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Abstract

Cloud storage systems are now mature enough to handle a massive volume of
heterogeneous and rapidly changing data, which is known as Big Data. How-
ever, failures are inevitable in cloud storage systems as they are composed of
large scale hardware components. Improving fault tolerance in cloud storage
systems for Big Data applications is a significant challenge. Replication and
Erasure coding are the most important data reliability techniques employed
in cloud storage systems. Both techniques have their own trade-off in var-
ious parameters such as durability, availability, storage overhead, network
bandwidth and traffic, energy consumption and recovery performance. This
survey explores the challenges involved in employing both techniques in cloud
storage systems for Big Data applications with respect to the aforementioned
parameters. In this paper, we also introduce a conceptual hybrid technique to
further improve reliability, latency, bandwidth usage, and storage efficiency
of Big Data applications on cloud computing.

Keywords: Fault tolerance; Big Data applications; Cloud storage;
Replication; Erasure coding; Data Reliability.

1. Introduction

In the contemporary society of Big Data, the data volume is growing
faster than storage capacity (Gantz and Reinsel, 2012). Each week, Face-
book requires extra 60TB of storage just for new photos (Beaver et al., 2010).
YouTube users upload over 400 hours of video every minute and it requires 1
Petabyte of new storage every day (Baesens, 2014). According to the Inter-
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national Data Corporation (IDC)’s sixth annual study, until 2020 the digital
data will double every two years (Gantz and Reinsel, 2012). Cloud comput-
ing offers a cost-effective way to support Big Data and analytics applications
that can drive business value (Groenfeldt, 2012). By 2020, approximately
40% of the data in the digital universe will be stored or processed by cloud
computing providers (Gantz and Reinsel, 2012). Cloud storage provides rea-
sonable scalability for storing Big Data and it helps to handle the steady
growth of data variety, volume and velocity (Chen and Zhang, 2014).
As Cloud storage is built up on commodity servers and disk drives (Ford et al.,
2010), it is subject to failures that can compromise operation of applications
relying on it. For example, In 2009, Facebook temporarily lost over 10% of
its stored photographs because of a hard drive failure (Gunawi et al., 2010).
Amazon Simple Storage Service (S3) encountered a data corruption problem
caused by a load balancer bug (Wang et al., 2015). Amazon Web Services
(AWS) suffered major disruptions due to a DynamoDB failure (AWS, 2016).
At Facebook, in a production cluster of 3000 nodes, it is typical to have
20 or more node failures (Sathiamoorthy et al., 2013). As failures are the
norm in cloud storage systems, improving data reliability while maintaining
the system performance during data recovery is one of the most important
challenges in deploying Big Data applications on cloud computing.
Data failure in cloud storage is handled by various data redundancy tech-
niques. The most common redundancy techniques are replication and era-
sure coding. Replication is a simple data redundancy mechanism. The same
data is copied and stored in several locations on the storage systems. If the
requested data is not available in one disk, it is served from the next avail-
able disk (Plank, 2013). Erasure coding is a more complex data redundancy
mechanism. Parity data is created and stored along with the original data,
such that if the requested data is not available, it can be reconstructed from
parity data. Storage overheads for erasure coding is much smaller than for
replication, hence it reduces the hardware needs for data storage and pro-
vides significant cost and energy savings in data centres (Huang et al., 2012).
However, data reconstruction upon failure involves high reconstruction cost
and network traffic.
This is the main reason why cloud service providers are interested in mov-
ing towards erasure coding to improve reliability and reduce operational cost
of systems. Facebook increased storage efficiency from 2.1x to 3.6x using
erasure coding with multiple Petabytes of savings (Muralidhar et al., 2014).
Microsoft Azure reduced storage overhead from 3x to 1.33x using erasure
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coding which provided over 50% cost savings (Huang et al., 2012).
A study on the Facebook warehouse cluster (Rashmi et al., 2013) revealed
that more than 50 machine-unavailability events were triggered per day. Data
reconstruction due to those unavailability events increases network traffic.
Facebook implemented Reed-Solomon code to only 8% of the data. As this
requires 10x more network repair overhead per bit compared to replication,
it is estimated that if 50% of data were replaced with Reed-Solomon, re-
pair network traffic might saturate the cluster network links (Sathiamoorthy
et al., 2013).
Another issue with the use of error correction techniques is that repair traffic
increases latency. Storage systems consume up to 40% of a data centre’s
total energy (Harnik et al., 2009) and energy efficiency of storage systems
is influenced by read/write latency (Kumar et al., 2014). Hence reducing
the latency involved in repair may conserve considerable amount of energy.
As mentioned earlier, Erasure coding offers better storage efficiency, reliabil-
ity,and availability, but reconstruction of lost data increases network traffic
and latency.
This paper addresses ongoing research and challenges in improving data re-
liability of Big Data Applications in cloud computing using replication and
erasure coding. As both techniques have their own advantages and disad-
vantages, we discuss how researchers are striving to bring the benefits of one
technique to another. We also propose a hybrid technique in the form of an
ensemble of replication and erasure coding to benefit from the strengths of
both techniques. The proposed hybrid technique is intended to optimize the
important parameters of cloud storage system and improve reliability and
performance while reducing storage overhead.
The rest of this paper is organized as follows. In section 2, we discuss types
of storage systems and file systems used in cloud storage for Big Data ap-
plications data failures and data reliability. In sections 3 and 4, we discuss
the state of art and challenges involved in erasure coding and replication,
respectively. In section 5 we present a comprehensive comparison between
replication and erasure coding. In section 6, we present the state of art in
cloud storage reliability for Big Data applications, challenges and conceptual
architecture of proposed hybrid technique. Finally, in section 7 we conclude
and provide a basis for future developments in this area of research.
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2. Background

In this section, we briefly discuss types of storage systems and file systems
used in cloud storage systems for Big Data applications. Following that, the
analysis on data failures and data reliability is presented.

