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ABSTRACT 

Grid system provides the sharing, selection and 
aggregation on distributed autonomous resources while it 
is an error prone environment. So, grid component like 
scheduler must provide the user‘s Quality of Service 
(QoS) requirements by selecting the appropriate 
resources for user’s jobs. In this paper, we have proposed 
a fault-aware economy scheduling model based on binary 
integer programming (FES-BIP) to allocate resources to 
application jobs such that the users’ requirements are met 
while we know the distribution of resource failure in the 
grid environment. FES-BIP algorithm guarantees optimal 
resource selection. 

KEYWORDS: Quality of Service, economy model, 
fault-aware scheduling, binary integer programming. 

1. INTRODUCTION 

Grid becomes more and more popular in large-scale 
computing, because they enable the sharing of computing 
resources that are autonomous resources and distributed 
throughout the world. We assume the market-based grid 
should consider the economy factors as a QoS user 
requirement. In market-based mechanisms, time, cost, and 
number of Processing Elements (PE) which a user needs 
are the important QoS factors. Consequently, the 
scheduling algorithms try to meet QoS factors and to 
optimize these factors. Grids are more error prone than 
traditional parallel machines as there are potentially 
thousands of resources that are heterogeneous and sharing 
among various applications [12]. So fault tolerance is an 
important characteristic in grid as the dependability of 
individual grid resources may not be guaranteed and 

resources are autonomous. It becomes increasingly 
difficult to guarantee that a resource being used is not 
malicious in some way [17].  So providing appropriate 
resource selection is vital to use grid systems perfectly. 
Also resource selection and scheduling in grid 
environment is always a controversial subject especially 
when fault tolerant scheduling is crucial due to the lots of 
failure. Therefore, the fault tolerant scheduling based on 
economic factors is so complicated (NP-hard) and finding 
the optimal answer is so difficult. There are several 
approaches to deal with scheduling but one of the best 
approaches to prove the scheduling result which is 
affirmative and optimal is using mathematical model and 
especially linear programming model. So by modeling 
fault-aware scheduling system which can provide optimal 
scheduling results, the scheduler can meet the user‘s QoS 
requirement and prepare fault tolerant grid resource. 
Albeit linear programming scheduling model has been 
used in previous works to solve scheduling problems, all 
of them work only on resource and job but obviously such 
models cannot prepare a real grid model[9][10]. Because 
they have to assume that all resource PEs has same cost 
and computational power. They can’t take any decision 
about the tasks of jobs, in particular about the length of 
tasks and have to take all tasks with the same length. So it 
is crucial to put another parameter into model which is the 
resource PEs information, having assumed that the 
number of PEs in each resource (machine) and cost of 
each PE per second is possible. Our proposed scheduling 
algorithm by adding such information about PEs of 
resource on economy grid meet requirement of the time, 
cost, and number of PEs which users need. In addition it 
optimizes the cost and ensures reliability. 

 The rest of the paper is organized is as follows. In section 
2, we review some related works. In section 3, we put 
forward our linear programming model. In section 4, we 
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proposed the algorithm to solve the problem. We present 
the experiments and discuss the results in section 5. 
Finally, we conclude the paper and outline future lines of 
investigation. 

2. RELATED WORK 

Because the scheduling algorithms are dominant parts of 
grids environment, there are lots of algorithms which 
have been proposed in this area of research. 

 The scheduling algorithm can be divided in to two broad 
categories of knowledge-free and knowledge-based 
approach [6]. Canonico [6] in his knowledge-based 
approach took 3 states of information for scheduling 
which is availability awareness, computational power or 
both of them. Further, he used replication and checkpoint 
to provide fault tolerant scheduling. Fault-aware 
scheduling is one kind of knowledge-based scheduling 
which Verboven, Lan and Sun used. Verboven [19] 
recommended a two-phased fault-aware scheduling 
strategy, which are firstly dispatches the job to resources 
when the resource up-time is more than job execution 
time until all resource queue have just one job. In second 
phase, all resources are ordered according to the amount 
of computing time which is left, then that job is assigned 
to a resource with lowest remaining execution time while 
it’s up-time is more than approximate execution time. 
Similarly, Lan [12] proposed a failure-aware resource 
selection framework which is intended to identify an 
optimal resource for a given application by considering 
the reliability characteristics of the available resources. 
He contends that an intelligent resource selection can save 
tremendous overhead that may be introduced by job 
migration or rescheduling after job allocation. So he sets 
forh a resource selection framework which on the basis a 
special formula calculates the minimum expected job 
completion time on all resources. At the end, it selects the 
resource that provides the minimum expected job 
completion time. A similar fault-aware structure that has 
three important parts including fault prediction, fault 
management, and system support which evaluate the time 
completion and execution of jobs by some probability 
equations was presented by Sun [18].  

