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Abstract—In the age of cloud, Grid, P2P, and volunteer distributed computing, large-scale systems with tens of thousands of unreliable
hosts are increasingly common. Invariably, these systems are composed of heterogeneous hosts whose individual availability often
exhibit different statistical properties (for example stationary versus non-stationary behavior) and fit different models (for example
exponential, Weibull, or Pareto probability distributions). In this paper, we describe an effective method for discovering subsets of hosts
whose availability have similar statistical properties and can be modelled with similar probability distributions. We apply this method
with about 230,000 host availability traces obtained from a real Internet-distributed system, namely SETI@home. We find that about
21% of hosts exhibit availability that is a truly random process, and that these hosts can often be modelled accurately with a few distinct
distributions from different families. We show that our models are useful and accurate in the context of a scheduling problem that deals
with resource brokering. We believe that these methods and models are critical for the design of stochastic scheduling algorithms
across large systems where host availability is uncertain.

Index Terms—statistical availability models, reliability, resource failures, stochastic scheduling
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1 INTRODUCTION

With rapid advances in networking technology and dra-
matic decreases in the cost of commodity computing
components, large distributed computing platforms with
tens or hundreds of thousands of unreliable and het-
erogeneous hosts are common. The uncertainty of host
availability in P2P, cloud, or Grid systems can be due to
the host usage patterns of users, or faulty hardware or
software. Clearly, the dynamics of usage, and hardware
and software stacks are often heterogeneous, spanning
a wide spectrum of patterns and configurations. At
same time, within this spectrum, subsets of hosts with
homogeneous properties can exist.

So one could also expect that the statistical properties
(stationary versus non-stationary behavior for example)
and models of host availability (exponential, Weibull, or
Pareto for example) to be heterogeneous in a similar way.
That is, host subsets with common statistical properties
and availability models can exist, but differ greatly in
comparison to other subsets.

The goal of our work is to be able to discover host
subsets with similar statistical properties and availability
models within a large distributed system. In particular,
the main contributions are as follows:
• Methodology. Our approach is to use tests for ran-
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domness to identify hosts whose availability is inde-
pendent and identically distributed (iid). For these
hosts, we use clustering methods with distance met-
rics that compare probability distributions to iden-
tify host subsets with similar availability models.
We then apply parameter estimation for each host
subset to identify the model parameters.

• Modelling. We apply this method on one of the
largest Internet-distributed systems in the world,
namely SETI@home. We take availability traces from
about 230,000 hosts in SETI@home, and identify
host subsets with matching statistical properties
and availability models. We find that a significant
fraction (21%) of hosts exhibit iid availability, and a
few distributions from several distinct families (in
particular the Gamma and hyper-exponential) can
accurately model the availability of host subsets.

• Scheduling. We show the utility and accuracy of
these models for the design of stochastic schedul-
ing algorithms for large systems where availabil-
ity is uncertain. We focus on a resource brokering
problem where incoming jobs must be routed to
a set of schedulers, each of which oversees a set
of unreliable hosts. With respect to scheduling, the
results show that a generalized round-robin method
performs best in simulation experiments compared
to other algorithms, confirming and reinforcing the-
oretical results in the literature. With respect to mod-
elling, the results show that analytical results based
on our stochastic models match those obtained from
the availability traces alone, verifying the accuracy
of our models.
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2 MODELLING APPROACH

2.1 Application context

We describe here the context of our application, which
is used to guide what we model. Our modelling is con-
ducted in the context of volunteer distributed comput-
ing, which uses the free resources of Internet-distributed
hosts for large-scale computation and storage. Currently
this platform is limited to embarrassingly parallel appli-
cations where the main performance metric is through-
put. One of the main research goals in this area is to
broaden the types of applications that can effectively
leverage this platform.

We focus on the problem of scheduling applications
needing fast response time (instead of high throughput).
This class of applications includes those with batches of
compute-intensive tasks that must be returned as soon
as possible, and also those whose tasks are structured
as a directed acyclic graph (DAG). For these applica-
tions, the temporal structure of availability and resource
selection according to this structure is critical for their
performance.

2.2 Modeling Process

Fig. 1. CPU availability and unavailability intervals on one
host

Thus our modelling focuses on the interval lengths of
continuous periods of CPU availability or unavailability
for individual hosts. We term a continuous interval to be
an (un)availability interval (see Figure 1). The lengths
of the (un)availability intervals of a particular host over
time is the process that we model. We model the process
of unavailability and the process of availability sepa-
rately, as each showed significant differences.

The processes of availability interval lengths span a
spectrum with completely deterministic behavior on one
end and truly random behavior on the other. Some
processes are completely deterministic due to period-
icity or trends, such as hour-in-day or day-in-week
time effects. Others are completely random due to the
unpredictability of user or application behavior. Others
show a combination of determinism and randomness
(for instance, a CPU that is available consistently from
11:00 onward for an uncertain amount of time).

We focus our modelling efforts on hosts whose avail-
ability is truly random, as these hosts constitute a sig-
nificant fraction of the platform (21% in terms of the
total number of hosts). Our modelling method is general
enough to also include those hosts that exhibit a combi-
nation of deterministic and random availability. We can
do so by removing what is deterministic and model the

random phenomenon that remains. For instance, with
a CPU consistently available from 11;00 onward, we
can model its availability by focusing on the availability
period after 11:00.

The remaining hosts that have purely deterministic
availability can be modelled using different methods (see
Section 4 for details). There is evidence showing that
these hosts are in the minority. For instance, in [24], we
showed that only about 6% of all hosts have availability
exhibiting repeated diurnal cycles.

Fig. 2. Modelling workflow

To model the random availability of hosts, we use the
following approach. Figure 2 summarizes the workflow.
We define availability and describe how our availability
measurements were gathered in Section 3. We contrast
this measurement method and our modelling approach
to related work in Section 4. We determine which hosts
exhibit random, independent, and stationary availability
in Section 6. For hosts that pass the randomness tests,
we describe the clustering of hosts by their distribution
of availability in Sections 7.0.2- 7.0.3. We describe the
results of parameter estimation for each distribution in
Section 7.1. Then we evaluate the utility and accuracy of
our models for scheduling in Section 8.