2.1. Cloud Storage and Big Data Applications

Cloud storage systems consist of a number of storage devices connected
by the network. It is typically composed of Network Attached Storage (NAS)
or Storage Area Network (SAN) type of distributed storage with the feature
of storage virtualization (Zeng et al., 2009). Storage virtualization is the
technique of abstracting the physical storage from applications and mapping
the logical storage into physical storage. The network of storage devices can
be treated as a single storage device and users can access information regard-
less of physical locations and storage modes.
Based on how the data is accessed and interfaced by the client, cloud storage
systems can be classified as file storage, block storage, and object storage
(Mesnier et al., 2003)
File Storage: In file storage, files are organized hierarchically. The infor-
mation about the file is stored as a metadata in a storage system. The files
can be accessed by specifying the path to the individual file. It provides the
higher level of storage abstraction to applications and it enables secured data
transfer among different platforms. It achieves good performance in Local
Area Network (LAN) if the number of files and metadata are limited. File
server maintains metadata and authorize I/O to share files among multiple
clients. However, file server contention affects data retrieval performance.
Block Storage: In block storage, the file is divided in blocks and an ad-
dress is assigned for each block. The application can access and combine the
blocks with the block address. The storage applications keep the metadata
and use it to share data. It does not have any fileserver to authorize I/O
and clients can directly access storage devices using metadata. It offers good
performance. However, it is not offering promising secure data transmissions.
Object Storage: In object storage, the file and metadata are encapsulated
as an object and the object is assigned with an object ID. The object can
be of any type and geographically distributed. Each object can be assigned
with unique metadata such as the type of application object associated, level
of protection, number of replication and geographic location. It offloads stor-
age management from applications to storage devices. This enables secure
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direct data access to clients using metadata. It provides excellent scalability
to support Big Data applications. Object storage support efficient erasure
coding technique in addition to replication.
The variety, volume and velocity characteristics of Big Data can be fitted
well in the distributed, virtualized and scalable characteristics of cloud stor-
age systems (Kune et al., 2016). OReilly (O’Reilly, 2016) discussed advan-
tages and drawbacks of prominent Big Data file systems in detail. HDFS,
GFS, Luster, ClusterFS, Ceph, OpenStack Swift, Quantcast and PVFS are
examples of other file systems that support Big Data Applications. GFS and
HDFS are widely employed in cloud storage and a comparison between those
file systems are presented by Vijayakumari et al. (Vijayakumari et al., 2014).

2.2. Data Failures

In a cloud storage system, many factors can lead to data failure. Data
failures also lead to cloud service failures. Sharma et al. (Sharma et al.,
2016) presented a detailed survey of cloud service failures. The main causes
of cloud data failures are hardware, software, network, and power failures
(Rajasekharan, 2014). Disks are the central element in cloud based storage
(Brewer et al., 2016) and are the most common failure component (Hughes
et al., 2002). Vishwanath and Nagappan analysed hardware reliability for a
large cloud computing infrastructure (Vishwanath and Nagappan, 2010). As
shown in Figure 1(data collected from (Vishwanath and Nagappan, 2010))
78% of all server failures were due to hard disks, 5% to Rapid Array of In-
expensive Disk (RAID) controller, 3% due to memory, with the remaining
14% due to other factors. Hard disks are the most commonly replaced com-
ponent and they are the most frequent cause of server failures (Vishwanath
and Nagappan, 2010).
As depicted in Figure 2, data failures can be transient or permanent. Data
unavailability due to network outage, node/machine failure, power outage,
and automated repair process are transient and do not lead to permanent
data loss (Rajasekharan, 2014). Data gathered from tens of Google storage
cells, each of which with 1000 to 7000 nodes over one year period, reveals
that less than 10% of events had node unavailability with duration under 15
minutes (Ford et al., 2010). Data unavailability due to hard disk failure or
data corruption leads to permanent data loss.
Pinheiro et al. (Pinheiro et al., 2007) present a detailed analysis of failure
behaviour of large scale disk drives using monitored data collected over a
period of nine months. They found failure probabilities to be highly cor-
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Figure 1: Causes of server failures in cloud computing systems (Vishwanath and Nagappan,
2010)

related with the drive first scan errors, reallocations, offline allocations and
probation counts. Ford et al.(Ford et al., 2010) demonstrate the importance
of modelling correlated failures on availability prediction. They show that
failing to consider node failure results in overestimation of availability. Data
availability increased 1.5% from reducing the disk failure rate by 10%. How-
ever, 10% reduction of node failure rate increases availability by 18%. Ma
et al. (Ma et al., 2015) analysed disk failure from a large number of backup
systems to show reallocated sectors and specific types of sector errors have
large impact on disk reliability. They designed proactive protection against
single and multiple disk failures.
Various component failures in cloud storage systems lead to permanent and
transient data failures. Disks are the most important component to be con-
sidered in cloud storage systems. Disk failures lead to permanent data loss
if they are not handled properly. Most of the other component failures in
cloud storage systems cause temporary outages only. Some outages may last
for hours, causing huge financial losses (Abu-Libdeh et al., 2010). The above
discussions shed some light on considering the respective component failures
to improve durability and availability. Next section discusses various data
reliability mechanisms employed in cloud storage systems.
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Figure 2: Data failures in cloud storage

2.3. Data Reliability

Data reliability includes maximizing durability and availability of data.
Durability mitigates permanent failures and availability mitigates transient
failures.
As shown in Figure 3, various mechanisms are used in cloud data centres
to improve fault tolerance of the storage system. The impact of hardware
failures is mitigated with RAID arrays, swappable drivers, and Error Correc-
tion Code Memory (ECC RAM). RAID arrays are a logical unit composed of
several disks that stores data with striping, mirroring and parity. Swappable
drivers allow administrators to swap drives that fail or predicted to fail while
the system remains in operating mode. ECC RAM is used to detect and
correct single bit errors by associating a parity bit with each binary code.
Network failures and power outage are handled with network redundancy
and dual power supply respectively.
Failures due to any issues including disasters in cloud storage are handled
with erasure coding, replication and Resilient Distributed Dataset (RDD)
(Zaharia et al., 2010). Replication and erasure coding are used to handle
primary data failures. RDD is used to protect intermediate data generated
by Big Data applications (Zaharia et al., 2010).
Erasure coding (Huang et al., 2012; Sathiamoorthy et al., 2013) and replica-
tion (Li et al., 2011) are the most popular reliability mechanisms employed
on cloud storage. Figure 4 is a representation of replication and erasure
coding techniques. In replication, data file/object are divided into chunks
and stored several times on the storage systems. If the requested data is
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Figure 3: Failure Handling in Cloud Data Centres

not available in one disk, it is served from the next available disk (Plank,
2013). In erasure coding, data file/object is divided into chunks. Parity data
is created and stored along with the original data, such that if the requested
data is not available, it is reconstructed and served with the help of parity
data.