A scheduler’s strategy varies according to time of job 
dispatching. As such we have two varies of job 
dispatching time, namely, immediate and batch mode. In 
the immediate mode, a task is assigned to a resource as 
soon as it arrives at the scheduler and this decision will 
not change once it is computed. On the contrary, in the 
batch mode, tasks are not mapped onto the resources as 
they arrive. Instead, they are collected into a set and the 
scheduler computes some parameters as a pre-scheduling 
step. Some classical scheduling algorithms are based on 

these two categories as presented by Maheswaran [14]. 
As regards the immediate mode there are several 
algorithms such as first-come-first-service, minimum 
completion time, minimum execution time, switching 
algorithm, k-percent best and opportunistic load 
balancing. Concerning batch mode we have Min-Min, 
Max-Min and Suffrage types [14]. 
 Another strategy for grid scheduling is using replication 
and checkpoint which utilizes a lot in traditional 
distributed systems. Nazir [16], for example, applied fault 
tolerant job scheduling by keeping the history of 
resources. For resources that had several failures in their 
previous jobs and according to the number of failures the 
scheduler took some checkpoints. Anglano [2] also by 
adding replication and checkpoint to work queue 
algorithm presented WQR-FT algorithm that by taking 
checkpoint on replica of task and restarting from last 
checkpoint and producing a replica when another replica 
failed, improved WQR algorithm. Divide-and-conquer is 
another approach that divides a job into smaller tasks until 
it can solve these smaller tasks more easily, so at the time 
of task failure, it can redo these tasks. Owing to the fact 
that these tasks are smaller the redundant computation is 
also smaller. In addition, by storing partial results, this 
approach can be improved [20].  

The market-based or economy-based model in grid is a 
very applicable approach. The market-based grid should 
consider the economy factors as a QoS user requirement. 
There are a number of market-based models which can be 
used in grid environment such as the commodity market, 
the posted price, the bargaining, the tendering/contract-
net, the auction, the bid-based proportional resource 
sharing, the community / coalition / bartering and the 
monopoly/oligopoly model [3]. Deadline and budget are 
the most common economy factors as QOS user 
requirements. There are several algorithms for 
minimizing the cost, time or both of them. Venugopal 
[18] presented an scheduling algorithm for distributed 
data intensive Bag-of-Task applications using a deadline 
and budget constraint. This algorithm built a resource set 
for a job that minimized the cost or time based on the 
user’s request.  

A scheduling is an NP-hard in which finding an optimal 
result is of import. In this regards, genetic algorithm is the 
one which can serve the propose of finding such an 
optimal result. For example, Lee [13] introduces the 
architecture of fault detector, fault manager and resource 
manager which used a genetic algorithm to select the 
optimal result. The scheduling approach which similarly 
can prove the optimality of scheduling result while has 
not the problems of genetic algorithm, however, suffers 
from the problem of large search space and huge time 
consumption. As such, linear programming can be offered 
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as an alternative to find the optimal result of scheduling 
which has been proved not to the aforementioned 
problems. There have been a number of studies in 
literature which have utilized linear programming in their 
approach to scheduling. For example, Dogan [8], Garg 
[10], Feng [9] all used linear programming. But they were 
limited on way or another. Dagan’s [8] used meta 
scheduling algorithm to achieve optimal solution in 
scheduling problems. However it was limitation in the 
sense that his modeling rested on the assumption of one 
task for each independent application with many 
concurrent users. Although Feng [9] could provide a cost 
and time optimization by combining time and cost as 
optimization parameter, the approach taken to 
combination of these two variables does not appear to be 
legitimate. In a similar vein, Garg [10] proffered a linear 
programming cost model which is for space and time 
share resources. However, his heuristic solution to solve 
the linear programming was based on the limited 
assumption that all PE resources have same cost and 
computational power and that all tasks have the same 
length. In addition, the heuristic solution provided as a 
genetic algorithm suffers from the problems mentioned 
above.