3 MEASUREMENT METHOD FOR CPU AVAIL-
ABILITY

BOINC [2] is a middleware for volunteer distributed
computing. It is the underlying software infrastructure
for projects such as SETI@home, and runs across over 1
million hosts over the Internet.

We instrumented the BOINC client to collect CPU
availability traces from about 230,000 hosts over the
Internet between April 1, 2007 to January 1, 2009. We
define CPU availability to be a binary value indicating
whether the CPU was free or not. The traces record the
time when CPU starts to be free and stops.

Our traces were collected using the BOINC server for
SETI@home. The traces are not application dependent
nor specific to SETI@home because they are recorded
at the level of the BOINC client (versus the application
it executes). In total, our traces capture about 57,800
years of CPU time and 102,416,434 continuous intervals
of CPU availability.

Artifacts due to a measurement method or middle-
ware itself are almost inevitable. In our case, artifacts
resulted from a benchmark run periodically every five
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days by the BOINC client. As a result, availability in-
tervals longer than five days were truncated prema-
turely and separated by about a one minute period
of unavailability before the next availability interval.
Histograms and mass-count graphs showed that these
5-day intervals were outliers and significantly skewed
the availability interval mass distribution. As such, we
preprocessed the traces to remove these gaps after five
day intervals artificially introduced by our middleware.
This minimized the effect of these anomalies in the
modelling process.

4 RELATED WORK

This work differs from related in terms of what is mea-
sured and what is modelled. In terms of measurements,
this work differs from others by the types of resources
measured (home versus only within an enterprise or
university), the scale and duration (hundreds of thou-
sands over 1.5 years versus hundreds over weeks), and
the type of measurement (CPU availability versus host
availability). Specifically, the studies [23], [8] focus on
host in the enterprise or university setting and may
have different dynamics compared to hosts primarily
on residential broadband networks. Our study includes
both enterprise and university hosts, in addition to hosts
at home.

Also, other studies focus on hundreds of hosts over a
limited time span [23], [26], [1]. Thus their measurements
are of limited breadth and could be biased to a partic-
ular platform. The limited number of samples per host
prevents accurate modelling of the individual resource.

Furthermore, while many (P2P) studies of availability
exist [28], [7], [30], these studies focus on host avail-
ability, i.e., a binary value indicating whether a host
is reachable. By contrast, we measure CPU availability
as defined in Section 3. This is different as a host can
clearly be available but not its CPU. Nevertheless, host
availability is subsumed by CPU availability.

In terms of modelling, most related works [27], [35],
[34], [13] focus on modelling the system as a whole
instead of individual resources, or the modelling does
not capture the temporal structure of availability [3], [13],
[24], [18], [16]. Yet this is essential for effective resource
selection and scheduling [29], [6]. For instance, in [27],
the authors find that availability in wide-area distributed
systems can be best modelled with a Weibull or hyper-
exponential distribution. However, these models con-
sider the system as a whole and are not accurate for
individual resources.

For another instance, in our own past work in [24],
we conducted a general characterization of SETI@home.
However, we ignored availability intervals by taking
averages to represent each host’s availability. So we used
a different data representation with different distance
metrics when clustering. Moreover, the purpose was
different because we intentionally focused on identifying
correlated, deterministic patterns instead of random ones.

As such, we did not build statistical models of availabil-
ity intervals, and did not address issues such as parti-
tioning hosts according to randomness and probability
distributions.

5 EXPERIMENTAL SETUP

We conduct all of our statistical analysis below using
Matlab 2009a on a 32-bit on a Xeon 1.6GHz server with
about 8.3GB of RAM. We use when possible standard
tools provided by the Statistical Toolbox. Otherwise, we
implement or modify statistical functions ourselves.

6 RANDOMNESS TESTING

A fraction of hosts are likely to exhibit availability inter-
vals that contain trends, periodicity, or non-stationarity.
For these hosts, modelling their availability using a
probability distribution is difficult given the change of
its statistical properties over time. Therefore, as the
preliminary phase before data analysis and modeling,
we apply randomness tests to determine which hosts
have truly random availability intervals.

We conduct three well-known non-parametric tests,
namely the runs test, runs up/down test, and Kendall-
tau test [32], [9]. For all tests, the availability intervals
of each hosts was imported as a given sequence or time
series; the same was done with unavailability intervals.

We describe intuitively what the tests measure. The
runs test compares each interval to the mean. The runs
up/down test compares each interval to the previous
interval to determine trends. The Kendall-tau test com-
pares the length of an interval with all previous interval
lengths in the sequence.

Since the hypothesis for all of these tests are based
on the normal distribution, we must make sure that
there are enough samples for each host, i.e., at least 30
samples, according to [10] and personal communication
with a statistician. About 20% of hosts do not have
enough samples because of a limited duration of trace
measurement. (Measurement for a host began only after
the user downloaded and installed the instrumented
BOINC client. So some hosts may have only a few mea-
surements because they began using the instrumented
BOINC client only moments before we collected and
ended the trace measurements). So we ignore these hosts
in our statistical analysis. Finally, we apply all three tests
on 168,751 hosts with a significance level of 0.05.

As there is no perfect test for randomness, we decide
to apply all tests and to consider only those hosts that
pass all three tests to be conservative. Table 1 shows the
fraction of hosts that pass these tests. Each subcolumn
of a particular test corresponds to either a sequence of
availability or unavailability. For instance, the availabil-
ity sequence of 101,649 hosts passed the runs std test,
and the unavailability sequence of 121385 hosts passed
the same test. In total, 35,686 hosts have availability and
unavailability sequences that pass all three tests.
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While iid hosts may not be in the majority (i.e., 21%),
together they still form a platform with significant com-
puting power. For example, the project FOLDING@home
alone provides about 8.127 PetaFLOPS of performance.
The hosts with iid (un)availability thus contribute about
1.7 PetaFLOPS, which is significant. Moreover, as dis-
cussed in Section 2.2, our modelling techniques could be
extended to handle hosts with a mixture of deterministic
and random behavior.

