
Reliable and Energy Efficient Resource Provisioning and
Allocation in Cloud Computing

Yogesh Sharma

Western Sydney University

NSW, Australia

y.sharma@westernsydney.edu.au

Bahman Javadi

Western Sydney University

NSW, Australia

b.javadi@westernsydney.edu.au

Weisheng Si

Western Sydney University

NSW, Australia

w.si@westernsydney.edu.au

Daniel Sun

DATA61-CSIRO

Australia

daniel.sun@data61.csiro.au

ABSTRACT
Reliability and Energy-efficiency is one of the biggest trade-off chal-

lenges confronting cloud service providers. This paper provides a

mathematical model of both reliability and energy consumption

in cloud computing systems and analyses their interplay. This pa-

per also proposes a formal method to calculate the finishing time

of tasks running in a failure prone cloud computing environment

using checkpointing and without checkpointing. To achieve the

objective of maximizing the reliability and minimizing the energy-

consumption of cloud computing systems, three resource provision-

ing and virtual machine (VM) allocation policies using the afore-

mentioned mathematical models are proposed. These three policies

are named Reliability Aware Best Fit Decreasing (RABFD), Energy

Aware Best Fit Decreasing (EABFD), Reliability-Energy Aware Best

Fit Decreasing (REABFD). A simulation based evaluation of the

proposed policies has been done by using real failure traces and

workload models. The results of our experiments demonstrated

that by considering both reliability and energy factors during re-

source provisioning and VM allocation, the reliability and energy

consumption of the system can be improved by 23% and 61%, re-

spectively.

KEYWORDS
Cloud Computing, Failures, Reliability, Energy Consumption, Vir-

tual Machines, Resource Provisioning, Bag of Tasks, Checkpointing

1 INTRODUCTION
Cloud computing has revolutionized the Information Technology

sector by giving computing a perspective of service to users. Though

the acceptance of cloud computing technology is increasing every

day, it is still facing numerous challenges because of its complex

and large-scale architecture. Reliability and Energy-efficiency are

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

UCC’17, 2017
© 2017 Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-5149-2/17/12. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/

two key challenges that need careful attention and investigation. In

this study, reliability is considered as the probability with which an

application/task will finish the execution before the occurrence of a

failure. A failure in the services of a cloud costs significantly to both

providers and customers. The report [12] from Ponemon institute

in 2016 revealed that the average down-time cost of data centers

due to outages is approximately $740,357 per year. According to

the Information week, each year IT outages result in the revenue

loss of more than $26.5 billion [19]. The energy requirement to

operate the cloud infrastructure is also increasing in proportion to

the operational costs. Approximately, 45% of the total operational

expenses of IBM data centers goes in electricity bills. It has been

estimated that the servers mounted in Microsoft’s cloud based data-

centers consumes around 2 terawatts-hours (TWh) of energy per

year for which the company pays approximately $2.5 billion per

year as electricity bills [1]. Apart from the operational costs, huge

amount of energy consumption by cloud computing infrastructure

causes huge amount of carbon and green house gases emission in

the environment.

To maximize the reliability of the cloud computing services, all

the cloud service vendors add back-up resources/hosts (hosts, nodes

and resources are being used interchangeably in this work) and use

replication as well as load balancing as fault tolerance mechanism.

Adding extra resources increases energy consumption more steeply

than the reliability. The key technique used to reduce the energy

consumption is by running the resources on a low power scaling

level or by turning off the under-utilized or idle resources such as

back-up by migrating the running virtual machines (VM) from the

under-utilized resources to other resources. Turning off the back-

up resources will reduce the reliability of the system. For example,

in the case of VM consolidation (key technique to reduce energy

consumption in cloud computing systems), if a physical machine

fails due to some hardware or software issues before the completion

of tasks and there are no recovery/back-up resources, then all the

VMs and their corresponding processes will have to start again. This

will dramatically increase overheads such as energy consumption

and resource utilization.

This creates a critical trade-off between the reliability and energy

efficiency of the cloud computing systems. To make the cloud-

computing systems reliable and energy-efficient, a mathematical

framework is provided in this paper to show the interplay of these

two factors. Following are the contributions of this work

https://doi.org/http://dx.doi.org/10.1145/

(1) A mathematical model to calculate the reliability and energy

consumption while executing the tasks by the VMs on cloud

computing resources in the presence of failures.

(2) A formal method to calculate the finishing time of the tasks

in the presence of failures running on cloud resources with

and without checkpointing.

(3) Resource provisioning and VM allocation policies using

the proposed models to optimize the reliability and energy-

efficiency of the cloud computing systems.

The remainder of the paper is organized as follows: Section

2 gives a brief survey about the existing work on reliability and

energy-efficiency of cloud computing systems jointly. Section 3

explains the system architecture used in this work followed by

the workload model and deadline model. Section 4 presents the

reliability model and application/task finishing time with the given

reliability using checkpointing and without checkpointing. Section

5 includes the formulation of energy consumption while executing

the tasks in the presence of failures. In section 6, resource provi-

sioning and VM allocation policies using the proposed models are

presented. Section 7 consists of the details about the system set-up,

workload model, performance evaluation metrics and reports the

results in graphical form. Section 8 concludes this work.

2 RELATEDWORK
Most of the work in the literature either explored reliability or

energy consumption of cloud computing systems. Very limited

work has been done by combining these two variables. A survey of

the state of art in reliability and energy efficiency mechanisms has

been provided in our previous work [23]. This section discusses the

recent works covering both reliability and energy efficiency.