In order to deal with the preceding limitations, we have 
the FES-BIP model which builds on real grid 
environment. FES-BIP is a fault-aware economy 
scheduling model which rest on binary integer linear 
programming with the advantage of an increased attention 
to resource information.  

3. PROBLEM DEFINITION 

3.1. System model 

Grid users submit their application jobs to the Scheduler 
with their QoS requirements. The QoS requirements 
consist of budget, deadline, number of processing 
elements that user required and size of each job with unit 
of MI (million instructions). Each application job consists 
of independent tasks with each task requiring one PE. 
Each resource includes a number of heterogeneous PEs 
meaning that the PEs can have different characteristics 
like Computational Power, Cost, etc [10]. Figure 1 shows 
the interaction of the Scheduler (Meta Broker) with 
resource providers and users. 

Two types of approach can be considered for job: 
1. Space share: every task of a job must be assigned 

to PEs of single resource. 
2. Time share: tasks of each job can assign to each 

PEs of each resource. So task of a job can assign to PEs of 
different resources. 

In this paper, we supposed that works on space share jobs. 
The Scheduler gathers information about resources such 
as number of PEs available, cost of PEs per unit time for 
each user, PEs computational power with a unit of 
Millions of Instructions per Second rating (MIPS) and 
means time to repair of each resource (MTTR), from the 
resource providers who have agreed to rent their 
computational resources to Scheduler. The Scheduler run 
scheduling program then assign the job or in other word 
assign the task to PEs in appropriate resource. At the end, 
gathering the information of finished and failure job. For 
failure job updated the QoS requirements then if possible 
for them, run jobs again with new QoS requirements [10]. 

3.2. Problem formulation 

Minimize job completion time and cost is the goal of the 
Scheduler with m resources and n jobs. 

Figure 1.Grid Model with Scheduler 
(MetaBroker)[10] 

The Scheduler receives information from both users and 
resources. We consider this information into following 
parts: 

1. The information that a Scheduler receives from a 
resource at instance time T in grid environment. 

},,,,{: iikikii MTTRvcniP
i : Resource ID 

in : Number of available PEs in resource i. 

ikc : Cost of PE number k in resource i consumption per 
second for any tasks of any jobs. 

ikv : Computational power of PE k in resource i with 
million instructions per second (MIPS) unit. 

iTRMT : Mean Time To Repair for resource i. each 
resource has different MTTR, maybe same distribution, 
we supposed Weibull distribution. 

}...1{},...1{ inKkmIi ����
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2. The QoS information that a Scheduler receives 
from a user at instance time T in this 
environment. 

},,,,,{ jtjjjj mMdbujQ �
j : Job ID 

ju : User ID 

jb : Budget constraint that user determined for jth job 

jb : Deadline constraint that user determined for jth job 

tM : Size of each task of job with unit of million 
instructions (MI). Each job has t tasks means that the 
number of tasks is equal to t for each job. 

jm : Number of PE that user need for job execution. 

}...1{ nJj ��

The mathematical System modeling for space Share 
resources for cost optimization are: 

Objective function: 
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The variable ikjx  is a binary variable and denoted that 
whether job j assigned to Processing Element K on 
resource i or not. The )]/([max iktt vM denotes the 
maximum execution time of each task on every PEs. 
Because each task execute on every PE in paralleled 
manner, so for finding the time of a job execution, we 
must find the maximum execution time of tasks. 
Generally, Equation (1) calculates the cost of job j which 
executed in PE k on resource i.  
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Equation (2) denotes the time Constraint that time of 
execution and sum of MTTR of resource must be less 

than the deadline of the job. The �
�

�
jm

i
ii MTTRs

1

indicates the sum of MTTR of all PEs which used. 
Equation (3) denotes the budget Constraint that cost of PE 
and duration of using this PE must be less than deadline 
of the job. Equation (4) explain the resource‘s capacity 
constraint which resource‘s capacity must be greater than 
number of PE that is need. Finally, Equation (5) shows 
the PE requirement of user‘s job.  