7 CLUSTERING BY PROBABILITY DISTRIBU-
TION

For hosts whose (un)availability is truly random, our
approach was to first inspect the distribution using his-
tograms and the mass-count disparity (see Figure 3). We
observe significant right skew. For example, the shortest
80% of the availability intervals contribute only about
10% of the total fraction of availability. The remaining
longest 20% of intervals contribute about 90% of the total
fraction of availability. The distribution of unavailability
has a much heavier tail compared with availability. The
implication for modelling is that we should focus on the
larger availability intervals. But which hosts can be mod-
elled by which distributions with which parameters?

7.0.1 Clustering Background
We use two standard clustering methods, in particular
k-means [14] and hierarchical clustering, to cluster hosts
by their distribution. K-means randomly selects k cluster
centers, groups each point to the nearest cluster center,
and repeats until convergence. The advantage is that it
is extremely fast. The disadvantages are that it requires
k to be specified a priori, the clustering results depend
in part on the cluster centers chosen initially, and the
algorithm may not converge.

Hierarchical clustering iteratively joins together the
two sub-clusters that are closest together in terms of the
average all-pairs distance. It starts with the individual
data points working its way up to a single cluster.
The advantage of this method is that one can visualize
the distance of each sub-cluster at different levels in
the resulting dendrogram, and that it is guaranteed to
converge. The disadvantage is that we found the method
to be 150 times slower than k-means.

7.0.2 Distance Metrics for Clustering
We tested several distance metrics for clustering, each
of which measures the distance between two CDFs [11].
Intuitively, Kolmogorov-Smirnov determines the maxi-
mum absolute distance between the two curves. Kuiper
computes the maximum distance above and below of
two CDFs. Cramer-von Mises finds the difference be-
tween the area under the two CDFs. Anderson-Darling
is similar to Cramer-von Mises, but has more weight on
the tail.

Using these distance metrics is challenging when the
number of samples is too low or too high. In the former

case, we do not have enough data to have confidence in
the result. In the latter case, the metric will be too sen-
sitive. A model by definition is only an approximation.
When the number of samples is exceedingly high, the
distance reported by those metrics will be exceedingly
high as well. This is because the distance is often a
multiplicative factor of the number of samples.

Our situation is complicated further because we have a
different number of samples per host. Ideally, when com-
puting each distance metric we should have the same
number of samples. Otherwise, the distance between two
hosts with 1000 samples will be incomparable to the
distance between two hosts with 100 samples.

Our solution is to select a fixed number of intervals
from each host at random. This method was used also
in [27], where the authors had the same issue. We also
discussed this issues with a statistician, who confirmed
that this is an acceptable approach.

However, if we choose the fixed number to be too
high, it will exclude too many hosts from our clustering.
If we choose the number to be too low, we will not have
statistical confidence in the result. We choose the fixed
number to be 30 intervals as discussed in Section 6. The
test statistics corresponding to each distance metric are
normally distributed, and so with 30 intervals, one can
compute p-values with enough accuracy.

We performed extensive experiments to compare the
distance metrics for several cases including for different
subsets of iid hosts. We also conducted positive and
negative control experiments where the cluster distribu-
tions were generated and known a priori. The following
conclusions were found to be consistent across all the
cases considered.

We find that Kolmogorov-Smirnov and Kuiper are
not very sensitive in terms of distance as they are only
concerned with extreme bounds. Cramer-von Mises and
Anderson-Darling revealed that they are good candi-
dates of clustering, but Anderson-Darling has high time
and memory complexity. Moreover, Cramer-von Mises is
advantageous for right-skewed distributions [11]. Thus
we used the Cramer-von Mises as the distance metric
when clustering.

We also conducted a sensitivity analysis with respect
to the 30-sample threshold. We observed that using
different samples size in the range of 20 to 25 does not
effect the result of the distance metric nor clustering
(specifically in terms of the fitted distributions).

7.0.3 Cluster Results and Justification
We cluster hosts first by their distribution of availability.
For all hosts in each of these clusters, we model the dis-
tribution of availability. Then we model the distribution
of unavailability for all hosts in the cluster, defined by
the availability distribution. The validity of this approach
and the resulting models will be shown in Sections 7
and 8.

Alternatively, we tried to cluster hosts by both avail-
ability and unavailability distributions, using the vector
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Runs std Runs up/down Kendall All
Test avai unavail avai unavail avai unavai avai unavai Total

# of hosts 101649 121385 144656 129267 101462 113973 65683 69385 35686
Fraction 0.602 0.719 0.857 0.766 0.601 0.675 0.389 0.411 0.211

TABLE 1
Result of Randomness Tests

(a) Availability Histogram (b) Unavailability Histogram (c) Mass-count

Fig. 3. Distribution of Availability and Unavailability Intervals

< da, du > as the distance metric; da is the distance
between two availability distributions, and du is the
distance between the two corresponding unavailability
distributions . However, this resulted in only two clus-
ters, one of which was much larger than the other. Com-
bining availability and unavailability greatly reduced
the sensitively of our clustering method, and accuracy
of our models. This can be explained by the fact that
the distribution of unavailability across hosts does not
differ as much as the distribution of availability. Thus,
clustering by availability should be the first priority.

We found that the optimal number clusters was 6. We
justify this number of clusters through several means.
First, we observed the dendrogram as a result of hi-
erarchical clustering for a random subset of hosts (due
to memory consumption and scaling issues). As shown
in Figure 4(a) the tree is an unbalanced tree where
the height of tree shows the distance between different
(sub)clusters. The good separation of hosts in this figure
confirmed the advantage of Cramer-von Mises as the
distance metric (in comparison to the result with other
metrics). The number of distinct groups in this dendro-
gram where the distance threshold is set to one reveals
that number of clusters should be between 5 to 10.