It has been claimed that as the operating frequency of a system

increases wrt to supply voltage, reliability of the system increases

but energy efficiency decreases [28]. This makes the task sched-

uling a challenge to achieve these two contradictive goals at the

same time. In response to the challenge three different algorithms

such as SHRHEFT, SHRCPOP and SHREERM have been proposed

by Longxin Zhang et al. [27]. Dynamic voltage scaling and shared

recovery technique have been used to regulate the energy consump-

tion and to ensure the reliability, respectively. After performing

the experiments, it has been concluded that SHREERM algorithm

surpasses the rest. With the same objectives, a genetic algorithm

(BOGA) for task-scheduling to optimize the reliability and energy-

consumption of high performance computing systems has been

proposed by the same authors [26]. The performance of the pro-

posed algorithm has been compared with other two algorithms

such as modified MODE and MOHEFT and the superiority of the

new algorithm has been shown over the other algorithms. All the

approaches proposed in [27] [26] are focused specifically on high

performance computing systems. It has also been assumed that

at most one failure will occur during the life time of a task. In

our work, this assumption has been rejected with the injection of

multiple failures.

Xiwei Qiu et al. [21] provides a theoretical correlation model for

the fine grained measurement of reliability, power consumption

and performance of cloud computing systems. A frequency scaling

based power model while considering maximum CPU utilization

Figure 1: System Architecture

has been used where as we have formulated the power consump-

tion based on variable utilization while operating CPU at maximum

frequency. The proposed work has been analysed numerically ex-

cept the reliability model which has been simulated. However, our

evaluation of the proposed formulation has been done both analyti-

cally and by using simulation though only simulation based results

have been reported.

Amir Varasteh et al. [24] have studied the interplay of energy

consumption and reliability while performing the VM consolidation

in cloud computing systems. A fine grained mathematical model

has been provided to minimize the total data center cost while

regulating the energy consumption and reliability. The proposed

model has been analysed using matlab based simulation where as

we have shown the interplay of both metrics using simulation based

results using real life data. Authors have calculated the reliability

of homogeneous systems as the function of system activity (on-

off cycles) where as we have calculated the reliability under the

occurrence of failures in a heterogeneous environment. Authors

have used the random VM allocation to the physical machines to

test their models. However, we have proposed three heuristics to

allocate the VMs besides the random allocation.

3 SYSTEM ARCHITECTURE
The cloud computing environment considered in this work consists

of a pool P of failure prone heterogeneous resources/nodes. From

the resource pool, resources gets provisioned to run the heteroge-

neous VMs executing the tasks arriving at a specific rate. In Figure

1, the model has been divided into four different layers. The bottom

layer consisting of the resources such as servers on top of which the

VMs are mounted. The Virtual layer is responsible for the allocation

of VMs according to the decisions made at the Cloud Management

Center (CMC). The CMC is the heart of the architecture where

all the reliability and energy aware resource provisioning and al-

location policies are existing. The role of CMC is to gather the

parameters from the energy managment and fault management

modules and takes the decision about the VM allocation so that the

reliability of the system will be maximized and energy consumption

will be minimized. Users/Brokers are submitting their tasks to the

CMC seeking execution before the deadline.

On the arrival of new tasks, the current status of the resources

(gathered at monitoring module in CMC) and resource require-

ments of new tasks get evaluated at CMC. On the basis of the

evaluation, optimized decisions about the resource provisioning

and VM allocation takes place according to the proposed algorithms

to regulate the reliability and energy-efficiency of the system. The

number of VMs running on a provisioned node will not exceed the

number of cores available on the node. One core will be allocated

to each VM and VMs are not allowed to share the cores with each

other (such configuration can be obtained in Xen [2] hypervisor).

Memory of the host is being shared by the running VMs and to

avoid the interference during run time, each VM has an exclusive

share of the host memory.

3.1 Application Model
Bag-of-Task(BoT) applications, composed of bags or groups of in-

dependent and sequential compute intensive tasks arriving at a

specific arrival rate (Table 2) have been used in this work. In BoT

applications which can also be seen referred as Parameter Sweep

Applications [8], there is no dependency and communication be-

tween the tasks. The most common examples of BoT applications

are image manipulation applications (astronomy, image render-

ing, video survelliance), data mining applications, Monte Carlo

simulations and intensive search applications. Each BoT consists

of set of independent tasks, T = {ti | 1 ≤ i ≤ n}. Every task ti has
a corresponding length, li . In this work, the length of a task has

been refered to the number of instructions. For each task ti a VM
vmi ∈ VM, where VM = {vmi | 1 ≤ i ≤ n} has been instantiated. To

launch the desired number of VMs, a number of physical machines

or nodes, N =
{
nj | 1 ≤ i ≤ m

}
gets provisioned according to the

available CPU cores. Every task has a deadline di associated to it

which has been calculated according to the model proposed in the

following section.

3.2 Deadline Model
The tasks are non-preemtable and the execution of the application

will be finished when the last task will complete the execution.

Every task ti has a corresponding deadline di , which has been

calculated as

di =



si + (f .li), if [si + (f .li)] < ci

ci , otherwise

(1)

si , li and ci are the starting time, task length and finishing time

of a task ti , respectively [15]. f is the stringency factor that defines

the deadline strictness i.e. higher the value of f is, higher deadline

relaxation the task has. All the proposed resource provisioning and

allocation policies have been evaluated by using f = 1.2 i.e. normal

deadline.

Rather than rejecting a task for a deadline miss (hard deadline),

the soft deadline concept has been adopted which means it reduces

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

0

200

400

600

800

1,000

1,200

1,400

Hours

N
u
m
b
e
r
o
f
F
a
i
l
u
r
e
s

Figure 2: Failure count vs. daily hours

the value of the computation for the users [6]. More the execution

of a task will be delayed, more the value will be reduced.