Figure 4: Replication and Erasure Coding

Even though cloud providers utilize various reliability techniques to improve
fault tolerance against various component failures, replication and erasure
coding stand out from all the others by its geographically distributed re-
dundancy. Hence, replication and erasure coding support any kind of data
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loss including disasters. The next two sections discuss erasure coding and
replication.

3. Erasure Codes

Erasure coding is playing a predominant role in protecting data from fail-
ures in large scale storage systems (Plank, 2013). Before the emergence of
cloud computing, erasure coding was used to detect and correct errors in
storage and communication systems (Vins et al., 2014). In (n, k) erasure
codes storage system, a file of size B will be divided into k equal chunks and
n−k parity chunks are added such that any k out of n chunks can restore the
original file. For example, Figure 5 represents (4,2) erasure code which can
tolerate any two failures. The arithmetic used to calculate parity data can
be standard arithmetic or Galois Field arithmetic (Plank, 2013). In standard
arithmetic, addition is carried out as binary XOR and multiplication as bi-
nary AND. Standard arithmetic is performed if the number of bits in a word
is 1. When the number of bits in a word increases, parity is calculated using
Galois Field arithmetic. In Galois Field, GF(2n), arithmetic operations are
bound within a finite set of numbers from 0 to 2n-1;addition is bitwise XOR
and multiplication is more complex which depends on hardware, memory
and number of bits in a word (Plank, 2013).

Figure 5: Erasure Coding

Erasure codes can be classified as Maximum Distance Separable (MDS) and
non-MDS. The code is said to be MDS if m disks hold parity data and the
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system tolerates any combination of m disk failures; non-MDS codes can
tolerate only few combination of m disk failures, if m disks are dedicated to
hold parity data. For example, in Figure 6.a, disks D5 and D6 are dedicated
for parities, so this system can tolerate any two disk failures. This makes it
MDS codes. In Figure 6.b, D5, D6 and D7 are dedicated for parities but it
cannot tolerate any three disk failures. For example, if D1, D5 and D6 fail
at the same time the data in D1 will not be recovered. This is known as
non-MDS codes.

Figure 6: Different erasure coding types a. MDS codes b. non-MDS codes

Examples of simple erasure codes are RAID-6, Array codes, and Reed-Solomon
codes (Plank, 2013). RAID-6 codes are MDS that creates two parity blocks
for data blocks such that it can handle two disk failures (Jin et al., 2009). Ar-
ray codes are implemented with standard arithmetic (i.e., XOR operations).
In array codes parity is calculated as different linear combination of system-
atic data (original data). Row Diagonal Parity (RDP) (Xiang et al., 2010),
EVENODD (Blaum et al., 1995), Blaum-Roth (Yixian, 1994) and Liberation
codes (Plank, 2009) are array codes for RAID 6 that can tolerate up to any
two disk failures. Star code is an array code and it can tolerate any combi-
nation of three disk failures (Huang and Xu, 2008). Cauchy Reed-Solomon,
Generalized EVENODD and Generalized RDP are array codes that can be
defined for any values of k and m (Plank, 2013). Recent advancements reduce
CPU burden on Galois Field arithmetic for Reed-Solomon codes. Moreover,
it is straightforward to define Reed-Solomon code for any values of k and m.
Hence Reed Solomon has gained prominence over other erasure codes(Plank,
2013).
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Reed-Solomon codes are the most popular erasure codes. They can be de-
fined for any combination of data and parity disks. Reed-Solomon codes are
MDS codes. Encoding and decoding can be done with Galois Field arith-
metic. Facebook and Microsoft Azure implemented Reed-Solomon codes in
their storage systems (Beaver et al., 2010; Huang et al., 2012). Any data
failures in erasure coded storage systems trigger data reconstruction to serve
the failed data. Since data reconstruction in erasure coding involves high
disk I/O and network bandwidth it increases the cost of data reconstruction.
Many contemporary research focus on reducing reconstruction costs of failed
data on Reed-Solomon coded storage systems.
This paper highlights the recent works on two important categories. One is
on reducing network bandwidth for reconstruction and these codes are called
regeneration codes. The other is on reducing disk I/O needed for reconstruc-
tion of lost data and it is known as Locally Repairable codes (LRC). In the
following sections, we discuss non-MDS/LRC codes and regeneration codes
respectively.

3.1. Non-MDS Codes/Locally Repairable Codes

Non-MDS codes have local parities for original data blocks along with
global parities in such a way that the reconstruction needs minimum disk
I/O.