Second, using the result of hierarchical clustering as
a bootstrap, we run k-means clustering for all iid hosts
and then compute the within-group and between-group
distances for various values of k . We utilized the Dunn
index [25] to choose the best cluster size. This index
could be simply described as the ratio of minimum
inter-cluster over maximum intra-cluster distances. We
observe that this ratio is maximum and about the same
for eight and six clusters (see Figure 4(b)). However,
cluster size of six is more homogeneous in terms of inter-

cluster distance. Specifically, for k of 6, the inter-cluster
distance between all clusters was maximized relative to
other values of k. Also, for k of 6, the distance among
all clusters is roughly equal (about 5). Third, we plotted
the EDF corresponding to each cluster for a range of k.
In this way, we can observe convergence or divergence
of clusters during their formation.

Fourth, we plotted the EDF corresponding to each
cluster. Figure 5 shows good separation of these plots.
Based on the clusters defined by the distribution of
availability, we show the corresponding EDF for unavail-
ability in Figure 6. Note that the scale for unavailability
in Figure 6 is about two orders of magnitude smaller
than availability. In comparison, we found that the dis-
tributions of unavailability are heavier-tailed and more
homogeneous than the distributions of availability. This
is why we cluster first by availability.

7.1 Parameter Estimation for Clusters

After cluster discovery, we conduct parameter fitting for
various distributions, including the exponential, hyper-
exponential, Weibull, Log-normal, Gamma, and Pareto.
Parameter fitting was conducted using maximum like-
lihood estimation (MLE). Intuitively, MLE maximizes
the log likelihood function that the samples resulted
from a distribution with certain parameters. For hyper-
exponential fitting, we used expectation maximization
(EM) which is based on MLE but can not guarantee
the optimal answer. We used the EMpht package [15]
with the same techniques described in [27]. We decided
against using moment matching as it is sensitive to
outliers [12] and the overall distributions are heavily
right-skewed.
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(a) Dendrogram of hierarchical clustering for a random subset of
hosts

(b) Comparison of distances in clusters

Fig. 4. Cluster Comparison

We measured the goodness of fit (GOF) of the resulting
distributions using standard probability-probability (PP)
plots as a visual method and also quantitative metrics,
i.e., Kolmogorov-Smirnov (KS) and Anderson-Darling
(AD) tests. We show the graphical results of the best fits
in Figure 7 for availability and unavailability.

For availability, we see that in most cases the Gamma
distribution is a good fit for availability. Also, the ex-
ponential distribution has some close fits, especially in
cluster 4. These result allows an approximation that
would result in a simple analytical model. It is obvious
from the GOF tests that the Pareto is completely far from
our underlying distribution. So we do not have a heavy-
tailed distribution. However, as in some plots, the Log-
normal and Weibull have a close match so some cluster
distributions are likely to be long-tailed.

We also used the same technique described in [27]
to fit the hyper-exponential distribution for availability
each cluster. Due to space limitations, we are not able
to show the outcome, but the results revealed that the
best fit for the one long-tailed cluster (i.e., cluster 3) is a
3-phase hyper-exponential distribution.

For unavailability, the hyper-exponential is a good fit
in all cases and is better than the Log-Normal with
exception of cluster 3. A three-phase hyper-exponential
with several degrees of freedom was needed to create
an accurate model, given fluctuations of the CDF for
unavailability shown in Figure 6.

To be more quantitative, we also report the p-values
of two goodness-of-fit tests. We randomly select a sub-
sample of 30 of each data set and compute the p-
values iteratively for 1000 times and finally obtain the
average p-value. This method is similar to the one used
by the authors in [27], [34], and was suggested to us
by a statistician. Moreover, we observed that that the
Coefficient of Variation of the p-value is less than 0.50.
So the average value is a representative estimate.

The results of GOF tests are listed in Tables 2 and 3,

where in the each row the best fit is highlighted. These
quantitative results strongly confirm the graphical result
of the PP-plots. (In the PP-plots, the closer the plots are
to the line y = x, the better the fit.) With respect to
availability, we find that the best-fitting distributions of
each cluster differs significantly from the overall distri-
bution over all iid hosts. Thus, clustering was essential
for accurate availability modelling.

To be more precise, Table 4 lists some properties of
iid hosts and clusters as well. The main point is the
existing heterogeneity in the clusters in terms of the
number of members and percentage of total availability
contributed. The biggest cluster (i.e, cluster 3) that in-
cludes about 65% of all iid hosts, only contributes about
34% of the total availability. Cluster 2 that has about 11%
of all iid hosts contributes 25% of total availability.

One question regarding the availability modelling is
why are the five clusters that follow the Gamma distri-
butions are not in one cluster. The answer is in the fifth
column of Table 4 where the shape and scale parameters
of fitting are reported. These values revealed that all five
clusters have almost same shape (see Figure 5) but have
very different scales.

Another question is whether or not we are able to
model all hosts as a single distribution for availability,
such as Gamma distribution with fixed parameters. The
answer is no; the shape and scale parameters for the
Gamma distribution fitting for all iid hosts are 0.2572
and 43.1661, respectively, which does not reflect the
properties of different distributions listed in Table 4.

However, for unavailability distribution we could give
completely different answers for above questions. As
we mentioned before, the unavailability behavior of all
iid hosts almost follow the same distribution. We are
able to model unavailability with the hyper-exponential
distribution with two different sets of parameters. For
instance, as shown in the last column of Table 4, cluster 3
could form one group, and the remaining clusters could
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form another.

Fig. 5. EDF of availability clusters

Fig. 6. EDF of unavailability corresponding to availability
clusters

In summary, based on the graphical and quantitative
p-value results, the Gamma distribution is a good fit for
availability, and the hyper-exponential is a good fit for
unavailability, for all clusters. So we use a single dis-
tribution for availability, and another for unavailability,
but with different parameters (at least different scales)
to model the different hosts. It is worth nothing that the
Gamma and hyper-exponential distributions have very
interesting properties in terms of their flexibility and
generalization, and can be easily used in an analytical
Markov models [12].

