding processes will have to start again.
This will dramatically increase overheads such as energy consumption and
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Table 2: Survey of Energy Management Mechanisms in Cloud Computing
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Figure 11: Reliability and Energy Efficiency Tradeoff in Cloud Computing Systems

resource utilization. Service providers will lose a lot of revenue in terms of
penalties for SLA violations and most importantly, trust of the users.

In figure 11, a crucial trade-off between reliability and energy-efficiency
of CCS can be clearly seen. On the one hand, reliability of the system in-
creases as the resource redundancy increases. But increasing the number of
redundant resources used to store back-ups or to run replicas has adverse
effect on the energy efficiency of CSS. On the other hand, as the frequency of
virtual machine consolidation increases, energy efficiency of the system in-
creases. But high VM consolidation has the negative effect on the reliability
of the system. Both reliability and energy efficiency of CCS increases asym-
metrically. This trade-off opens up new opportunities and challenges in CCS
by considering both these elements simultaneously. It is very important to
reach equilibrium between these two metrics from different perspectives such
as quality of services, revenue, operational cost and environment. There is
a distinct need for more research in the area of optimising the relationship
of system reliability and energy efficiency in CCS (table 3). The following
section of this paper seeks to outline the current research into the interplay
of reliability and energy efficiency in CCS.
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6.1. State of the Art in Reliability and Energy Efficiency Mechanisms in
Cloud Computing

In this section, current research combining reliability and energy effi-
ciency of cloud computing has highlighted and gaps have been identified.
The brief discription of this section has provided in table 3.

Hamid Reza Faragardi et al. [62]. have proposed an Integer Linear Pro-
gramming (ILP) based mathematical model to regulate the reliability and
energy consumption of the CCS by taking into consideration quality of ser-
vices in terms of service deadlines. On the basis of this model, a swarm
intelligence resource scheduling method based on Imperialist Competitive
Algorithm [101] has proposed to allocate the resources in a failure-aware
and energy-efficient way. To introduce the failures in the systems, Faragardi
has used a Poisson process-based failure model that generates constant and
independent failures. Along with the failure model, an energy model has
also been proposed based on CPU utilization. By using the equations for
reliability and energy consumption, a common ILP-based cost function has
been used to balance both energy and reliability. The proposed solution has
improved the energy utilization and system reliability significantly by 17%
and 9% respectively in comparison to a hybrid genetic algorithm.

In this study the occurrence of failures has been modelled by using Pois-
son distribution, which has proved to be a poor fit by many researchers [102]
[22]. Normal and log-normal distributions have proved a better fit for failure
generation modeling. Authors have also been modelled independent occur-
rence of failures, which have been challenged [30] [20] by showing temporal
and spatial correlation between the failures.

Ifeanyi P. Egwutuoha et al. [91]. have developed a generic proactive en-
ergy efficient fault tolerance model independent from redundant resources
for CCS executing high performance computing (HPC) applications. To
provide immunity from task failures, a rule based prediction mechanism
has been used to foresee failures using the data gathered by a back end
service ”FTDeamon” using LM-sensors. A mathematical model has been
developed to evaluate the weight of the current state by multiplying the
LM-sensor values of all components of systems. After calculating the cur-
rent weight, a comparison has been done with the critical state threshold
value. On the basis of comparison result, decisions about provisioning of
new resources, relinquishing of faulty ones and migration of processes has
been taken. To make the method less expensive and energy efficient, no
extra resources are provisioned initially to provide fault tolerance. On the
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basis of the results of failure prediction mechanisms, extra resources are pro-
visioned to initialize the virtual machines to migrate the running processes
from failing hosts/resources. Process level migration has been used instead
of using traditional VM level migration because process level migration has
less overheads and makes the migration fast, which further helps to reduce
overall energy consumption and make fault tolerance more dynamic and less
complex.