Figure 7: Locally Repairable Codes

Figure 7 represents locally repairable codes. Local parity helps blocks with
single failures to be reconstructed with less number of data blocks than global
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parity. Global parity can be utilized for reconstructing blocks with two or
more simultaneous failures. Adding local parity makes the codes non-MDS
and increases storage overhead.
Huang et al. (Huang et al., 2013) designed two new non-MDS erasure codes
(Basic Pyramid Codes and Generalized Pyramid Codes). They designed Ba-
sic Pyramid Code from MDS codes. For example, Pyramid Code can be
constructed from (11,8) MDS code as follows. Eight data blocks of (11,8)
MDS codes should be separated into two equal size groups. Two out of three
parity blocks can be kept unchanged and it is called global parities. Two new
redundant blocks can be constructed from two equally separated data groups
respectively and it is called local parities. This technique can significantly
improve the read performance as local parities reduce the disk I/O involved
in the reconstruction of lost data. Compared to (9,6) MDS code, (10,6) Basic
Pyramid code reduces reconstruction read cost by 50%, with 11% additional
storage overhead and 5.6x10-7 unrecoverable probability. Hence, it improves
the performance of reconstruction with high fault tolerance and with addi-
tional storage overhead.
Generalized pyramid code is not an extension of Basic Pyramid code but it
is defined with maximum recoverable (MR) property. Parity blocks for gen-
eralized pyramid code are calculated using a generator matrix. For erasure
codes with MR property, the matching condition becomes sufficient i.e., all
failure cases satisfying the matching condition are recoverable. Basic Pyra-
mid code in comparison with generalized pyramid code provides 45% less
unrecoverable property (Huang et al., 2013).
Following this work, Huang et al presented a new set of non-MDS erasure
codes (Local Reconstruction Code) for Microsoft Azure Storage (Huang et al.,
2012). This code is defined with (k, n, r) parameters. It divides k data frag-
ments into n groups and generates n local parities for each group along with
r global parity. It can tolerate up to r+1 failures and reduces the bandwidth
and I/O traffic to reconstruct offline data fragments while has 1.33x more
storage overhead compared to Reed Solomon codes. The average latency of
decoding 4KB fragments is 13.2us for Reed-Solomon and 7.12us for LRC.
Decoding is faster in LRC since the number of fragments needed for recon-
struction is reduced to half.
Sathiamoorthy et al. (Sathiamoorthy et al., 2013) proposed a novel non-MDS
erasure code (XORing the Elephants). They defined LRC (10,6,5) code on
top of Facebook’s RS (10,4) storage system by incorporating local parity.
They further defined local parity for each 5 data blocks such that any single
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lost data block can be reconstructed by only communicating with the re-
maining blocks in that group. It reduces approximately 2x on disk I/O and
network traffic upon reconstruction, with 14% of storage overhead compared
to Reed Solomon code.
Plank et al. (Plank et al., 2013) proposed Sector-Disk (SD) codes, which can
tolerate a combination of disk and sector failures. It is a non-MDS code and
can tolerate failure of any two disks and any two words in the stripe. It has
minimum storage overhead compared to other non-MDS codes. They also
noted that it needs less computation and disk I/O.
While all the above non-MDS codes improve the performance with better
reliability, all impose additional storage overhead. Local parity is effective
only for single block failures in the disk.

3.2. Regeneration Codes

Regeneration codes are defined for efficient repair of a failed nodes in
terms of minimizing the amount of data downloaded for repair. Traditionally,
a failed node data can be reconstructed by communicating and downloading
the entire data with any k available nodes. Dimakis et al., (Dimakis et al.,
2010) proved that the fraction of data from any d surviving nodes (k ≤
d ≤ n − 1) are enough to reconstruct the failed node with network coding.
(n, k) erasure coded storage system assumes that B is the size of the file
and each fragment comprised of α symbols over a finite field. According to
the definition of regeneration codes, any β<α symbols from any d surviving
nodes are enough to repair the failed node. Hence the total amount of data
dβ downloaded for repair purpose is smaller than the size of file B as shown
in Figure 8 (Rashmi et al., 2011). Assume that each data block in the figure
is 1GB. Upon failure, the reconstruction needs only 3 GB instead of 4 GB.

3.2.1. Minimum Storage and Minimum Bandwidth Regeneration Codes

Regenerating codes can be Minimum Storage Regenerating (MSR) or
Minimum Bandwidth Regeneration (MBR). Minimizing α is known as Mini-
mum Storage Regeneration. Minimizing β is known as Minimum Bandwidth
Regeneration. In MSR, α and β can be decided by first minimizing α and
then minimizing β. In MBR, α and β can be decided by first minimizing β
and then minimizing α.
The repair process can be partial, functional or exact. In exact regenera-
tion code, the replacement node stores exactly the same data as the failed
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Table 1: Related work on reducing latency of erasure coded storage
systems

Author Type of
storage
systems

Performance
on Data
Failure

Reliability Energy
Effi-
ciency

Storage
Overhead

(Huang et al.,
2013)

Cloud Reduces num-
ber of blocks
needed to
reconstruct
failed data

Tolerates
any k-1 fail-
ures,and 86 %
of k failures

NA 11% addi-
tional storage
overhead

(Huang et al.,
2012)

Windows
Azure
Storage

Reduces disk
I/O and net-
work traffic

Tolerates any
k-1 failures,
and 86% of k
failures

NA Approximately
1.6x of stor-
age overhead

(Sathiamoorthy
et al., 2013)

HDFS Reduces ap-
proximately
2x on network
traffic and
disk I/O

Mean time
to Data loss
is high com-
pared to
Reed-Solomon
code

NA 14% addi-
tional storage
overhead

(Dimakis et al.,
2010)

Distributed
Storage

Improved
performance
in terms
of network
traffic

Improved Re-
liability

NA No

(Pei et al., 2015) Distributed
Storage

Improved
performance
in terms
of network
traffic

Improved Re-
liability

NA No

(Khan et al.,
2012)

Cloud Reduces the
number of
symbols for
recovery and
improve per-
formance by
20%

Tolerates ar-
bitrary k fail-
ures

NA No

(Rashmi et al.,
2014)

HDFSRAID
in Face-
book data
warehouse

Reduces both
network traf-
fic and disk
I/O around
25% to 45%
compared to
Reed-Solomon
code

Tolerates ar-
bitrary k fail-
ures

NA No

14



Figure 8: Regeneration Codes

node. Functional regeneration codes reconstruct a new node, which may
contain different data from the corresponding failed node, although it should
form an MDS code. In partial regeneration, original data nodes are repaired
exactly and parity nodes are repaired functionally (Suh and Ramchandran,
2011).
Suh and Ramchandran (Suh and Ramchandran, 2011) proposed an exact
MSR code where d ≥ 2k− 1 over finite field of size at least 2(n− k) with in-
terference alignment property. Rashmi et al. (Rashmi et al., 2011) proposed
optimal construction of an exact MBR code for all values of (n, k,m) and
MSR codes for all (n, k, d ≥ 2k−2) using the new product-matrix framework
with finite field of size at least n(m− k + 1). Various choices of parameters
(n, k,m) for exact MSR codes have been defined in (Cadambe et al., 2010;
Papailiopoulos and Dimakis, 2011; Suh and Ramchandran, 2010). Hybrid
MSR codes with various choices of parameters have been defined in various
works (Cadambe et al., 2011; Tamo et al., 2011; Wu, 2011), which support
the exact repair of systematic parts and functional repair for parity part.
MSR and MBR codes focus on storage and bandwidth minimization but may
increase disk I/O. Various choices of parameters for exact repair remain an
open problem.