4 RELIABILITY MODEL
The proposed reliability model is based on the utilization of the

system. Figure 2 shows the failure count per hour in LANL failure

traces taken from Failure Trace Archieve [17], an online repository

of failure traces gathered from various sites. It has been observed

that during the working hours from 7 am to 7 pm, the number of

failures are higher than the non-working hours. It can be inter-

perated as a correlation between the occurrence of failures and

system activity/utilization. During the working hours the utiliza-

tion/activity of the systems is higher than the non-working hours

which increases the occurrence of failures. The same conclusion

has been drawn in [14] [22]. On the basis of the given conclusion,

a linear failure rate (failure rate and hazard rate are being used

interchangeably in this work) model directly proportional to the

utilization has been proposed as follows

λi j = λmax ju
β
i (2)

where, λi j is the failure rate of a VM vmi running on a node

nj with utilization ui and λmax j is the failure rate of node nj at
maximum utilization. In this work, it has been assumed that all

the running VMs shares the maximum hazard rate similar to the

physical node nj which they are running on. β is a sensitivity factor

which express the sensitivity of failure rate towards the utilizaiton.

In this study, a strict linear relationship between the hazard rate

and utilization of a system has been considered by taking β equal

to 1. As failures in cloud computing systems are inevitable, every

node nj in the resource pool has a Mean Time between Failures

(MTBFmax j) at maximum utilization that has been calculated by

the cloud coordinator at CMC empirically from the node history.

Hazard rate or Failure rate (λmax j) for a node nj at maximum

utilization will be calculated as

Figure 3: Recovery from Failure with Checkpointing

λmax j =
1

MTBFmax j
(3)

The failure rate has been assumed to be following poisson distri-

bution [28][27] and remains constant for each utilization level. So

the probability with which vmi running on a node nj with utiliza-

tion ui with hazard rate λi j will finish the execution of a task ti of
length li without the occurrence of a failure will be given as

Rvmi j = exp
−λi j×li

(4)

To get the utilization of each VM, the length of corresponding

tasks gets normalized wrt to the task of maximum length, lmax . In

this work, VMs fail only when the node which they are running

on fails. So the node and VMs have serial relationship such that

when the node fails, all the associated VMs fail. The probability

with which a node nj will be able to finish the execution of all the

m tasks being executed bym VMs before the occurrence of a failure

has been calculated as

Rj =
m∏
i=1

(Rvmi j) (5)

However provisioned nodes fail independently [21]. Between

the provisioned nodes, neither the serial relationship nor parallel

relationship exists. So the reliability of the system has been calcu-

lated as the average of the reliabilitiy values possessed by all the

provisioned nodes at a particular instance.

4.1 Fault Tolerance and Task Execution Model
In this work, two methods have been used to recover from a failure

i.e. Checkpointing and Restart from the beginning. In the literature,

checkpointing mechanism has been used intensively to provide

fault-tolerance in cloud computing systems. Though the solutions

provided by using checkpointing method are elegant, they are very

costly in terms of overheads which make it some-times impractical.

If a failure will not occur, checkpointing adds the overhead of

151 hours for a job of length 100 hours in a petaflop system [20].

However, if a failure occurs, re-execution of the failed task from

the last checkpoint (Fig. 3) saves a good amount of re-execution

period.

4.1.1 Finishing Time with Checkpointing. In the Figure 3,T ′ rep-
resents the checkpoint interval and T ′′ represents the checkpoint
overhead such that time taken by the system to save the checkpoint

of the running task on some stable storage. In this study, the value

of T ′′ is equal to 20 seconds, which has been considered as the

optimized minimum value in the previous studies [9]. We have

assumed that the storage where all the checkpoints are getting

stored is failure free. T ∗ represents the time required to re-execute

Figure 4: Recovery from Failure without Checkpointing

the part of the task that was lost because of the occurrence of a

failure. To further reduce the checkpointing overhead, risk based

checkpointing mechanism [18] has been used in this work. In risk

based checkpointing, if the expected amount of lost work before

the checkpoint is smaller than the cost of checkpoint T ′′ then skip

the checkpoint.

To calculate the length of the lost part of the failed task ti of
length li that need to be re-executed on a node nj , first it is required
to calculate the interval of checkpointing T ′j for that node, which

has been calculated as follows by using Young’s formula [25]

T ′j =
√
2 ×T ′′ ×MTBFj (6)

T #
is the part of a task that had been executed before the occur-

rence of a failure. The number of checkpoint intervals that took

place before the occurrence of a failure on a nodenj while executing
the task ti will be calculated as

N ′i j =
⌊T #

i j

T ′j

⌋
(7)

The length of the lost part of failed task ti that need to be re-

executed will be calculated as

T ∗i j =
*
,

T #

i j

T ′i
− N ′i j

+
-
×T ′i (8)

Besides the checkpointing overheads and re-execution part of

the failed task, time to return (TTR) from a failed state to running

state also adds to the finishing time of a task. So, the finishing time

of a task ti of length li executing on node nj after the occurrence
of n failures andm checkpoints has been calculated as follows

T $

i j =




li +
n∑

k=0
T ∗
(i j)k
+ *
,
T ′′ ×

m∑
q=0

N ′
(i j)q

+
-
+

n∑
k=0

TTR (i j)k ,

if k,q > 0

li otherwise

(9)

4.1.2 Finishing Time without Checkpointing. Due to the expen-

sive implementation of checkpointing mechanism, restarting of

the execution of a failed task or job from the beginning (Fig. 4)

is more preferable in practice because of the less overheads. We

are claiming the adoption of task restart mechanism on the basis

of the discussions and surveys done at the Fujitsu Primergy high-

performance, distributed-memory cluster named Raijin located at

National Computing Infrastructure (NCI) facility in Australia
2
. As

there are no checkpoints in this case, the lost part of the task that

2
https://nci.org.au/systems-services/national-facility/peak-system/raijin/

need to be re-executed T ∗ is equal to the part of the task length

that has been executed before the occurrence of a failureT $
. So the

finishing time of a task ti of length li executing on node nj after
the occurrence of n failures has been calculated as follows