4. PROPOSED ALGORITHM 

In our proposed model, the scheduler can be aware of 
both availability and computational power of the 
resources, enabling it to decide if a task can be executed 
on a specific resource without failure. It’s obvious that by 
having full information about the resources, we can 
calculate the execution time and approximate failure time 
of resource, so that we can determine whether the task 
completion time is before the fault event or not [6].Our 
FES-BIP algorithm are shown in Figure 2. We used 
branch-and-bound algorithm to search for optimal 
solution and solve this binary integer programming 
model. Branch-and-bound algorithm verifies that no 
better integer feasible solution is possible. This algorithm 
could potentially search all 2n binary integer vectors, 
where n is the number of variables. As a complete search 
might take a very long time, we can limit the search by 
using maximum amount of time in the algorithm runs. 

The objective function calculates the cost of execution of 
job j on PE k in resource i. Here we are multiplying the 
cost of execution by the maximum length of time of 
execution of all tasks. The maximum length of time is 
computed through dividing the length of job in a given 
unit of MI by the computational power of PE k on 
resource i whose unit is MIPS. When job j can satisfy all 
constraints of PE K on resource i the value of ikjx  is 
equal to 1. So the cost of job j which is executed in PE k 
on resource i can be computed by objective function. But 
if the value of  ikjx  is equal to 0, this means that at least 
one constraint cannot be satisfied. So this job is not 
executed on PE K from resource i and the cost of job j 
does not need to be computed by objective function. In 
PE requirement of user’s jobs constraint, the numbers of 
PEs which are allocated to tasks (the sum of ikjx ) are 
equal to the number of PEs requirement of user’s job; 
meaning that PE in resource i assigned to job j, in 
accordance with the number of user’s PE requirements. In 
resource’s capacity constraints, we seek for a resource for 
job j whose available numbers of PEs are more or at least 
equal to the number of required PEs of user’s job. Next  
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Figure 2. Pseudo Code of FES-BIP Algorithm 

constraint is the budget constraint which calculates the 
execution cost through multiplying cost of execution in a 
given unit of time by the length of time of execution. It is 
to be mentioned that the execution cost should be less 
than the considered budget for this job. The last 

constraint, time constraint, determines the maximum 
execution time for job and then adds this to failure time of 
PEs in resource i. If the calculated time is less than the 
deadline, it tells us that, to a great extent, we can be sure 
of the completion of job execution.  

Complexity of our algorithm can be explained with 
respect to two aspects, time and memory complexity. 
Complexity of memory for m resources and n jobs and k 
PEs in each resource is )(nmk�  . Complexity of memory 
is the number of linear programming variables. Time 
complexity is equal to the number of algorithm iterations 
as indicated in Figure 3.this Figure shows an experiment 
with the sample with a deadline of 400 seconds and 
different budgets. This graph shows that the number of 
iterations increased sharply from 120 iterations to 3353 
iterations in a range of 10 to 50 resources while the 
iterations decreased genteelly from 3353 iteration to 1967 
in a range of 50 resources to 200 resources.  The rationale 
behind of this decrease is obvious, in this circumstance 
with more resources finding the optimal result of 
scheduling is easier as compare to a situation with fewer 
resources while the number of completed job is the same. 
For resources fewer than 50 a few jobs are completed 
while the completed jobs for resources more than 50 are 
approximately equal. So the accepted range of resources 
for discussing about time complexity is from 50 to 200 
resources. In addition, for jobs that are more relaxed QoS 
had a small number of iterations because finding the 
result is faster and easier.  

Figure 3. The Number of Iteration vs. Number of 
Resources for Deadline of 400 and Different Budget. 

5. EXPERIMENTS AND RESULTS 

We use Bintprog algorithm from MATLAB optimization 
toolbox to solve FES-BIP algorithm. The Bintprog 
algorithm is based on branch-and-bound algorithm. The 
parameter and configuration of grid environment in 
simulation of FES-BIP algorithm is presented in table 1. 
The number of completed jobs vs. different amounts of 
budget and deadline which were used in simulation are 
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shown in Figure 4(a), Figure 4(b), Figure 4(c), Figure 
4(d), Figure 4(e) and Figure 4(f). 