The proposed mechanism has been designed for message passing inter-
face applications, which require uninterruptable functioning of resources for
a long duration. As no backup resources are used to provide immunity from
failures to running processes, this algorithm depends highly upon the accu-
racy of the failure prediction mechanism. The average accuracy of failure
prediction mechanisms is 76.5% [16]. This level of accuracy is unsuitable for
HPC workload. To make the mechanism more attractive, both reactive and
proactive fault tolerance mechanisms should be used simultaneously.

Altino M. Sampaio et al. [103]. have proposed two algorithms POwer-and
Failure-Aware Relaxed time Execution (POFARE) and POwer-and Failure-
Aware Minimum time Execution (POFAME). They address the problem
of mapping of virtual machines to physical machines, so as to increase the
completion rate of the tasks with minimum energy consumption in a private
cloud computing environment. Stop and copy VM migration employing fail-
ure prediction has been used to make the services available and to execute
the tasks by deadline without any interruption. CPU has chosen optimisti-
cally on the basis of predicted Mean Time between Failure (MTBF) and
according to the capacity required to finish the tasks within their respec-
tive deadline. SLA terms are ensured by completing the tasks on time and
avoiding penalties. A tentative private cloud architecture has also been
designed in which a cloud manager monitors the status of virtual and phys-
ical machines. Based on the information, the cloud manager allocates tasks
concerning energy consumption improvement, so as to facilitate physical
machine fault tolerance. To save energy and provide fault tolerance, virtual
machine consolidation or migration has been employed as well as putting
free physical machines in sleep mode. Three other algorithms: Common
Best-Fit (CBFIT), Optimistic Best-Fit (OBFIT) and Pessimistic Best-Fit
(PBFIT) are used to evaluate the performence of proposed algorithms. Af-
ter the intensive simulations performed by using Poisson distribution-based
random workload and Google-based workload, POFARE outperformed all
the algorithms and gives the best results.

A limitation of Altino M. Sampaio’s energy model lies in the use of only
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CPU power consumption, without consideration of any other components
such as memory and disk-drives and heterogeneity of physical machines.
Voltage scaling would have been more energy efficient solution than enter-
ing and waking-up the nodes from the sleep state. Similar to Hamid Reza
Faragardi et al. [91], performance degradation of the system has not been
considered. To make the reliability and failure models simple, most of the
researchers assume either the system works fine or it fails. This kind of
binary behaviour is valid for components such as CPU but not for the whole
system because in virtualized computing environments, system slowdown or
performance degradation occurs because of shared resources between virtual
machines. This leads to the system failure. In the given work, running mul-
tiple virtual machines on the same node has been implemented but assumes
no performance interference, which is not the case in the real world and
has to be considered. Failure tolerance in proposed solutions relies com-
pletely on failure prediction. If physical machine fails outside of the failure
forecasts, then all the virtual machines have to be re-initiated because of
a non-forecasted failure then all the running virtual machines have to be
re-initiated.

Peter Garraghan et al. [104]. have done an empirical analysis by using
google traces to analyse the failure related energy waste in cloud computing
environments. This analysis highlights the impact of failures at task level
(software level) and server level (hardware failures). All the terminal events
taken from Google cluster traces are divided into three categories: Kill,
Evict and Task fail. SpecPower2008 benchmark [105] has been used to
calculate the energy consumption of per failure event. In the study, it has
been noted that Kill and Evict contributes to more energy wastage (48%
and 39% respectively) than task failures (13%). The occurrence of kill and
evict events have been considered because of scheduling, which is one of
the reasons of failures in cloud computing services (Figure 2). All the tasks
are assigned with different priorities from 0 to 9 and occurrence of failures
has been scaled on the basis of priorities of the interrupted tasks. The
low priority tasks have been found most prone to failures with mean time
between failure of only 1 hour and vice versa for high priority tasks (48h and
58h respectively). 35% of failures occur on tasks with lower priority. At the
server level, numbers of failures are calculated on the basis of the architecture
type of the underlying servers. The frequency of the occurrence of failures
(MTBF) and recovery time (MTTR) is independent of the population of the
servers. For energy wastage, priority 0 tasks have only minor energy wastage
but priority 8 and 9 tasks waste large amount of energy in comparison to
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the number of failures because of resubmissions. This means that the energy
wastage is independent from the number of task failures. The proportion
of energy wastage depends upon the characteristics of the failed tasks such
as the task length. The longest running tasks (priority 9) have the greater
impact, which wastes a considerable portion of the energy (up to 65%). From
the analysis of all type of terminal events, task failures contribute upto 21%
of the total energy wastage because of the resubmission and recomputation
of failed tasks.