3.2.2. Repair-by-Transfer Regenerating Codes

In the regeneration of codes, the replacement of the failed node needs
to be connected to the remaining nodes and will receive β<α data blocks
which are the function of α symbols stored on it. The nodes helping in the
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repair process read several data blocks and pass the function of the α data
blocks stored in it. This process may lead to disk I/O overhead. In order to
minimize I/O overhead and to avoid arithmetic operations performed by the
providers, repair-by-transfer regenerating codes have been proposed.
Rashmi et al. (Rashmi et al., 2009) proposed an intuitive repair by transfer
exact MBR codes for any (n, k, d = n − 1). Functional repair is carried out
by transfer MSR codes for different values of (n, k, d) defined in (Hu et al.,
2013; Shum and Hu, 2012). Exact repair is carried out by transfer MBR
codes (n, k = n − 2, d = n − 1) over finite field of size 2 defined in (Shah
et al., 2012). Lin and Chung (Lin and Chung, 2014) define a novel repair by
transfer exact MBR codes at m = n−1 MBR points which demands a smaller
finite field. Chen and Wang reveal the non-existence of a minimum storage
regenerating (MSR) code with the repair-by-transfer property for k ≥ 3, β
<d− k + 1 (Chen and Wang, 2015).
Repair-by-transfer regenerating codes minimize disk I/O and also have all
the benefits of MSR and MBR codes. However, there are only some specific
choices of parameters.

3.2.3. Cooperative Recovery Regeneration Codes

Hu et al. (Hu et al., 2010) first proposed a mutually cooperative recovery
(MCR) mechanism for multiple node failures. In this mechanism, nodes to
be repaired can exchange data among themselves to provide better trade-
off between storage and bandwidth. Cooperative regenerating code bound
on bandwidth consumption of the new node is defined in (Kermarrec et al.,
2011; Shum, 2011). Shum and Hu (Shum and Hu, 2011) propose an explicit
construction of exact MBCR for (n, k, d = k, t = n−k) where t is the number
of new nodes communicated for the reconstruction. Wang and Zhang (Wang
and Zhang, 2013) show that for all possible values of (n, k, d, t), there exists
exact MBCR code on field size of at least n. Le Scouarnec (Le Scouarnec,
2012) explain the construction of exact MSCR code for some choices of pa-
rameter when d ≥ k = 2. Pei et al. (Pei et al., 2015) propose cooperative
regeneration repair based on the tree structure CTREE for multiple failures
to optimize repair network traffic and time. They propose CExchange to re-
duce the network traffic cost. ED-TREE and PTransmission were proposed
to reduce repair time and improve data transmission efficiency. All the above
codes are limited to only some specific choices for the parameters.
The following works concentrated on optimizing the disk I/O needed for re-
construction and reducing I/O cost of recovery without any storage overhead
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unlike non- MDS. This algorithm supports any XOR based erasure codes (i.e.
array codes). Xiang et al. (Xiang et al., 2010) propose Row Diagonal Optimal
Recovery (RDOR) for single disk failure in RDP codes and it significantly
reduces I/O costs for recovery. He proposes I/O optimal recovery for single
disk failure. Khan et al. (Khan et al., 2012) propose an algorithm to mini-
mize the disk I/O needed for reconstruction based on symbols(partitions of
block in each disk). This algorithm supports any number of parity blocks ≤
3.
The following code is aiming at reducing bandwidth and disk I/O without
any storage overhead. Rashmi et al. (Rashmi et al., 2014) propose Hitchhiker
code, which is built on top of RS Code using a ”Piggybacking” framework
with Hop-and-couple (disk layout). It supports any choice of systematic and
parity data fragments. While Hitchhiker reduces the time required for read-
ing data during reconstruction by 32% and reduces the computation time
during reconstruction by 36% with 35% reduction in network traffic and disk
I/O, it increases the encoding time.

4. Replication

Replication is the most common reliability mechanism used in cloud data
centres to improve availability and durability with low latency and minimum
bandwidth consumption (Bonvin et al., 2009). Upon failure, in order to
maintain the durability, the failed replica needs to be restored in the active
disk. This restoration can be performed either reactively or proactively. In
reactive replication, the replica will be created after the failure. In proactive
replication, the replica will be created even before the occurrence of failure.
Common approaches used in replication are static and dynamic replication.

4.1. Static Replication

In static replication, the number of replicas and their locations are fixed
(Bonvin et al., 2009). Replicas are created and managed manually regardless
of the changes in user behaviour. Random replication is the most common
replication technique used in HDFS, RAMCloud, GFS and Windows Azure.
In this technique, data are replicated on randomly selected nodes on different
racks. Random replication can tolerate concurrent failure as the chunks are
placed on different racks. However, it is ineffective when all the replicas are
lost. Also, fixing lost data involves high cost associated with locating and
recovering the lost data. Cidon et al (Cidon et al., 2013) propose Copyset
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replication. It splits the nodes into copysets with respect to number of repli-
cations, which corresponds to random permutation. Replicas are placed in
one of the copysets. Data loss only occurs if all the nodes of some copyset
fail concurrently. It increases the data durability without significant storage
overhead and with the same performance as random replication.
Liu and Shen (Liu and Shen, 2016) proposed Multi-Failure Resilient Replica-
tion (MRR) to improve availability in cloud storage. Authors define different
number of replication for each object based on the popularity of the object.
Nodes are separated into different groups such that groups can handle differ-
ent number of replications and each set consists of the nodes from different
data centres. It reduces the probability of data loss with low consistency
maintenance cost. Long et al (Long et al., 2014) proposed the Multiob-
jective Optimized Management (MOM) algorithm for cloud storage. MOM
decides the number of replicas and location of replicas based on a mathe-
matical model with five objectives, namely unavailability, service time, load
variance, energy consumption and latency. The parameters size, access rate
of the file, failure probability, transfer rate and capacity data node have been
considered in the definition of the model. Authors show that this algorithm
increases file availability, load balancing and decrease service time, latency
and energy consumption.