As illustrated in Figure 4(a), Figure 4(b), Figure 4(c) and 
Figure 4(d), (which are concerned with resources of 200, 
150, 100 and 50 respectively) for a deadline of 200 
seconds the number of completed jobs regardless of the 
amount of budgets is around 5. Interestingly, no matter 
what the number of resources is, for deadlines of 400, 500  

Table 1. 
The Parameter and Configuration of Grid 

Environment

Parameter  Value of parameter 
Number of job 100  jobs 
Number of resources 200, 150, 100,50 and 25 
Deadline From 200 to 600 seconds in steps 

of 100 
Budget From 200 to 1000 G$ 
Cost of each PE From 1 to 8 G$ per second by 

Gaussian distribution 
Computational power Between 277 and 577 MIPS. 
The number of available 
PE in each resource 

From 2 to 4 

The number of tasks in 
each jobs 

From 1 to 3 

The size of each task 10000 + 10% MI by Gaussian 
distribution 

MTTR factor The Weibull distribution by 50 as a 
scale Parameter and 5 as a shape 
parameter [11]. 

and 600 seconds there is a slight rising trend of the 
number of completed jobs from a range 80-90 to a range 
of 90-100 as the amounts of budget varies from 200 to 
1000 G$. However, as indicated in Figure 4(a) and Figure 
4(b), for the deadlines of 300 seconds with 200 and 150 
resources respectively, the number of completed jobs rises 
moderately from around 30 to 50 as the amounts of 
budget changes from 200 to 1000 G$. AS revealed in 
Figure 4(c) and Figure 4(d), related to resources of 100 
and 50 respectively, there is a similar slight rises of the 
number of completed jobs from 59 to 70 as the amounts 
of budget changes from 200 to 1000 G$. Figure 4(e) 
concerns 25 resources, for deadline of 400, 500 and 600 
seconds, there is moderate increase from 41 to 51 the 
number of completed jobs varies from 200 to 1000G$. 
Like the former graphs the number of completed jobs for 
the deadline of 200 seconds remains constant at 5 
regardless of amount of budget. However, the number of 
completed jobs for deadline of 300 seconds rising from 35 
to 45 and then leveled off as the amount of budget 
changes from 200  to 1000 G$. Figure 4(f) presents the 
number of completed jobs for 10 resources. As indicated 
in this figure, the number of completed jobs for the 

deadline of 200 is around 5 again no matter how much the 
amount of budget varies. For the rest of deadlines the 
sharp increasing trend of the number of completed jobs is 
similar starting from 10 to 19. 

Figure 4(a). The Number of Completed Jobs for 200 
Resources vs.  the Amounts of Budget, Deadline and 

100 Jobs. 

Figure 4(b). The Number of Completed Jobs for 150 
Resources vs. the Amounts of Budget, Deadline and 

100 Jobs. 

Figure 4(c).The Number of Completed Jobs for 100 
Resources vs. the Amounts of Budget, Deadline and 

100 Jobs. 
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Figure 4(d) The Number of Completed Jobs for 50 
Resources vs. the Amounts of Budget, Deadline and 

100 Jobs. 

Figure 4(e). The Number of Completed Jobs for 25 
Resources vs. the Amounts of Budget, Deadline and 

100 Jobs. 

Figure 4(f). The Number of Completed Jobs for 10 
Resources vs. the Amounts of Budget, Deadline and 

100 Jobs. 

The number of completed jobs vs. different number of 
resources which used in simulation is shown in Figure 
5(a), Figure 5(b), Figure 5(c) and Figure 5(d).  Figure 
5(b), Figure 5(c), Figure 5(d) reveal the number of 
completed jobs of deadlines 400, 500 and 600 seconds 
respectively. As it can be seen there is a similar trend in 
all these graphs regardless of the deadlines. The number 
of completed jobs in all these graphs increases rapidly 
from a range of 10 to 19 to a range of 83 to 98 as the 
number of resources changes from 10-50. Then, for a 
range of 50 to 100 resources, the number of completed 
jobs remains constant. There is a slight fall of the number 