In conclusion, it has been claimed that the choice of a mechanism to
regulate the energy wastage in the presence of failures should be made by
considering physical architecture or scenario. Inappropriate mechanism will
lead to more energy wastage rather than reduction, for example the adop-
tion of task migration for low priority tasks will lead to high increase in
execution time which futher increase the energy consumption. Garragham’s
work is based only on empirical analysis but has not proposed any mathe-
matical model or formal procedure to regulate the energy consumption in
the presence of failures.

M. el Mehdi DIOURI et al. [106]. have evaluated the energy consump-
tion by checkpointing and fault tolerance (coordinated and uncoordinated)
protocols. In uncoordinated protocols, logs are stored at Hard Disk Drive
(HDD) or Random Access Memory (RAM) for message logging. When
comparison has been made between the power consumption of RAM log-
ging and HDD logging, power consumption by RAM logging has been found
to be less than the consumption of HDD logging. So it has been concluded
that to provide fault tolerance in extreme scale distributed computing sys-
tems, message logging protocol using RAM to store logs should be preferred
over the HDD based message logging and checkpointing. For coordinated
protocols, energy consumption patterns are similar to the patterns seen in
uncoordinated protocols and checkpointing. The energy consumption by co-
ordinated protocols depends upon the duration of the coordination process,
which further depends upon process. Poor synchronization means a longer
coordination process and more power consumption. By slowing down the
fastest process, extra energy consumption can be minimized.

To make the decision about choosing suitable energy aware fault tol-
erance methods, an evaluation of coordinated (3 coordinate) and uncoor-
dinated (RAM logging) fault tolerance protocols has been done using 4
NAS parallel benchmarks with 16 and 64 processes. All experiments are
conducted on Lyon site of Grid5000 [107] using their energy measuring in-
frastructure facility. It has been concluded that message logging protocols
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are more suitable for the applications involving less data exchange and vice
versa for coordinated methods.

Longxin Zhang et al. [108]. have addressed an optimization problem to
maximize the reliability with energy conservation for precedence constraint
tasks in heterogeneous clusters by proposing three algorithms. They are:
Reliability-aware Heterogeneous Earliest Finish Time (RHFT), Reliability-
aware Critical-Path-On-a-Processor (RCPOP) and Reliability Maximization
with Energy Constraint (RMEC) algorithm. All the proposed algorithms
have three phases: task priority establishment, processor frequency selec-
tion and task to processor mapping. In task priority establishment phase,
all the tasks are prioritized according to their URank, which is a method
to calculate the topological order for directed acyclic graphs (DAG). After
calculating the URanks (bottom up approach), all the tasks are pushed in
priority queue in decreasing order starting with highest priority. Once tasks
are ordered, best frequency and voltage pair are chosen. This consumes less
energy in executing tasks ready at the top of the queue. Along with the pro-
posed algorithms, Hierarchical Reliability Driven Scheduling (HRDS) and
Reliable Dynamic Level Scheduling (RDLS) algorithms are also used for a
comparative evaluation.