4.2. Dynamic Replication

In dynamic replication, replicas are created and removed dynamically.
Replica creation, location, management and deletion are handled automati-
cally according to the user behaviour in order to improve durability, availabil-
ity, cost, storage efficiency, bandwidth, latency, energy and execution time.
Bonvin et al. (Bonvin et al., 2009) proposed a dynamic cost efficient replica-
tion in clouds with consideration of geographical diversity while maintaining
high availability and low latency. He proposed Skute, a key-value store which
determines cost efficient position of replicas. Sun et al. (Sun et al., 2012) de-
fined a mathematical model of relationship between system availability and
number of replicas. They proposed dynamic replication strategy that deter-
mines which data to replicate, time of replication, number of replicas, and
location of the new replicas to improve read performance and availability.
Qu and Xiong (Qu and Xiong, 2012) proposed resilient, fault-tolerant and
high efficient algorithm to achieve high availability in cloud storage systems.
It dynamically balances workload among the nodes by considering the traffic
load, node storage capacity and bandwidth for replica. Hence it increases
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Table 2: Related work on improving reliability, cost and efficiency of replicated storage
system

Author
Type of
storage
systems

Replication
type

Objective

(Cidon et al., 2013) Cloud Static

To reduce probability of data
loss without any additional
storage overhead and perfor-
mance lag

(Liu and Shen, 2016) Cloud Static
To improve availability with
low storage and maintenance
cost

(Long et al., 2014) Cloud Static
To improve availability with
high performance and energy
efficiency.

(Bonvin et al., 2009) Cloud Dynamic To improve availability guar-
antee at minimum cost

(Sun et al., 2012) Cloud Dynamic
To improve performance and
availability with high storage
efficiency

(Qu and Xiong,
2012)

Cloud Dynamic
To improve availability with
high storage efficiency

(Hussein and Mousa,
2012)

Cloud Dynamic To improve reliability with
minimum cost.

(Boru et al., 2015) Cloud Dynamic To minimize network and en-
ergy efficiency.

(Li et al., 2011) Cloud Dynamic To maintain reliability with
low storage overhead.
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data availability with high storage efficiency.
Hussein and Mousa (Hussein and Mousa, 2012) also proposed dynamic repli-
cation strategy. Based on the history of data requests and time series tech-
nique, it predicts future data access frequency. If the predicted frequency
exceeds the threshold, then data chunks are selected for replication. After
that, the number of replicas and location of the replicas are decided. Exper-
imental results show that this strategy keeps response time stable regardless
of the high number of tasks and improves reliability. Boru et al. (Boru et al.,
2015)propose a data replication technique to optimize energy consumption,
network bandwidth and communication delay in cloud data centres. They de-
fined models for energy consumption and bandwidth demand and propose an
energy efficient replication strategy based on this model that reduces commu-
nication delays. Li et al. (Li et al., 2011) proposed cost effective replication
of Big Data applications on cloud storage, defined as a generic data reliability
model in cloud based on replication. They used an algorithm for determining
the minimum number of replicas with assurance of data reliability. In order
to assure data reliability with minimum replication, a generic data reliability
model has been utilized to predict data reliability. Data reliability has been
maintained across the period using a proactive replication algorithm that
detects replica loss and triggers the data recovery process if needed.

5. Comparison Between Replication and Erasure Coding

Replication and erasure coding are important reliability mechanisms used
in cloud data centres to protect data against failure. It is important to un-
derstand the advantages and pitfalls of those techniques to implement an
optimal technique in cloud storage systems to improve reliability with sig-
nificant savings. The analysis of those technique with respect to various
parameters are detailed below.
Figure 9 shows how a read request to unavailable data is handled in a repli-
cation and an erasure coded storage system. It also shows how the data is
reconstructed in case of transient and permanent data failure. A request
to unavailable data in a replicated storage system is served by simply redi-
recting the request to the next available replica. On the other hand, in an
erasure coded storage system, temporarily unavailable data is served by re-
constructing data from the next k available disk on the fly. Reconstruction
in erasure coded storage involves more disk I/O than in replicated storage.
For example, in Figure 9.c reconstruction of block A involves two blocks of
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data read from two different disks. This increases the latency of the read
request in an erasure coded storage system in comparison to replication.
Disk reconstruction upon permanent failure in an erasure coded system in-
volves more disk I/O than replication. For example, in Figure 9.b the re-
construction of a failed disk involves only three disk access to reconstruct
three data fragments. However, in Figure 9.d reconstruction of the failed
disk involves four disk access to reconstruct two fragments. This increases
the cost of reconstruction in an erasure coding system.
Figure 10 depicts storage overhead and Figure 11 depicts the reliability in
terms of Mean Time to Failure (MTTF) in years with correlated failure for
both redundancy policies. Data from (Ford et al., 2010) are used to depict
Figure 10 and Figure11. These figures show that erasure codes provide better
reliability with low storage overheads compared to replication. In large scale
storage systems, replacing replication with erasure coding leads to significant
cost savings.
Erasure coding is more storage efficient than replication, however there is
a performance trade off (Cook et al., 2014). Encoding data in an erasure
coded storage system is time consuming, while a request to the failed object
can be redirected to the next available replica in a replicated system with
no latency (Cook et al., 2014). In an erasure coded system, the failed object
should be reconstructed from the next available objects, which increases the
latency for the read request (Cook et al., 2014). Moreover, costs associated
with reconstruction is high in terms of bandwidth and disk I/O (Li and Li,
2013).
Several works compare replication and erasure coding (Weatherspoon et al.,
2002; Lin et al., 2004; Rodrigues and Liskov, 2005; Cook et al., 2014; Ford
et al., 2010). These comparisons assume independence between parameters.
For example,Erasure coding provides significant storage efficiency compared
to replication or it increases durability and availability. However, Erasure
coding can not significantly increase both storage efficiency and reliability.
We summarized the comparison in Table 3. The keywords high and low are
used to represent the superiority of one technique over other.