T $

i j =




li +
n∑

k=0
T ∗
(i j)k
+

n∑
k=0

TTR (i j)k , if k > 0

li otherwise

(10)

For both of the above mentioned task recovery mechanisms, the

total finishing time of all the t tasks running on a provisioned node

nj will be calculated as

T $

j =

t∑
i=1

T $

i j (11)

Total finishing time of all the tasks running on n provisioned

nodes in the presence of failures will be calculated as

T $

total =

n∑
j=1

T $

j (12)

The change in the execution length of a BoT application consist-

ing of t tasks because of the occurrence of failures will be given as

the difference between the total finishing time and actual length of

the application such that the total finishing time without failures

∆T $ = T $

total −

t∑
i=1

li (13)

5 ENERGY MODEL
Many devices such as CPU, storage, memory, network interfaces

and other PCI devices contribute to the power consumption of the

system. But in the literature, it has been argued that CPU is the

biggest power consumer despite of the advancement in the hard-

ware and software technology [4] [16]. Based on the literature, this

work has been focused on the energy minimization by regulating

the utilization of CPU while operating at maximum frequency. As

assumed, nodes in the resource pool has different minimum (Pmin)
and maximum power (Pmax) cosumptions. The power consump-

tion by a VM vmi with utilization ui running on a node nj will be
calculated as

Pj (ui) = (f rac j × Pmax j) + ((1 − f rac j) × Pmax j × ui) (14)

f rac j is the fraction of minimum, minj and maximum, max j
power consumption for a node nj [3]. The energy consumption is

the amount of power consumed per unit time. In the presence of

failures, the energy consumption is the sum of energy consumed

while executing the task length and energy wastage because of the

failure overheads. So the energy consumption by a VM,vmi running

on node nj while executing a task of length li in the presence of

failures will be calculated as

Evmi j =
(
Pj (ui) × li

)
+ Ewastei j (15)

As shown in equations 9-10, the finishing time of a task changes

because of the occurrence of failures. Along with the re-execution

time, there are other factors that adds to the execution time of a task

such as down-time (TTR) i.e. time that system takes to restart the

execution and other overheads. Only re-execution time of the task,

checkpoint overheads and system down-time have been considered

in this study to calculate the energy wastage. During the down-time,

system is in non-working condition so it does not contribute to the

energy wastage.

5.1 Energy wastage with checkpointing
For the checkpointing, the energy wastage will further split into

the energy consumption while saving the checkpoints and energy

consumption while re-executing the lost part of a task.

Ewastei j = Echeckpointi j + Er e−executei j (16)

The power consumption while saving the checkpoints on a disk

consumes less power than power consumption during the execution

of a task. In this study, 1.15 × Pmin has been taken as the power

consumption while saving the checkpoints [10]. So the energy

wastage while using the checkpointing has been calculated as

Echeckpointi j =




1.15 × Pminj ×
*
,
T ′′ ×

m∑
q=0

N ′
(i j)q

+
-
, if q > 0

0 otherwise

(17)

The energy consumed while re-executing the lost part of the

task ti because of the occurrence of n failures has been calculated

as

Er e−executei j =




Pj (ui) ×
n∑

k=0
T ∗
(i j)k
, if k > 0

0 otherwise

(18)

5.2 Energy wastage without checkpointing
In the absence of checkpointing, the only energy that will be wasted

is the energy consumption while performing the re-execution of

the lost part of a task because of the occurrence of n failures

Ewastei j =




Pj (ui) ×
n∑

k=0
T ∗
(i j)k
, if k > 0

0 otherwise

(19)

So, the total energy consumption by n provisioned nodes allo-

cated tom VMs while finishing all the tasks of BoT application in

the presence of failures using checkpointing and without check-

pointing will be calculated as

Etotal =
n∑
i=1

m∑
j=1

Evmi j (20)

6 RESOURCE PROVISIONING AND VM
ALLOCATION POLICIES

With the given BoT application consisting of a set of BoTs with n in-

dependent tasks in each and a pool of failure prone cloud resources,

the challenge is how to provision the resources and allocate the

VMs executing the tasks in order to maximize the reliability and

minimize the energy consumption while keeping the turnaround

time of every task less than corresponding deadline.

Table 1: Nomenclature used in algorithms and functions

Notation Explanation

B Set of Bag of Tasks

T Set of Tasks in a Bag

ti ith task

li Length of ith task

lmax Length of a longest task in T
R List of Resources/Nodes

Rsor ted Sorted list of Resources

V Set of Virtual Machines (VMs)

Vsor ted Sorted list of VMs

r j jth node

λj Current Hazard Rate of jth node

Pj Current Power consumption of jth node

MTBFj Current Mean Time Between Failure of jth node

Ψj Ratio ofMTBFj and Pj
vmi ith virtual machine

ui Utilization corresponding to ith VM

RCj Remaining cores of jth node

Sj State of jth node i .e . failed or active

reli j Reliability of ith virtual machine on jth node

powi j Power consumption of ith virtual machine on jth node

The cloud co-ordinator periodically receives the BoTs at a fixed

interval rate. As assumed, for each task in a BoT, one VM will be

launched. So the number of VMs will be equal to the number of

tasks that need to be executed. All the nodes at physical infrastruc-

ture layer (Fig. 1) have the hazard rate and power consumption at

maximum utilization that has been recorded at CMC during pre-

vious executions. For simplicity, we have assumed that resource

requirements of all the VMswill be fulfilled by the resources present

in the cloud based data center. Depending on the objectives of the

cloud provider three list based greedy heuristics such as Reliabil-

ity Aware Best Fit Decreasing (RABFD), Energy Aware Best Fit

Decreasing (EABFD) and Reliability-Energy Aware Best Fit De-

creasing (REABFD) have been proposed to provision the resources

and to allocate the VMs. As the base line policy, Opportunistic Load

Balancing (OLB)[5] has been used.