To evaluate the performance of given scheduling algorithms a large num-
ber of randomly generated DAG with different number of nodes (tasks) and
real-world applications are used. For real world applications, three problems
i.e. Fast-Fourier Transformation (FFT), LU decomposition and Gaussian
elimination are chosen to generate task graphs. The simulation results show
that in all cases, RMEC outperforms other algorithms in terms of reliabil-
ity and energy consumption. Though the proposed algorithms have worked
well in the present scenarios, results may vary in the presence of correlated
failures. So, to make the solutions more promising and applicable, con-
sideration of models for correlated failures [21], [20] should be taken into
account.

Wei Deng et al. [109]. have proposed a Reliability-Aware server Consolida-
tion stratEgy (RACE) to address a multi-objective problem with reliability
and energy cost factors. A utility model that can estimate the cost of server
consolidation in terms of reliability and energy efficiency whilst still mitigat-
ing SLA violations occurring due to resource demand and supply mismatch
has been formulated. The unified utility model has been used by a ge-
netic algorithm improved grouping genetic algorithm (IG2CA) to provide
an optimized solution of the problem by choosing the best among the initial
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configurations provided by the proposed reliability-aware resource buffering
and VM to PM mapping heuristics.

To prove the superiority of the proposed RACE server consolidation
strategy, a simulation based analysis has been done by using light, nor-
mal and heavy application workloads. The results of the simulation have
compared with results of two other server consolidation strategies: pMap-
per [110] and PADD [111]. With the increase of incoming workload, the
occurrence of SLA violations tend to increase due to the fluctuation in the
workload and resource shortage. In the proposed method, the value of utility
function has been assessed before accommodating any request and perform-
ing VM consolidation. If the value of utility function is positive, only then
consolidation will be considered valid. Because of the common utility func-
tion has unified SLA violation, energy costs and reliability, the proposed
strategy has outperformed all other methods. This kind of constraint is not
available for other consolidation strategies and they tend to accept all the
requests which lead to more SLA violations and energy saved by them has
outweighed because of penalties of SLA violations.

Jai-Chun Lin et al. [112]. have studied the job completion reliability (JCR)
and job energy consumption (JEC) for general map reduce infrastructure
(GMI). The probabilistic models for worst case and best case have been
formulated to represent the reliability of slave nodes performing map and
reduce tasks and master nodes running job tracker and name node instances.
The best case corresponds to the execution of job without any interruption
and worst case corresponds to the execution of job on every cold-standby
node (redundant nodes) at the slave end. Along with the formulation of
reliability of master and slave nodes to finish a job, corresponding energy
consumption has also been formulated as the function of time taken to fin-
ish. All the nodes at master end and at slave end are homogeneous and
occurrence of failures has been assumed following Poisson distribution. The
influence of different number of cold-standby slave nodes (varies from 1 to
4 in this study) has been evaluated on job completion reliability and job
energy consumption. 10 jobs with different lengths of map task execution
time are considered and each of them are divided into 4096 map tasks and
1 reduce task. It has been seen that increasing the number of cold-standby
nodes from 1 to 2 increases the JCR but further increase does not make any
difference because of the absence of any redundancy measure at the master
end. This means that increasing the number of backup resources does not
increase reliability as long as no measure has been taken at the master node
end. For the best case scenario, energy consumption is less and linear with
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respect to map task execution time and independent from the number of
cold-standby nodes such that energy consumption remains same for all the
number of backup nodes. For the worst case, energy consumption is linear
with respect to map-task execution time but varies according to the number
of cold-standby nodes. When the best case occurs, increase in the number
of cold standby nodes does not affect JEC of GMI.

After the analysis, it has been concluded that General Map-reduce In-
frastructure (GMI) is energy efficient but for long executing jobs, it is not
reliable because of the absence of redundancy measure at the master end.
We propose to improve the reliability of the system by using redundancy
measures at the master end of the system.

6.2. New Challenges and Future Research Directions

Many solutions have been developed either to increase the reliability
of the system (table 1) or decrease the energy consumption of the system
(table 2). Some of the work done jointly in the field of reliability and energy
efficiency of CCS is highlighted in the table 3. To the best of our knowledge,
this list includes all the research to make the CCS both reliable and energy
efficient at the same time. Finding a solution to achieve both objectives at
the same time poses new fundamental challenges, which are discussed in the
following sections.