7.2 Significance of the Clustering Criteria
Our results in the previous section beg the following
question: could the same clusters have been found using
some other static criteria? In this section we consider

cluster formation by static criteria, namely host venue,
time zone, and clock rates. (Note that a small fraction of
hosts did not have this information specified, and were
thus excluded from this analysis.)

We define host venue to be whether a host is used at
home, school, or work. This is specified by the user to
the BOINC client (though this is not required). Roughly,
14,292 are at home, 3,211 are at work, and 434 are
at school. If our clustering results correspond to those
categories, we would expect the distribution of host
venue across clusters to be even more skewed.

To measure this, we computed the expected number
of hosts of a particular venue for each one of the six
clusters identified in Section 7.0.3. The expected number
is computed using the global percentage of home, work,
and school hosts. The we counted the actual number of
hosts of each venue in each cluster.

Figure 8(a) shows the expected number versus the
actual number for each venue type over each cluster.
The results for larger cluster sizes are more significant. If
the clusters correspond to host venues, we would expect
large deviations from the y = x line. However, this is not
the case as the expected and actual values are similar.
Thus, the same clusters would not have resulted from
the host venue.

We conducted the same comparison using host time
zones. We counted the number of hosts in each cluster
for each of the six largest time zones (in terms of
hosts). These time zones corresponded to Central Europe
(11,368 hosts), Eastern North America (6,359 hosts), Cen-
tral North America (3,615 hosts), Western Europe (3,039
hosts), Western North America (2,726 hosts), and Eastern
Asia (1,451 hosts).

We then compared this with the expected number,
given the number of hosts in total for each of the six
time zones. We find again that the corresponding points
in Figure 8(a) are close the the line y = x. This indicates
that the clusters are not a direct result of time zones
alone.

We also investigated the relationship between CPU
speeds (in FLOPS) and the clusters. Figure 8(b) shows a
box-and-whisker plot of the CPU speeds for each cluster.
The box represents the inter-quartile range. As this box
for each cluster appears in similar ranges, we conclude
that the clusters could not have been formed using CPU
speeds alone, and that there is little correlation between
CPU speeds and the length of intervals.

Nonetheless, one would like an intuition to explain
why there was a formation of six clusters. We do not
have a precise answer to this question. It could depend
very much on the behavior and activities of the user.

8 APPLICATIONS TO SCHEDULING: THE RE-
SOURCE BROKERING PROBLEM

Our goal here is two-fold. First, we show the utility of
our models by applying them to a resource brokering
problem. Second, we show the accuracy of our models
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Exponential Pareto Weibull Log-Normal Gamma
Data sets AD KS AD KS AD KS AD KS AD KS
All iid hosts 0.008 0.000 0.052 0.015 0.590 0.474 0.543 0.393 0.474 0.402
Cluster 1 0.118 0.051 0.044 0.011 0.484 0.266 0.311 0.136 0.554 0.373
Cluster 2 0.185 0.086 0.020 0.004 0.480 0.267 0.316 0.143 0.553 0.383
Cluster 3 0.025 0.004 0.038 0.011 0.574 0.454 0.526 0.366 0.511 0.444
Cluster 4 0.250 0.153 0.004 0.000 0.464 0.226 0.223 0.081 0.521 0.295
Cluster 5 0.157 0.066 0.020 0.004 0.518 0.321 0.357 0.192 0.560 0.403
Cluster 6 0.161 0.068 0.017 0.003 0.530 0.347 0.376 0.204 0.583 0.437

TABLE 2
P-value results from GOF tests for availability of all iid hosts and six clusters

Hyper-exp. Pareto Weibull Log-Normal Gamma
Data sets AD KS AD KS AD KS AD KS AD KS
All iid hosts 0.377 0.286 0.029 0.008 0.463 0.304 0.514 0.322 0.318 0.244
Cluster 1 0.410 0.226 0.006 0.001 0.119 0.035 0.246 0.123 0.032 0.008
Cluster 2 0.450 0.296 0.010 0.002 0.179 0.062 0.311 0.177 0.049 0.016
Cluster 3 0.459 0.342 0.026 0.006 0.497 0.313 0.539 0.342 0.370 288
Cluster 4 0.362 0.142 0.002 0.000 0.082 0.020 0.188 0.079 0.018 0.004
Cluster 5 0.495 0.380 0.019 0.005 0.278 0.150 0.400 0.243 0.106 0.049
Cluster 6 0.468 0.358 0.027 0.006 0.448 0.305 0.479 0.289 0.286 0.214

TABLE 3
P-value results from GOF tests for unavailability of all iid hosts and six clusters

Clusters # of hosts % of total avail. Best fit (A) Parameters Best fit (U) Parameters
shape scale P µ

All iid hosts 35686 1.0 Weibull 0.393 2.964 Log-Normal 2.844 -0.586
Cluster 1 1516 0.13 Gamma 0.289 311.711 Hyper-exponential 0.141 0.683 0.176 0.008 37.816 1.013
Cluster 2 3863 0.25 Gamma 0.340 152.216 Hyper-exponential 0.142 0.660 0.198 0.013 30.636 0.777
Cluster 3 23494 0.34 Weibull 0.431 1.682 Hyper-exponential 0.398 0.305 0.298 0.031 11.566 1.322
Cluster 4 137 0.01 Gamma 0.357 371.622 Hyper-exponential 0.106 0.743 0.151 0.009 45.241 0.961
Cluster 5 3328 0.16 Gamma 0.342 89.223 Hyper-exponential 0.179 0.566 0.255 0.016 27.587 0.536
Cluster 6 3348 0.11 Gamma 0.357 43.652 Hyper-exponential 0.338 0.390 0.272 0.029 30.121 1.069

TABLE 4
Properties of clusters and iid hosts

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

Fig. 7. PP-plots for all clusters. Four plots in row (left to right) per cluster correspond to Weibull/A, Gamma/A, Log-
normal/U, Hyper-exponential/U. In each plot, X-axis: empirical quantiles, and Y-axis: fitted quantiles.
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Fig. 8. Clustering by other criteria

in the context of this scheduling problem. We do so at
the local level by evaluating the model accuracy within
a single cluster. Then we do so at the global level by
evaluating the model accuracy over all clusters.