Function 1 Reliability Aware Best Fit Decreasing (RABFD)

function ReliabilityAware(R)
// Calculate the current Hazard Rate of a resource by using equa-
tion 2

1: for all j ∈ R do
2: λj ← r j .calculateCurrentHazardRate()
3: end for
4: for all j ∈ R do
5: Rsor ted ← λj .sortHazard-rateIncreasing()
6: end for
7: return Rsor ted

end function

Algorithm 1 Resource Provisioning and VM Allocation

1: Input: Set of Bag of Tasks, B; List of Resources, R
and Policy

2: Output: Set of ProvisionedResources andAllocated VMs
3: if (Policy == RABFD) then
4: Rsor ted ←ReliabilityAware(R)
5: else if (Policy == EABFD) then
6: Rsor ted ←EnergyAware(R)
7: else if (Policy == REABFD) then
8: Rsor ted ←ReliabilityandEnergyAware(R)
9: else

//Default case is for OLB policy
10: end if
11: for all b ∈ B do
12: for all i ∈ T do
13: vmi = ti .taskAssignment()

14: V ← vmi
// Calculating utilization of each VM

15: ui = li /lmax
16: U ← ui
17: end for

// Sorting VMs in decreasing order according to their utilization
18: for all i ∈ V do
19: Vsor ted ← vmi .sortUtilizationDecreasing()

20: end for
21: for all i ∈ Vsor ted do
22: VMcoresi ← vmi .coresRequired ()
23: for all j ∈ Rsor ted do
24: if ((RCj ≥ VMcoresi) && (Sj , f ailed)) then
25: r j ← vmi .allocateHost()

26: RCj = RCj −VMcoresi
// Calculate VM reliability by using equation 4

27: reli j ← vmi .calculateReliability()

// Estimate VM power consumption by using equa-
equation 14

28: powi j ← vmi .estimatePower()

29: if (RCj == 0) then
30: Rsor ted = Rsor ted − Rsor tedj
31: end if
32: break

33: end if
34: end for
35: end for
36: end for

6.1 Reliability Aware Best Fit Decreasing
(RABFD)

In this policy (Function 1), all the VMs executing tasks of each

incoming BoT will be sorted in decreasing order according to their

utilization and all the resources will be sorted in increasing order

according to their hazard-rate corresponding to the current uti-

lization (equation 2). After sorting, the resource provisioning will

be done and VM corresponding to each task will be instantiated

(Algorithm 1). After the instantiation, the allocation of VMs will be

done in such a way that the VM with maximum utilization will get

allocated to a resource with minimum hazard-rate.

6.2 Energy Aware Best Fit Decreasing (EABFD)
This policy has been proposed in Function 2 to optimize the energy

consumption by the VMs in the presence of failures. In this policy

all the resources will be sorted in the increasing order according to

their power consumption corresponding to the current utilization

(equation 14), so that the VM with maximum utilization will be

allocated to a node with minimum power consumption.

Function 2 Energy Aware Best Fit Decreasing (EABFD)

function EnergyAware(R)
// Calculate the current power consumption of a resource by using
equation 14

1: for all j ∈ R do
2: Pj ← r j .calculateCurrentPowerConsumption()

3: end for
4: for all j ∈ R do
5: Rsor ted ← Pj .sortPowerIncreasing()
6: end for
7: return Rsor ted

end function

6.3 Reliability-Energy Aware Best Fit
Decreasing (REABFD)

The objective of this policy is to optimize the reliability and energy

consumption both at the same time. In the given policy in Function

3, the ratio of MTBFj and power consumption, Pj corresponding
to the current utilization for each node has been used to rank

the resources. All the resources will be sorted in decreasing order

according to the calculated ratio. A VM with maximum utilization

gets allocated to a node with highest ratio value (Algorithm 1).

Function 3 Reliability and Energy Aware Best Fit Decreasing (RE-

ABFD)

function ReliabilityAndEnergyAware(R)
1: for all j ∈ R do
2: MTBFj ← r j .calculateCurrentMTBF()

3: Pj ← ri .calculateCurrentPowerConsumption()

4: Ψj ← (MTBFj) / (Pj)
5: end for
6: for all j ∈ R do
7: Rsor ted ← Ψj .sortMTBFPowerRatioIncreasing()

8: end for
9: return Rsor ted

end function

6.4 Opportunistic Load Balancing(OLB)
This policy has been used as a baseline policy. In OLB, no criteria

has been used to rank the resources and no preprocessing of VMs

has been done based on their utilization as done in the previous

policies. All the VMs executing tasks associated to incoming BoTs

gets allocated in random order as they are arriving to the next

available node (Algorithm 1).

7 PERFORMANCE EVALUATION
In order to evaluate the architecture proposed in Figure 1 and to

evaluate the proposed resource provisioning and VM allocation

policies, we have extended a popular cloud computing simulator

i.e. CloudSim [7] by adding failure injectors and fault tolerance

mechanisms.