Impact of Energy Efficiency Techniques on Reliability. Though a
lot of work has done to optimize the energy management (table 2) by ex-
ploiting power regulation techniques in order to make CCS energy efficient
but reliability of cloud systems has left an open challenge to look at along
with energy efficiency of the systems. To make the CCS energy efficient, all
the energy-aware resource management techniques are usually based on the
manipulation of underlying resources which can be done either by running
the resources at low-scaling mode or by turning them off. Though these
methods have proved very efficient from the perspective of energy manage-
ment, they have adverse effect on the reliability of the systems. Switching
the resources between low scaling modes and high scaling modes using fre-
quency and voltage scaling techniques (DVFS) causes an increase in the
response time and decrease in the overall throughput of the system. This
can result in a service delay and be considered as a service failure due to SLA
violations. On the other hand, turning servers on/off or putting resources
in sleep mode more frequently makes them more failure prone than running
the resources all the time. Just as the lifetime of a car brake-pads decrease
with each slowdown, the reliability of server components, specifically disk
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Table 3: Survey of Trade-off between Reliability and Energy Management in Cloud Com-
puting
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drives, also decrease with each power modulation. Thats why many disk
manufacturers limited the start/stop power cycles of disk drives to 50,000
for their entire lifetime and also propose to keep the power cycles limited to
10 times/day to keep the overall system reliability high [113]. So the optimal
solution is to make the CCS energy efficient and reliable at the same time
and thus help to make the paradigm stable and acceptable.

Impact of Failures on Energy Consumption. Many solutions are pro-
vided in the literature (table 3) to evaluate the impact of utilization, en-
ergy consumption etc on the occurrence of failures but how much energy
consumption of the system will be effected with the occurrence of failures
remains unclear. It is necessary to use optimized fault tolerance methods
to reduce the occurrence of failures in CCS. But to make the current fault
tolerance methods more optimized in terms of energy consumption, it is im-
portant to study the relation between the failures and energy consumption.
Defining this relationship will help to simultaneously increase the reliability
and energy efficiency of CCS.

Multi-Objective Resource Provisioning Methods and Techniques.
Most existing research has on either the reliability or the energy efficiency
aspect of cloud task scheduling (table 3). The resource or task scheduling can
be formulated by using different optimization problems such as bin packing
problem in which the available resources are assigned to the incoming tasks
according to certain conditions. The resources provisioning is like a bin-
making problem such that adequate number of resources need be reserved
first and, after the reservation, bin-packing solutions can be used to do the
optimization. In the case of under-provisioning of resources, the scheduler
will not get enough resources to schedule the tasks which can lead to the
service failure. On the other hand, in the case of overprovisioning, reserved
resources will remain underutilized which will increase the cost of service in
terms of energy consumption and other operation expenses. Rather than
considering the resource and task mapping problem as a single-layer prob-
lem, it is better to consider it as a two-layer problem consisting of resource
provisioning and resource scheduling. For each layer, different solutions need
to be proposed to make the CCS both reliable and energy efficient.

Prediction Algorithms to Estimate both Fault Occurrence and En-
ergy Consumption. If the occurrence of the failure or fault in the system
is predictable, then important measures can be taken before the occurrence
such that the checkpoints can be saved with less overhead, running virtual
machines or tasks can be migrated to more reliable physical machines. By
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doing this, we can save unnecessary wastage of power/energy that will be
required to restart all the running process that were interrupted during the
failure. The prediction will help to adopt the reactive and proactive fail-
ure management and energy management mechanisms wisely. Suppose the
occurrence of failure can be known in advance, then the checkpointing or
logging of the current state of the system will start just before the occur-
rence of the failure. Therefore, we can reduce overhead occurred due to the
checkpoints or logs of the running system. If the overhead will be reduced
then less number of backup resources will be required and energy consump-
tion of the system will be reduced without compromising the reliability of
the system.