In the resource brokering problem, a broker must
route a series of incoming jobs to a set of schedulers, one
for each of n clusters. Each cluster contains Mi nodes
(see Figure 9) where 1 ≤ i ≤ n). The mean service rate of
all nodes in cluster i is µi. The job submitter generates
a workload of jobs with an arrival rate of λ. Each job
consists of W time units of work, contained in a set of
tasks. We use the terms job and bag of tasks (BOT)
interchangeably. A job is routed to one specific cluster
versus being split among several. There is a work queue
in the broker, the scheduler, and individual nodes.

When routing incoming jobs, the goal of the broker
is to minimize the average job completion time, which
is the time between a job is first submitted until it is
completed entirely. The broker partitions the incoming
sequence of jobs into n subsequences with rates λj where∑n
j=1 λj = λ. λj is the incoming arrival rate of jobs

routed to a particular scheduler. The scheduler in turn
dispatches tasks on nodes within a cluster in FIFO order.

After pulling tasks from the scheduler, each node
runs the tasks one by one and sends the results to
the scheduler, and finally to the broker. In the case of
node unavailability during task execution, we assume
checkpointing so that the task is started from where
it left off when the node becomes available again. To
focus on availability modelling, we assume the nodes
are homogeneous in terms of computing speed1.

.
The resource brokering problem occurs in many real

1. To consider machine speed, we could further subdivide the clus-
ters by clock rates, which is independent of availability and has a bell-
shaped distribution.

Fig. 9. Resource brokering diagram

contexts. For example, in the World Community Grid,
jobs from several different applications must be routed
to a set of BOINC schedulers, each of which oversees a
set of nodes [33]. In the EDGeS system that interconnects
desktop Grids with traditional Grids, a centralized bro-
ker is used to route desktop grid jobs to one of several
sub-Grids in EGEE [17]. In Condor[26], a broker must
route jobs to several Condor pools in a flock.

8.1 Local Model

In this section, we evaluate the accuracy of the discov-
ered models with respect to the measurement traces of
an individual cluster. This corresponds to a resource
broker with a low workload such that only one cluster
is used at a time.

To do this, we need a reference model , and in [22],
Kleinrock et. al. proposed a probability distribution
function (PDF) of job completion time for a volatile
distributed system where we have the availability and
unavailability distributions. They used an Brownian mo-
tion approximation to model the system under study.
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They found that the PDF of the time t for M processors
to complete W time units of work is given as follows:

f(t) =
W√
2πσ2

b t
3

exp
[
− (W − bt)2

2σ2
b t

]
(1)

where
b =

ta
(ta + tu)

M (2)

σ2
b =

σ2
at

2
u + σ2

ut
2
a

(ta + tu)3
M (3)

The mean and variance are as follows:

f =
W

b
=
W

M

(ta + tu)

ta
(4)

σ2
f =

W

b

σ2
b

b
2 (5)

Moreover, ta, tu, σ2
a and σ2

u are the mean and the
variance of availability and unavailability lengths, re-
spectively.

The authors found that this model is accurate when
we have a large workload with respect to the mean
availability and unavailability lengths (i.e., W � ta+tu).
Some approximations for the proposed distribution by a
Normal or Log-normal distribution are presented in this
work as well [22].

8.1.1 Model Inputs
To apply the model, we make the same assumptions
as Kleinrock et al. described in [22]. (We loosen these
assumptions later in Section 8.2.) First, we assume that
the input workload is divisible, i.e., the workload can be
divided in anyway among all available nodes. This is the
case where we have large BOT’s as the input workload,
and we can keep all available nodes busy. Second, we
use a constant amount of work per job (W ) as utilized
in [22]2 . Third, we use a job arrival rate that corresponds
to a lightly loaded system such that there is no waiting
time in the system queues. Jobs are generated according
to a Poisson process with a low arrival rate that avoids
waiting time in the queues (i.e., rate = 10−10 per hour).

We simulate the behavior of a given node either using
our fitted distributions or using the traces directly. In
the case of model simulation, each node generates avail-
ability and unavailability intervals independently, based
on the proposed distributions (see Table 4). However,
for trace simulation, we do not have enough traces to
run a long workload. To deal with this problem, we
concatenate different traces randomly chosen from a
single cluster to increase the total length. When a node
finishes running jobs over one trace, we randomly select
another trace from the same cluster and continue run-
ning. This process keeps the distribution and the mean
value unchanged, but slightly changes the variance.

2. We also test uniform and exponential distributions for W and
obtained similar results.

We must consider that nodes have different lifetimes
in the system, which in turn effects the total number
of active nodes in the system at any given time. An
active node is defined to be a node that is registered
and participating in the system, though is not necessarily
available. We compute an average that gives the total
number of active nodes in the cluster i at any given time
as follows:

Ni =
Total lifetime of nodes

Mean lifetime of nodes×Mi
(6)

where Mi and Ni are the total and mean number of
nodes in the cluster i respectively. Note that Ni under-
estimates the mean number of nodes in the system as
we assume the beginning and end of the trace gives the
lifetime.

8.1.2 Experimental Setup
In order to validate the discovered models, we imple-
mented a discrete event-driven simulator. This simula-
tor is developed using the Objective Modular Network
Testbed in C++ (OMNeT++) simulation environment,
which is an open-source, component-based and modular
simulation framework [31].

The simulator uses the model or the traces to run the
input workload.If a node is unavailable at the time of
receiving a new task, the task will be inserted to the local
queue of the node to be consistent with the Kleinrock
model [22].

For each simulation experiment, statistics were gath-
ered for a total number of 10,000 jobs. The first 1000
jobs during the warm-up phase were ignored to avoid
bias before the system reached steady-state. The last
1000 jobs were ignored during the drain phase to allow
previous jobs to run to completion. We have used the
batch means method in our simulation experiments, where
the jobs are split into many batches and statistics are
accumulated for these batches. Since each sample in the
batch means method is an average over many of the
original samples, the variance among batches is greatly
reduced, which in turn reduces the standard deviation
of the measurements. This leads to better confidence
in our estimates of the mean. In our experiments, the
Coefficient of Variation of the results is very low (i.e.,
CV < 0.05).