7.1 Datacenter Configuration
The hardware configuration of more than 2000 hosts of the datacen-

ter has been taken from Los Alamos National Laboratory (LANL)

data set of Failure Trace Archive (FTA)[17]. FTA is an online public

repository providing failure traces gathered from 26 different com-

puting sites. This work has used LANL traces specifically because

of the precise details provided regarding the failure start time and

end time, causes of failures and node configuration. Traces from

LANL systems were collected between year June 1996 to November

2005 and covers data from 23 high performance computing systems

consisting of 4750 nodes in total. The mean time between failures

(MTBF) andmean time to return (MTTR) for each node at maximum

utilization have been calculated by using the failure information

provided in the traces. To calculate an accordant value of MTBF

and MTTR, only the nodes with event count more than 3 in the

traces have been considered in this work.

To calculate the power consumption, the values of minimum and

maximum power consumptions corresponding to a node are taken

from spec2008 benckmark
3
. To select the realistic datacenter nodes,

we have matched the core count and memory capacity of the nodes

with the values provided in the traces. This approach has been

used by Peter Garraghan et al. [11] by using Google trace logs. On

the basis of the match, we have selected Intel Platform SE7520AF2

Server Board, HP ProLiant DL380 G5, HP ProLiant DL758 G5, HP

ProLiant DL560 Gen9 and Dell PowerEdge R830 as 2, 4, 32, 128 and

256 core nodes with 4GB, 16GB, 32GB, 64GB and 256GB memory,

respectively.

7.2 Workload Model
To generate the BoTs workload, model proposed by Iosup et al. [13]

has been used with parameters given in table 2. In the analysis it

has been established that the arrival of jobs behaves differently in

peak and off-peak times. To provision the enough number of nodes

for the fair evaluation of proposed policies, the inter-arrival time

has been modeled using peak time workload following Weibull

distribution with scale and shape parameters equal to 4.25 and

7.86, respectively. Every incoming BoT consists of 2
x
tasks where

x follows Weibull distrubution with scale and shape parameters

given in Table 2. The length or execution time of each task in a BoT

has been modeled as normal distribution with mean and standard

deviation (SD) values equal to 2.73 and 6.1, respectively. Every

task has a corresponding deadline that has been calculated using

equation 1 with stringency factor f = 1.2 i.e. normal deadline.

3
https://www.spec.org/power_ssj2008/results/

Table 2: Workload Generation Parameters

Input Parameters Distribution Values

Inter-arrival time (BoT) Weibull Scale = 4.25, Shape = 7.86

Number of Tasks per BoT Weibull Scale = 1.76, Shape = 2.11

Average runtime per task Normal Mean = 2.73, SD = 6.1

Table 3: Simulation Configuration Parameters

Input Parameters Values

Stringency Factor (f) 1.2

Sensitivity Factor (β) 1

Checkpoint Overhead (Ts) 20 secs

7.3 Performance Evaluation Metrics
To evaluate the performance of the proposed resource provisioning

and VM allocation policies, the results of following metrics have

been reported

(1) Reliability: The reliability with which the application has

been executed on the provisioned resources.

(2) Energy Consumption: Energy consumption incurred by

the provisioned resources while executing the application.

(3) Energy Wastage: The amount of energy wasted while re-

executing the lost part of the task because of failures and

related overheads.

(4) Turnaround Time: It is the time taken by each task of BoT

application to finish.

(5) Deadline-Turnaround Time Fraction: It is the margin

by which the turnaround time has been exceeded from the

deadline.

(6) Benefit Function: It is the ratio of first two parameters,

reliability and energy consumption.

All the reported results are the average of 50 simulations with

Confidence Interval (CI) of 95%. All the simulations have been

performed by using 1000 BoTs with total number of tasks ranges

between 100000 to 120000.

7.4 Results and Discussions
Figure 5 presents the average reliability for each policy using check-

pointing and without checkpointing. It can be seen that REABFD

gives better reliability by approximately 5% from RABFD, 16% from

OLB and 17% from EABFD with checkpointing. Also in the sce-

nario of without checkpointing, REABFD gives better reliability

by 6% from RABFD, 15% from OLB and 23% from EABFD. Figure

also shows that policies with checkpointing gives better reliability

by 5% to 9% than without checkpointing. This is due to the fact

that after an event of a failure, the task length generally gets re-

duced in process of recovery from the last checkpoint (if any). For

shorter task length, the system possess high reliability to execute

the task without or before the occurrence of a failure. However,

in the scenario without checkpointing, the task restarts from the

beginning after an event of a failure. As the size of a resubmitted

task remains same, reliability of a system also remains unchanged

RABFD EABFD REABFD OLB

0

20

40

60

80

A
v
e
r
a
g
e
R
e
l
i
a
b
i
l
i
t
y
(
%
)

Checkpointing Without Checkpointing

Figure 5: Average Reliability

RABFD EABFD REABFD OLB

0

200

400

600

800

1,000

1,200

A
v
e
r
a
g
e
E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
(
k
W
h
)

Checkpointing Without Checkpointing

Figure 6: Average Energy Consumption

and relatively higher than checkpointing scenario. Moreover, in

terms of reliability, REABFD without checkpointing has achieved

almost similar reliability achieved by RABFD with checkpointing.

Figure 6 shows the average energy consumption incurred by

all the policies with and without checkpointing. The energy con-

sumption by REABFD is less in comparison to other policies with

minimum difference of 7% from RABFD with and without check-

pointing and maximum difference of 61% from EABFD with and

without checkpointing. An interesting behaviour has been seen

for EABFD policy as it consumes the maximum energy despite of

the fact that it focuses on the provisioning of most energy efficient

resources. From the given behaviour, it can be argued that the re-

sults are adverse. Rather than reducing the energy consumption, we

ends up consuming more energy due to the energy losses incurred

because of failure overheads (Fig. 7). In fact, it is better to use the

random resource provisioning (OLB policy) than the energy aware

resource provisioning in the presence of failures. In terms of energy

wastage (Fig. 7), again REABFD outperforms all the policies with

minimum improvement of approximately 8% and 11% over RABFD

policy with and without checkpointing, respectively and maximum

improvement of 67% and 70% over EABFD policy with and without

RABFD EABFD REABFD OLB

0

200

400

600

A
v
e
r
a
g
e
E
n
e
r
g
y
W
a
s
t
a
g
e
(
k
W
h
)

Checkpointing Without Checkpointing

Figure 7: Average Energy Wastage

RABFD EABFD REABFD OLB

50

100

150

200

A
v
e
r
a
g
e
T
i
m
e
(
m
i
n
s
)

Checkpointing Without Checkpointing

Figure 8: Average Turnaround Time

checkpointing, respectively. Absence of any fault tolerance mech-

anism such as checkpointing further adds to these energy losses

upto 36% because of the large re-execution overheads.