Federated Clouds and their Standardization. Interconnected clouds
or Federated clouds is the collection of clouds analogus to the Internet (col-
lection of networks). Maurizio Giacobbe et al. [114] have defined the cloud
federation as an ecosystem of different cloud providers that are intercon-
nected in a cooperative decentralized computing environment. With the
inter-cloud computing the reliability and energy efficiency of the cloud ser-
vices will be increased by making them more dynamic and scalable. Being
in the early stage, cloud computing is lacking in standardization. As the
reference models and standards are available for other deployments such as
the Internet, cloud deployment has not yet have any confirmable reference
models and standards. As a result, most of the cloud providers have de-
signed their own proprietary standards and interfaces. To avail the services
of such clouds, applications need to get tailored according to the specific
standards and interfaces. This gives rise to another problem called vendor
lock-in [115]. The existence of the reference models (TCP/IP model in case
of Internet) and standards for cloud computing paradigm will help the de-
velopers to implement the generic solutions following the similar attributes.
The standardization will also help to regulate the energy consumption of
cloud infrastructure by making the migration of running virtual machines
easy from one cloud vendor to another, which is yet only been done between
the resources of same or different sites of the same cloud provider. With the
proper set of standards or rules, the concept of inter-cloud computing will be
realized more efficiently, which will make the cloud technology more reliable,
affordable and eco-friendly. It is observed that the majority of time, the re-
sources of data centers providing cloud services remains under-utilized but
still the providers keep extending and upgrading their infrastructure to house
the future needs for example Microsoft is adding 10000 servers per month
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to its data centers18. With the proper realization of inter-cloud computing
architectures, this over spending can be avoided by sharing the resources be-
tween the different cloud providers to serve the unexpected service requests
in a reliable manner without violating the service level agreements.

Real Cloud Failure Traces. Although at the physical level cloud com-
puting services are deployed at the infrastructure of the clusters or other
distributed computing systems, the working paradigm for the CCS is differ-
ent from the rest of the distributed computing architectures. In most of the
research literature, the empirical or statistical analysis about failures and
energy consumption of the CCS has been done by using traces or log files
of grids or clusters mounted within cloud computing services. For example,
Peter Garraghan et al.[104] have done an empirical analysis to evaluate the
effect of failures on the energy wastage of the cloud systems. The whole
work was done by using Google traces generated during the occurrence of
failures in Googles clusters. The occurrence of the failures was deduced ac-
cording to the behaviour or changes in the log data because no information
has been shared regarding the occurrence of these failures. Alhough, there
are different types of failure traces present such as Failure Trace Archive [31],
Google cluster traces, Computer Failure Data Repository (CFDR)19 for dif-
ferent types of distributed computing architectures such as grids, clusters,
volunteer computers etc, there are no failure traces present for a real cloud.
A big gap exists in the analytical studies of cloud behaviour done by us-
ing non-cloud based traces or logs that specifically trace failures and energy
consumption. To make the research more attractive, the cloud computing
service providers must disclose the real cloud traces for the occurred fail-
ures and energy consumption and must build public repositories or help the
researchers to do so.

6.3. Reliable and Energy-Efficient Cloud Computing Architecture: A Con-
ceptual Model

To resolve aforementioned issues, there is a need for optimized energy-
aware and failure-aware resource provisioning policies, which is the focus of
our research. To realize these policies, a cloud computing architecture is
required. figure 12 depicts an extended version of a layered view of our ten-

18http://www.datacenterknowledge.com/archives/2008/08/14/218000-servers-in-
microsoft-data-centers/

19https://www.usenix.org/cfdr
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Figure 12: Reliable and Energy-Efficient Cloud Computing Architecture

tative cloud architecture that was proposed earlier [116] which incorporates
reliability-aware and energy-aware resource provisioning policies.