of completed jobs from a range of 92 to 100 jobs to a 
range of 85 to 88 jobs when the number of resources 
increases to 200. While in the real world the number of 
completed jobs is expected to increase or at least to stay 
constant as the number of resources rising. We have 
witness in our experiments that the number of completed 
jobs declines just as the number of resources exceeds 100. 
The reason behind this phenomenon is that as the number 
of variables (resources and jobs) increases the search 
space, consequently, enlarge, making finding a feasible 
and optimal answer more time consuming. It should also 
be noted that we assumed 60 seconds, as the maximum 
solving time in FES-BIP algorithm to select the resources. 
As a result, we can’t perform as many jobs expected. To 
see what happens if we free the limitation of 60 seconds 
(the maximum solving time), we performed an 
experiment with no solving time limitation to solve FES-
BIP algorithm. In our experiment the scheduler took 1655 
seconds to solver FES-BIP algorithm to select out of 150 
resources to executed 74 jobs, far beyond the plausibility 
of jobs’ deadline. Figure 6, as an example, illustrate the 
result of our experiment for the deadline of 300 seconds. 
As it can be seen, the number of completed jobs likes that 
in the former Figures (5(a)-5(d)) noticeably increase from 
35 to 90 for the range of 10-100 resources and from this 
point, as expected, the trend leveled off regardless of the 
rise of the number of resources. 

Figure 5(a). The Number of Completed Jobs by 
Deadline of 300 Seconds for Different Number of 

Resources.

Figure 5(b). The Number of Completed Jobs by 
Deadline of 400 Seconds for Different Number of 

Resources.
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Figure 5(c). The Number of Completed Jobs by 
Deadline of 500 Seconds for Different Number of 

Resources.

Figure 5(d). The Number of Completed Jobs by 
Deadline of 600 Seconds for Different Number of 

Resources.

�

Figure 6 .The numbers of completed jobs by 
deadline of 300 seconds for different number of 

resources without any time limitation for solving FES-
BIP algorithm. 

To take account the total cost spent by users for jobs, we 
conducted some experiments which are indicated in the 
following Figures (7(a)-7(f)). As revealed in Figure 7(a), 
Figure 7(b) and Figure 7(c) concern 200,150 and 100 
respectively, the total cost sharply rises from around 100 
G$ to around 4500  G$ as the deadline increases to 400 
seconds. From this point (4500 G$) the total cost remains 
constant while the deadline continues increasing this 
similar trend in all these graphs is independent of the 
number of resources. Figure 7(d), Figure 7(e) and Figure 
7(f) reveal that there is a similar trend in which the total 

cost increases up to a certain point and from there is 
staying constant. Our experiment generally show that as 
the length of deadline and the amount of budget increase, 
the number of completed jobs increases accordingly. 
However, paying a closer attention to Figure 7(c) and 
Figure 7(d) shows that the total cost with 50 resources 
(Figure 7(d)) takes twice as much cost as with 100 
resources (Figure 7(c)) although the number of completed 
jobs is the same. The underlying reason is that cost of 
resources varies when the scheduler is selecting some 
resources out of 100 resources it may choose those with 
lowest cost. These low-cost resources may not necessarily 
be those chosen out of 50. 

Figure 7(a). Total Spent Cost by Users for Jobs in 
200 Resources and Different Budgets and Deadlines. 

Figure 7(b). Total Spent Cost by Users for Jobs in 
150 Resources and Different Budgets and Deadlines.

Figure 7(c). Total Spent Cost by Users for Jobs in 
100 Resources and Different Budgets and Deadlines. 
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Figure 7(d). Total Spent Cost by Users for Jobs in 
50 Resources and Different Budgets and Deadlines. 

Figure 7(e). Total Spent Cost by Users for Jobs in 
25 Resources and Different Budgets and Deadlines. 

�

Figure 7(f). Total Spent Cost by Users for Jobs in 10 
Resources and Different Budgets and Deadlines. 

6. CONCLUSION AND FUTURE WORK 

Our major aim in this paper was to construct and propose 
a model of scheduling which gets round the recurrent 
problems in our fault-aware economy scheduling model 
(FES) builds on binary integer linear programming (BIP) 
hence FES-BIP model. 

This model can meet user’s Quality of Service (QoS) 
requirements and can in particular find an optimal result 
of job scheduling in grid environment. As a follow up this 
study, we intend to design time and cost-time 
optimization algorithms. We also aim to solve the linear 
programming model by other optimization algorithms. As 

a further future aim, we will attempt to apply diverse 
MTTR factors for different kinds of resources using FES-
BIP model.�
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