Figure 8 shows the average turnaround time, which is the time

taken by each task of BoT application to finish. It can be seen that

REABFD policy has the minimum turnaround time such that it

took less time than what other policies took to finish the same

application because of the less overheads incurred. REABFD policy

has achieved better turnaround time by 7% from RABFD, 39% from

OLB and 46% from EABFD for both checkpointing and without

checkpointing scenarios. However, all the proposed policies have

achieved better turnaround time while using checkpointing by 7%

than without checkpointing because of less re-execution overheads

occurred during the event of a failure. The achieved improvement

in the turnaround time further justifies the improvements achieved

in reliability and energy consumption for the REABFD policy.

Figure 9 shows, while executing the application by what percent-

age the makespan has been exceeded from the predefined deadline

calculated by using equation 1. It can clearly be seen that for the

secnarios without checkpointing, the makespan has been exceeded

more upto 7% in comparison to the scenarios with checkpointing.

This is because if a failure hits a scenario without checkpointing,

RABFD EABFD REABFD OLB

15

20

25

30

35

A
v
e
r
a
g
e
F
r
a
c
t
i
o
n
(
%
)

Checkpointing Without Checkpointing

Figure 9: Average Deadline-Turnaround Time Fraction

RABFD EABFD REABFD OLB

0.1

0.2

0.3

A
v
e
r
a
g
e
B
e
n
e
fi
t
F
u
n
c
t
i
o
n

Checkpointing Without Checkpointing

Figure 10: Average Benefit Function

then the re-execution overhead is huge which is found to be approx-

imately 36% higher in comparison to checkpointing, which makes

the deadlines violated with greater margin than the checkpointing

scenarios. Among all the proposed policies, REABFD again outper-

forms the other proposed policies by exceeding less by 3%, 6% and

15% with checkpointing and 6%, 7% and 20% without checkpointing

in comparison to RABFD, OLB and EABFD, respectively.

To measure the effectiveness of all the proposed policies in terms

of reliability and energy consumption at the same time, we have

used the benefit function (Fig. 10), which is the ratio of reliability

and energy consumption. It is infered that the policies consider-

ing reliability factor (RABFD and REABFD) while provisioning

the resources has the better benefit function than the policy con-

sidering only energy-efficiency (EABFD) and policy considering

neither reliability nor energy-efficiency (OLB). Among all the poli-

cies, REABFD performs better by improving the benefit function

by 29% over RABFD, 82% over EABFD and 76% over OLB with

checkpointing. However, in the secnario without checkpointing

REABFD policy gives better value of benefit function by 34% over

RABFD, 85% over EABFD and 78% over OLB.

8 CONCLUSION
In this paper, the problem of reliability and energy aware resource

provisioning in cloud computing systems has been addressed. In

solving this problem, a scalable and elastic cloud computing archi-

tecture has been proposed with three list based greedy heuristic

algorithms such as Reliability Aware Best Fit Decreasing (RABFD),

Energy Aware Best Fit Decreasing (EABFD) and Reliability-Energy

Aware Best Fit Decreasing (REABFD). For fault tolerance, both re-

execution from the beginning and checkpointing mechanism for

task recovery have been considered. Our extensive experiments

revealed that if the emphasis is given only to the energy optimiza-

tion without consideration of reliability, then the results will be

contrary to what we expect. Rather than reducing the energy con-

sumption, we ends up consuming more energy due to the energy

losses incurred because of failure overheads. Among the proposed

policies, Reliability-Energy Aware Best Fit Decreasing (REABFD)

policy outperforms all the other policies and reveals that if both

reliability and energy efficiency factors of resources are considered

at the same time then both factors can be improved to a larger

extent than being regulated individually.

In future work, we will explore the use of machine learning

methods to predict the occurrence of correlated failures. With the

prediction results, VM consolidation mechanism will be adopted

to further optimize the fault-tolerance and energy consumption of

the cloud computing systems.

REFERENCES
[1] Sebastian Anthony. 2013. Microsoft now has onemillion servers–less than Google,

but more than Amazon, says Ballmer. ExtremeTech. ExtremeTech 19 (2013).

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of

virtualization. In ACM SIGOPS operating systems review, Vol. 37. ACM, 164–177.

[3] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware

resource allocation heuristics for efficient management of data centers for cloud

computing. Future generation computer systems 28, 5 (2012), 755–768.
[4] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, Albert Zomaya, et al. 2011.

A taxonomy and survey of energy-efficient data centers and cloud computing

systems. Advances in computers 82, 2 (2011), 47–111.
[5] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru

Maheswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao,

Debra Hensgen, et al. 2001. A comparison of eleven static heuristics for mapping

a class of independent tasks onto heterogeneous distributed computing systems.

Journal of Parallel and Distributed computing 61, 6 (2001), 810–837.

[6] Rodrigo N Calheiros and Rajkumar Buyya. 2014. Energy-efficient scheduling of

urgent bag-of-tasks applications in clouds through DVFS. In Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th International Conference on.
IEEE, 342–349.