Cloud Service Users/Brokers. Cloud service users or brokers providing
services to other users reside in this layer. Users submit requests and attains
services according to the terms and conditions of service level agreements
(SLA).

Cloud Management Center (CMC). This layer is the heart of whole
architecture on which our research is focused. All the management decisions
about providing the services will be made here. This layer includes Business,
Provisioning and Monitoring components.

1. Business: This part is used to manage the expenses of a CCS. Chal-
lenges like billing of services, cost of services, cost of ownership etc.
will be handled by the solutions provided by this module.

2. Monitoring: The monitoring section will help to make decisions for
other layers by providing them feedback. The main job of this section
is to monitor the activity of the under-lying infrastructure so as to
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ensure uninterruptable services. The solutions provided are also re-
sponsible to monitor the activities of users such as, their requirements
and operations.

3. Reliable and Energy-Efficient Resource Provisioning: This
module is responsible for the cloud resource provisioning to customers
in a reliability-aware and energy-aware manner. All the decisions re-
garding the optimization of cloud services will be taken here. This
module will provide solutions such as, energy management, virtual
machine management, SLA management and fault management.The
main focus of our research deals with reliability-aware and energy-
aware resource provisioning policy that we will incorporate in this
layer.

• SLA Management: includes SLA contract definition and utiliza-
tion of SLA schemas with associated QoS parameters, SLA mon-
itoring and reliability and energy efficiency policies.

• Fault Management: keeps track of systems and other faults and
uses this information to statistically compute future potential fail-
ures, and the mechanisms and processes to mitigate the likelihood
of such errors and their impact.

• Energy Management : includes the energy management mecha-
nisms that will be responsible to regulate the energy consumption
of the under lying hardware resources by lowering the operating
frequency or turning them off according to the current utilization
or workload.

• VM Management: monitors the availability of VMs and provides
migration/replication services on behalf of the cloud provider on
the basis of our proposed common cost function for reliability
and energy efficiency. The value of the common cost function
will be calculated using the outputs of the energy management
module and fault management module. A key part of the work
to be undertaken is to support live migration of VMs from active
physical machines to passive physical machines and to preemp-
tively deal with failures seamlessly and transparently from the
cloud customer perspective, and so to provide undisrupted cloud
services.

4. Virtual Layer On the basis of procedures and policies implemented
at Cloud Management Center layer, virtual machines providing ser-
vices to users will run on the top of physical architecture. Virtual
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machine migration or consolidation to ensure fault tolerance and en-
ergy efficiency will take place at this layer according to the results
of resource or service management algorithms or policies executing at
cloud management center (upper layer),

5. Physical Infrastructure This layer deals with actual hardware in-
frastructure upon which the cloud computing services rely. It consists
of different types of physical machines such that low utilized passive
physical machines and active physical machines that are providing ser-
vices to the users.

7. Conclusion

Although cloud computing platforms are widely used today, there are
still plenty of research gaps to be addressed. Due to the large infrastructure
of clouds, energy efficiency, reliability and scalability are among the fore-
most concerns in cloud computing. In this paper, we have explored various
types of failures that drive researchers to design the mechanisms to make
the CCS highly reliable. This paper has surveyed and critiqued a variety
of methods aimed at increasing the reliability of CCS. The increase in the
size and design complexity of clouds, is resulting in huge energy consumption
and enormous carbon footprints. This paper also presented a comprehensive
survey of all the energy management techniques used in CCS. We observed
that the adoption of mechanisms to provide reliability in cloud computing
services has impacted the energy consumption of the system. Adding back-
up resources, running replicated systems, storing logs etc. provide strong
fault tolerance but also increase the energy consumption. There is a critical
trade-off between service reliability and energy consumption that urgently
needs to be investigated. We have identified the need for a reliability-aware
and an energy-aware resource provisioning policy to improve the availability
of cloud services whilst simultaneously reducing its energy consumption.
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