8.1.3 Evaluation
Figure 10 shows the job completion time densities for
each of the six clusters when we used a model or trace
of availability and unavailability for the simulation of
each node. Also, the third plot in each figure shows the
Kleinrock model for each cluster based on the discovered
model. The discovered model matches the Kleinrock
model with a high degree of accuracy. Moreover, the
results of the trace simulations are close. Cluster 3 has
the greatest error because in this cluster, we have the
shortest availability mean among all clusters, and the
biggest intra-cluster distance. The mean job completion
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time of our derived model and Kleinrock model overes-
timate slightly the mean from the trace; so the models
provide tight upper bounds on completion time.

Additionally, we report the mean job completion time
in Table 5. The number of nodes and the mean avail-
ability and unavailability are listed in the table for all
clusters. The last column in the table is the relative error
of the trace versus the model. In general, the error rates
are below 3%, with the exception of cluster 3 with an
error of 13.25%. We show in next section that the local
models have sufficient accuracy and provide a good fit
when applied and evaluated globally.

8.2 Global Model
In this part, we want to evaluate the whole system and
validate the discovered models versus traces for realistic
scenarios.

8.2.1 Brokering Scheme
One of the important parts of the system under study
is the brokering algorithm. If we consider each cluster
as one “server” with a given service rate while the
scheduler serves as an input queue and the broker as
a router, the problem will simplify to the routing in
parallel queues [4] (see Figure 9).

We consider three brokering algorithms, namely
Bernoulli, Billiard and Random, which differ in two
ways. First, they differ in how they compute the routing
probabilities Pi corresponding to each cluster. Second,
they differ in how they choose the sequence of jobs sent
to each cluster.

The Random algorithm is the simplest way for routing.
In this case, the routing probability of cluster i is Pi =
1/n, and the broker randomly chooses one cluster out of
n clusters.

By contrast, the Bernoulli and Billiard algorithms use
availability and unavailability models of nodes to de-
termine the routing probabilities. Using the Bernoulli
algorithm, the broker only uses routing probabilities
without any special sequencing of jobs sent to clusters.
In this sense, the Bernoulli algorithm is memoryless as it
does not take into account what jobs have been sent to
which clusters. The Billiard algorithm takes into account
the past sequence of routing with a very limited cost.

The optimal routing probability Pi for Bernoulli and
Billiards is computed as follows [5]. We define the service
rate of each cluster as the reciprocal values of mean job
completion time for a given workload as follows:

µi =

(
W

Ni

tai + tui
tai

)−1
(7)

where W is the mean amount of work per job. The
problem of how to find the optimal arrival rates in order
to minimize the response time can be solved through the
following mathematical programs, called social optimiza-
tion:

min
λ1,...,λn

n∑
j=1

λj
µj − λj

(8)

where we have
∑n
j=1 λj = λ and 0 ≤ λj < µj for all j ∈

1, 2, ..., n. It should be noted that this optimization was
proposed when the service rates follow the exponential
distribution, However we apply it for the case where the
distribution is general. Bell and Stidham [5] presented an
optimal solution to find the first k clusters to use with
the following condition:

rk < λ ≤ rk+1 where rk =

k∑
i=1

(µi −
√
µkµi) (9)

They assume that µ1 ≥ µ2 ≥ ... ≥ µn > 0, r1 = 0 and
rn =

∑n
i=1 µi. Consequently, the optimal arrival rate for

k clusters is provided by:

λki = µi −

√
µi

 k∑
j=1

µj − λ


k∑
j=1

√
µj

for 1 ≤ i ≤ k (10)

It should be noted that arrival rate for the other
clusters beyond k would be zero (λi = 0, k < i ≤ n).
Finally, the routing probabilities can be calculated as
Pi = λki /λ.

The Bernoulli and Billiard algorithms use same routing
probabilities and differ only in the sequences of jobs sent
to each cluster. Billiard is a generalized form of round-
robin, and it takes into account the sequence of routing
called the billiard sequence [19], determined as follows.

Suppose that a billiard ball bounces in an n-
dimensional cube where each side and opposite side
are assigned by an integer value in range of {1, 2, ..., n}.
Then, the billiard sequence is generated by the series of
integer values which show the sides hit by the ball when
shot. This sequence is deterministic, and different from
the sequence of Bernoulli scheme, which is completely
random.

In [19], the authors proposed a method to implement
this scheme and generate the billiard sequence as fol-
lows:

ib = min
∀i

{
Xi +Ki

Pi

}
(11)

where ib is the “winning” cluster, and Ki and Xi

are vectors of integers with size n. Ki keeps track the
number of jobs that have been sent to the cluster i. Xi

reflects which cluster is fastest, and is set to one for the
fastest cluster and zero for all other clusters [4]. Thus
Ki has to be initialized to zero, and after finding the
target cluster, it must be updated as Kib = Kib + 1.
Pi is the fraction of jobs that sent to the cluster i and
is the same as in the Bernoulli scheme. It has been
shown in [4] that the proposed method will provide the
optimal response time when all service times follow the
exponential distribution.
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(a) Cluster 1 (W=20,000h) (b) Cluster 2 (W=20,000h) (c) Cluster 3 (W=10,000h)

(d) Cluster 4 (W=20,000h) (e) Cluster 5 (W=10,000h) (f) Cluster 6 (W=10,000h)

Fig. 10. Job completion time densities for each cluster for proposed model, trace and Kleinrock model

Clusters N Parameters (hrs) Mean job completion time (hrs) Relative error(%)
ta tu Trace Model Kleinrock