[7] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and

Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms.

Software: Practice and experience 41, 1 (2011), 23–50.
[8] Fabricio AB da Silva and Hermes Senger. 2011. Scalability limits of Bag-of-Tasks

applications running on hierarchical platforms. J. Parallel and Distrib. Comput.

71, 6 (2011), 788–801.

[9] Nosayba El-Sayed and Bianca Schroeder. 2014. Checkpoint/restart in practice:

When âĂŸsimple is betterâĂŹ. In 2014 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 84–92.

[10] Nosayba El-Sayed and Bianca Schroeder. 2014. To checkpoint or not to checkpoint:

Understanding energy-performance-i/o tradeoffs in hpc checkpointing. In 2014
IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 93–102.

[11] Peter Garraghan, Ismael Solis Moreno, Paul Townend, and Jie Xu. 2014. An

Analysis of Failure-Related Energy Waste in a Large-Scale Cloud Environment.

IEEE Transactions on Emerging Topics in Computing 2, 2 (2014), 166–180.

[12] Ponemon Institute. 2016. Cost of Data Center Outages. (2016), 1–21.

[13] Alexandru Iosup, Ozan Sonmez, Shanny Anoep, and Dick Epema. 2008. The

performance of bags-of-tasks in large-scale distributed systems. In Proceedings
of the 17th international symposium on High performance distributed computing.
ACM, 97–108.

[14] Ravishankar K Iyer and David J Rossetti. 1986. A measurement-based model for

workload dependence of CPU errors. IEEE Trans. Comput. 100, 6 (1986), 511–519.
[15] Bahman Javadi, Jemal Abawajy, and Rajkumar Buyya. 2012. Failure-aware re-

source provisioning for hybrid Cloud infrastructure. Journal of parallel and
distributed computing 72, 10 (2012), 1318–1331.

[16] Tarandeep Kaur and Inderveer Chana. 2015. Energy efficiency techniques in

cloud computing: A survey and taxonomy. ACM Computing Surveys (CSUR) 48,
2 (2015), 22.

[17] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. 2010. The fail-

ure trace archive: Enabling comparative analysis of failures in diverse distributed

systems. In 10th International Conference on Cluster, Cloud and Grid Computing
(CCGrid). IEEE/ACM, Melbourne, Victoria, Australia, 398–407.

[18] Adam J Oliner, Larry Rudolph, Ramendra K Sahoo, José E Moreira, and Manish

Gupta. 2005. Probabilistic qos guarantees for supercomputing systems. InDepend-
able Systems and Networks, 2005. DSN 2005. Proceedings. International Conference
on. IEEE, 634–643.

[19] Martin Perlin. 2012. Downtime, outages and failures-understanding their true

costs. Retrieved November 25 (2012), 2012.
[20] Ian Philp. 2005. Software failures and the road to a petaflop machine. In HPCRI:

1st Workshop on High Performance Computing Reliability Issues, in Proceedings
of the 11th International Symposium on High Performance Computer Architecture
(HPCA-11). San Francisco, California, USA, 125–128.

[21] Xiwei Qiu, Yuanshun Dai, Yanping Xiang, and Liudong Xing. 2016. A hierarchical

correlation model for evaluating reliability, performance, and power consumption

of a cloud service. IEEE Transactions on Systems, Man, and Cybernetics: Systems
46, 3 (2016), 401–412.

[22] Bianca Schroeder, Garth Gibson, et al. 2010. A large-scale study of failures in

high-performance computing systems. IEEE Transactions on Dependable and
Secure Computing 7, 4 (2010), 337–350.

[23] Yogesh Sharma, Bahman Javadi, Weisheng Si, and Daniel Sun. 2016. Reliability

and energy efficiency in cloud computing systems: Survey and taxonomy. Journal
of Network and Computer Applications 74 (2016), 66–85.

[24] Amir Varasteh, Farzad Tashtarian, and Maziar Goudarzi. 2017. On Reliability-

Aware Server Consolidation in Cloud Datacenters. arXiv preprint arXiv:1709.00411
(2017).

[25] John W Young. 1974. A first order approximation to the optimum checkpoint

interval. Commun. ACM 17, 9 (1974), 530–531.

[26] Longxin Zhang, Kenli Li, Changyun Li, and Keqin Li. 2016. Bi-objective workflow

scheduling of the energy consumption and reliability in heterogeneous computing

systems. Information Sciences 379 (2016), 241–256.
[27] Longxin Zhang, Kenli Li, Keqin Li, and Yuming Xu. 2016. Joint optimization

of energy efficiency and system reliability for precedence constrained tasks in

heterogeneous systems. International Journal of Electrical Power & Energy Systems
78 (2016), 499–512.

[28] Dakai Zhu, Rami Melhem, and Daniel Mossé. 2004. The effects of energy man-

agement on reliability in real-time embedded systems. In IEEE/ACM International
Conference on Computer Aided Design (ICCAD-2004). IEEE, 35–40.

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Application Model
	3.2 Deadline Model

	4 Reliability Model
	4.1 Fault Tolerance and Task Execution Model

	5 Energy Model
	5.1 Energy wastage with checkpointing
	5.2 Energy wastage without checkpointing

	6 Resource Provisioning and VM Allocation Policies
	6.1 Reliability Aware Best Fit Decreasing (RABFD)
	6.2 Energy Aware Best Fit Decreasing (EABFD)
	6.3 Reliability-Energy Aware Best Fit Decreasing (REABFD)
	6.4 Opportunistic Load Balancing(OLB)

	7 Performance Evaluation
	7.1 Datacenter Configuration
	7.2 Workload Model
	7.3 Performance Evaluation Metrics
	7.4 Results and Discussions

	8 Conclusion
	References