6. State of the Art in Cloud Storage Reliability for Big Data Ap-
plications

As failures are frequent in cloud storage system, data redundancy is em-
ployed in cloud storage systems to handle failures. Replication is simple
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Figure 9: Durability and availability handling in replication and erasure coding techniques

Figure 10: Storage overhead (percentage) of various redundancy policies (Ford et al., 2010)

solution to improve data reliability. But replicating terabytes and petabytes
of data increase the storage overhead drastically. Nowadays erasure coding
is gaining traction because it offers huge savings in terms of storage with
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Figure 11: MTTF in years with correlated failures for various redundancy policies (Ford
et al., 2010)

Table 3: Comparison between replication and erasure coding
Parameters Replication Erasure coding
Storage Overhead High Low
Availability Low High
Durability Low High
Latency on Failure Low High
Cost of Reconstruc-
tion

Low High

Encoding & Decod-
ing Complexity Low High

extensive reliability and durability assurance. However, reconstruction cost
involved in recovering the lost data balances the storage savings. Reed-
Solomon code requires approximately ten times more repair overhead per
bit compared to replication. The challenges involved in employing the re-
dundancy techniques for Big Data applications in cloud storage systems are
discussed in the rest of this section.
Several studies (Table 1) have focused on reducing network traffic and re-
ducing the disk I/O associated with reconstruction of failed data in erasure
coded storage systems. Few works dedicate extra storage overhead to im-
proving performance of erasure coded storage systems but none could make
performance of erasure codes like the performance achieved with replication
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Table 4: Related work on improving reliability, cost and efficiency of replicated storage
system

Author
Type of
storage
systems

Objective Method

(Araujo et al., 2011)
Distributed
storage

Reduce latency
(In terms of net-
work bandwidth
and disk I/O)

One full-replica of
data is kept in one
peer and erasure
coded fragments are
spread 22 in the
network.

(Ma et al., 2013) Cloud

Reduce latency
(In terms of net-
work bandwidth
and disk I/O)

Cache the whole file
upon write requests
for serving the sub-
sequent read and
write requests.

(Li et al., 2016) Cloud

Reduce latency
(In terms of net-
work bandwidth
and disk I/O)

Adjust replication
factor of data based
on drive failure
prediction.

for Big Data applications.
Some studies (Table 2) have focused on minimizing the number of redun-
dancies in replicated storage systems to improve storage efficiencies. None
could significantly reduce the storage overhead in comparison to erasure cod-
ing without sacrificing reliability. Achieving reliability, storage efficiency and
performance together with either replicated or erasure coded storage systems
has not yet been achieved.

Hybrid reliability mechanisms could be the choice of future data centres.
Hybrid reliability mechanism combines replication and erasure coding. There
are very limited works in hybrid reliability mechanisms, which are listed in
Table 4. Araujo et al. (Araujo et al., 2011) proposed double coding based
on hybrid coding. The idea here is to keep one full-replica of data in one
peer and erasure coded fragments spread in the network. In double coding,
the copy of original data fragments and parity fragments are arranged in
different peers in the network. Even though it saves bandwidth upon recon-
struction it affects storage efficiency. Ma et al. (Ma et al., 2013) proposed a
novel scheme named CAROM, an ensemble of replication and erasure cod-
ing. Their approach caches the whole file upon write requests for serving
the subsequent read and write requests. It also caches the requested block
upon read request in order to serve subsequent reads. It saves storage cost
by up to 60% and erasure coded bandwidth cost by up to 43% while keeping
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the latency, as in replication. When the requested data is not in memory,
however, it needs to reconstruct the data upon block unavailability. Li et al.,
(Li et al., 2016) presents proactive erasure coding (ProCode), which auto-
matically adjusts replication factor of data based on drive failure prediction.
It reduces degraded read latency by 63% and reconstruction time by 78%.
This ProCode has no effect in the storage system consisting of flash drive
and swappable drivers can handle the drive failures more efficiently.

6.1. Research Challenges

There are many open challenges in the field of Data Reliability of Big
Data applications in cloud storage systems. In this section, we examine the
challenges of improving data reliability of Big Data applications in cloud
storage systems.

6.1.1. Storage Efficiency

Data reliability of replication is directly proportional to storage overhead.
Hence improving storage overhead without sacrificing reliability is the great-
est challenge in replication. Even though erasure coding offers tremendous
storage savings with fair reliability, it increases network traffic and latency
of Big Data applications in the presence of failure. This survey addressed
various researches in replication that tried to conserve storage with dynamic
replication strategy but it pawns reliability. It also showed that various re-
searches in erasure codes focused on reducing network traffic and latency.
Enabling automation of dynamic redundancy, such as changing number of
replicas in erasure coded data to support failures and usage spikes could also
improve storage efficiency further.

6.1.2. Bandwidth Efficiency

Network bandwidth is always a scarce resource in the distributed storage.
Bandwidth usage is directly proportional to the amount of data transferred in
the distributed storage. In both replicated and erasure coded storage system,
fixing the failed data consumes considerable amount of network bandwidth.
Traditional erasure codes involve more bandwidth consumption than repli-
cation. Node failures are events that trigger data reconstruction in cloud
data centres and increase network traffic in erasure coded storage system
(Sathiamoorthy et al., 2013). Various works towards reducing the network
traffic in erasure coded storage system has been highlighted. However, those
could not reduce network traffic as good as replicated storage system. Even
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after recent improvements of erasure coding, network traffic involved in re-
construction is one of the most important challenges. Improving bandwidth
efficiency without sacrificing performance and energy efficiency is one of the
most important challenges. Failure prediction techniques should be improved
to spot data failures in cloud storage systems. Dynamic replication of failure
predicted data even before the failure occurs could significantly reduce the
number of reconstructions in erasure coded storage and thereby reduces the
network traffic.

6.1.3. Energy Efficiency

Storage systems are one of the most important energy consuming compo-
nents in cloud computing (Sharma et al., 2016). Energy efficiency methods
used in data centres save operational costs and help to conserve the environ-
ment (Butt et al., 2014). The energy efficiency of storage systems is highly
dependent on read/write latency (Kumar et al., 2014). Pinheiro et al. (Pin-
heiro et al., 2006) introduced a technique called diverted access technique
that separates original and redundant data on different disks in storage sys-
tems. This technique keeps disks containing redundant data in an idle state
until there is a high disk failure. This technique has been proven to save 20-
61% of disk energy. Harnik et al. (Harnik et al., 2009) proposed a method for
full coverage in low power mode using auxiliary nodes (pool of extra nodes
with additional copies of data) of any placement function. The power saving
potential for an erasure coded storage system is limited in low power mode
however it improves when the ratio between n and k grows. Butt et al.
(Butt et al., 2014) presented an Energy Reliability Product (ERP) metric to
compare different designs with respect to energy efficiency and reliability of
data centre storage systems. Greenan et al. (Greenan et al., 2008) proposed
power aware coding and present a generic technique for reading, writing and
activating devices in a power aware erasure coded storage system. They also
showed that activating the inactive disk increases power consumption. Li et
al. (Li et al., 2011) proposed a link rate controlled data transfer (LRCDT)
strategy for energy efficient data transfer in replication based cloud storage
systems.
Energy savings in terms of storage in erasure codes is dedicated to recon-
struction of data and it is vice versa for replication. Hence improving the
reconstruction of data without sacrificing storage efficiency is a challenge.
Reducing number of reconstructions in erasure code could reduce network
traffic and improve energy efficiency and reducing number of reconstructions
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can be achieved by seasonal replication of selected data blocks.