Cluster 1 622 90.22 17.42 38.15 38.18 38.38 0.09
Cluster 2 1211 51.73 11.40 19.62 20.22 20.15 3.0
Cluster 3 4491 4.62 13.19 7.33 8.30 8.58 13.25
Cluster 4 70 132.66 12.15 311.27 311.46 311.89 0.06
Cluster 5 906 30.54 11.93 15.23 15.24 15.35 0.08
Cluster 6 774 15.58 11.87 22.06 21.99 22.76 0.32

TABLE 5
Comparison of clusters to evaluate the accuracy of the discovered models

8.2.2 Model Inputs
The workload model for evaluation of the whole system
is obtained from the Grid Workload Archive [20]. We
used the BOT model [21] which adopted Weibull and
Gamma distributions for the inter-arrival rate of jobs and
the BOT size (i.e., the number of tasks in each BOT),
respectively. Moreover, we utilized the Normal distribu-
tion for task runtimes within a BOT, using parameters
of real BOINC projects [16], [21]. The parameters of the
distributions are listed in Table 6. Since we need to
evaluate all clusters in the system, we chose an input
rate such that all clusters be in used (i.e., k = n). In the
other words, the system would be in the high load, so
the job completion time includes the waiting time in the
queues as well.

8.2.3 Experimental Setup
We used the same experimental setup as before, and only
the scheduling mechanism of clusters has been changed.

Input Parameters Distribution
BOT runtime 1 Normal(µ = 2.1, σ = 1.4)
BOT runtime 2 Normal(µ = 1.2, σ = 0.9)

BOT size Gamma(α = 5, β = 200)
Arrival rate Weibull(α = variable, β = 1.5)

TABLE 6
Input parameters for the global model

In the new setup, the cluster scheduler only dispatches
the jobs to the available nodes in the cluster and not
all nodes to be consistent with the model used in [4].
So only the queue of the scheduler (versus the nodes)
is used in practice, and we only deal with one queue
for each cluster. For each simulation experiment, a total
number of 250,000 jobs were run in ten batches, each
with 25,000 jobs. Statistics were gathered for the eight
middle batches when the system reached steady state.
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In our experiments, the Coefficient of Variation of the
simulation results is very low (i.e., CV < 0.05).

8.2.4 Evaluation

The results of simulation for model and trace for the
system with W = 2100 and W = 1200 hours are depicted
in Figures 11(a) and 11(b). Here, W is the product of the
BOT size and task runtime. The mean job completion
times are plotted against the job generation rate for the
three different brokering schemes, respectively. The bars
reflect the 95% confidence intervals, and the distribution
of job completion times.

First, the figures reveal that the result of model and
trace are close with a good degree of accuracy where the
maximum relative error is less than 10%. Secondly, as we
expected, the performance of the Random broker is the
worst. Thirdly, the Billiard scheme performs better than
Bernoulli; while both algorithms used the same routing
probabilities, they dispatch jobs to clusters in different
orders, and this in turn explains the better performance
of the Billiard approach. Billiard outperformed Bernoulli
with factor of 10 in terms of mean job completion time.
This reveals the importance of sequencing in the broker.

For a broader comparison, Figure 11(c) shows the
CDF of job completion times corresponding to trace and
model simulations for all three brokering schemes and
the arrival rate of 1.65 jobs per hour. The distribution of
completion times from model and trace are close to each
other.

These results confirm and reinforce the theoretical
work in [4], which showed that Billiard provides the
optimal response time when all service times follow
the exponential distribution. Interestingly, the Billiard
algorithm still achieves significant gains relative to other
algorithms for heavier-tailed distributions based on our
traces.

9 CONCLUSIONS

We considered the problem of discovering availability
models for host subsets from a large distributed system.
Our specific contributions were the following:
• With respect to methodology.

– We detected and determined the cause of out-
liers in the measurements. We minimize their
effect during the preprocessing phase of the
measurements. This is important for others to
use the trace data set effectively.

– We described a new method for partitioning
hosts into subsets that facilitates the design of
stochastic scheduling algorithms. We use ran-
domness tests to identify hosts with iid avail-
ability.

– For iid hosts, we use clustering based on dis-
tance metrics that measure the difference be-
tween two probability distributions. We find
that the Cramer-von Mises metric is the most

sensitive and computationally efficient com-
pared to others.

– In the process, we describe how we deal with
with large and variable sample sizes and the
hyper-sensitivity of statistical tests by taking a
fixed number (30) of random samples from each
host.

• With respect to modelling. We apply the methodology
to the one of the largest Internet-distributed plat-
forms on the planet, namely SETI@home.

– We find that about 21% of hosts have truly
random availability intervals.

– These iid hosts have can be separated into 6
groups, based on their distributions of availabil-
ity and unavailability. Availability and unavail-
ability in each group can be modelled accurately
with a Gamma and hyper-exponential distribu-
tion respectively with different scale parame-
ters. This is useful as these distributions can
be used easily to construct analytical Markov
models.

– The discovered distributions from the same
family differ greatly by scale, which explains
their separation after clustering. The distribu-
tion for all hosts with iid availability also differs
significantly in scale from any of the distribu-
tions corresponding to each cluster.

• With respect to scheduling. We show the utility and
accuracy of our models in the context of a resource
brokering problem.

– We find that analytical results based on our
models match theoretical results, and results
from trace-driven simulation at local and global
levels.

– We find that the Billiard brokering method out-
performs Random and Bernoulli methods by
an order of magnitude in practice, reinforcing
theoretical results.

For future work, we would like apply our method
to free resources in data centers or enterprise desk-
tops, such as the un-dedicated Spot servers provided
by Amazon’s Elastic Compute Cloud or desktops at
Microsoft Inc [8]. While the distribution of availability
could change and become heavier tailed, we believe our
clustering and scheduling methods are general enough
for useful application.

10 AVAILABILITY OF DATA AND TOOLS
The SETI@home trace data and analysis tools have been
released on the Failure Trace Archive, available online
at: http://fta.inria.fr.
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(a) W = 2100h (b) W = 1200h (c) CDF for W = 2100h (rate=1.65)

Fig. 11. Mean job completion time of model and trace simulation for three different brokering schemes
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