6.1.4. Data Access Latency

In erasure coded storage system when there is a failure, decoding must
be performed to reconstruct the original data. Hence data access latency is
one of the most important challenges in erasure coded storage system. In
replicated storage systems, the access latency could be significantly reduced
by choosing optimal location of replication. Energy and performance of the
Big Data applications can be considerably improved with reduced access
latency. Reducing the latency with less storage overhead is a challenge for
the researchers. By activating proactive, dynamic replication based on the
access history and failure logs in erasure codes, could help to reduce access
latency with less storage overhead.

6.2. Conceptual Architecture

We propose the following hybrid technique for Big Data applications in
cloud storage systems to reduce the network traffic and improve the perfor-
mance with less storage overhead. This hybrid technique applies proactive
dynamic data replication of erasure coded data based on node failure predic-
tion. This hybrid technique will significantly reduce network traffic and will
improve the performance of Big Data applications with less storage overhead.
The conceptual architecture of the hybrid technique to improve reliability,
performance with less storage overhead is depicted in Figure 12.
Cloud System Management is the centre point of the proposed architecture.
All the management regarding application management and data reliability
decisions will be made here. It is divided into two components: Big Data
Application Management and Data Reliability Management.
Big Data Application Management is responsible for provisioning resources
for applications, monitoring the health of the application, and shutting down
and cleaning up of resources and billing.
Data Reliability Management is responsible for improving data reliability,
performance and reducing network traffic of Big Data applications. It is
divided into two components as follows:

• Erasure Coding Management: This component has both encoder and
decoder. The encoder will partition the data into original and par-
ity fragments based on the adapted erasure code. The decoder will
reconstruct the missing data.
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Figure 12: Reliability management of Big Data applications on cloud computing: concep-
tual architecture

28



• Replication Management: This is the most important component of
this conceptual architecture. This is the component we propose to
proactively handle failures of erasure coded data based on node access
history and failure history. Each provisioned node in the cloud storage
system runs a daemon for node failure prediction based on node failure
history. Node Failure Predictor component periodically collects node′s
failure status(Agrawal et al., 2015). When the status shows that the
node predicted to fail, the data access history of that node will be ex-
amined. Based on the node access history the access pattern of the
data blocks could be derived and the data blocks which are likely to be
accessed soon can be predicted (Dai et al., 2014). These data blocks
in failure predicted node should be proactively replicated into the best,
next available node by Dynamic Replication Manager. This will de-
crease the need for reconstruction. In turn, it will reduce the network
traffic, improve the reliability and performance of Big Data applica-
tions. It will also increase storage efficiency as it replicates the data
only if failure is predicted and it is likely to be accessed soon. The un-
predicted failure data blocks will be served with typical reconstruction
of decoder.

6.3. Future Research Directions

In the era of Big Data, improving fault tolerance against data failure
brings various challenges, such as how to reduce storage overhead; how to
reduce network bandwidth and/or network traffic; how to minimize latency;
and finally how to minimize energy consumption. To address these issues,
the following research directions are listed for future.

• New techniques to reduce storage overhead in replication, without sacri-
ficing durability and availability of data: Techniques that apply proac-
tive failure handling and dynamic replication should be developed to
reduce storage overhead of replication without sacrificing the reliability
of Big Data applications.

• Big Data-optimized erasure coding: Erasure Coding helps to reduce
storage overhead while maintaining durability and availability. How-
ever, this comes at the cost of increased network traffic, high disk I/O
and large latency. Therefore, a novel erasure coding is needed to re-
duce the network traffic, disk I/O and latency while reducing storage
overhead for Big Data.
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• Hybrid techniques to improve data reliability: Since both replication
and erasure coding have advantages and limitations, improving relia-
bility with hybrid techniques, that can leverage the best aspects of each
technique is a promising research topic. In this direction, a conceptual
architecture of a hybrid technique is proposed in the following section.

• Dynamic replication of fragments based on prediction: Although era-
sure coding reduces energy consumption of storage systems, this is off-
set by the extra energy needed to reconstruct data when failures occur.
Therefore, if an algorithm can predict items that are more likely to be-
come unavailable due to failures, energy could be saved if the predicted
items are proactively replicated, because in this case reconstruction can
be avoided.

In addition, further consideration is needed for:

• Methods to optimize configuration parameters for both replication and
erasure coding according to users reliability requirements.

• Geographical diversity of cloud storage while defining data reliability
for Big Data applications.

7. Conclusions

Cloud computing is playing a predominant role to serve Big Data appli-
cations as it provides cost-effective on demand services. Cloud computing
enables storage and computing resources to be scaled up and down rapidly
in accordance with the demand. As failures are becoming the norm in cloud
storage systems various fault tolerant mechanisms has been employed in cloud
storage systems to improve data reliability. As replication involves huge stor-
age overhead, erasure coding gains traction in cloud storage systems for Big
Data applications. However, in case of failure, reconstructing lost data in-
volves lots of resources which affects performance of the applications. This
prevents cloud storage systems to move towards erasure coding. In this pa-
per, we discussed the state-of-art of both techniques. In erasure coded storage
systems, various techniques are proposed to reduce the resources involved in
reconstruction. In replicated storage system improving data reliability with
minimum replications are proposed. While existing hybrid techniques are ad-
dressed in this paper, a novel hybrid technique based on dynamic replication
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in erasure coded storage systems is proposed. The proposed technique and
the conceptual architecture can effectively handle the reconstruction issues of
erasure code proactively with less storage overhead and improved reliability
and energy consumption.
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