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Abstract

Volunteer computing systems are large-scale distributed systems with
large number of heterogeneous and unreliable Internet-connected hosts. Vol-
unteer computing resources are suitable mainly to run High-Throughput
Computing (HTC) applications due to their unavailability rate and frequent
churn. Although they provide Peta-scale computing power for many scientific
projects across the globe, efficient usage of this platform for different types
of applications still has not been investigated in depth. So, characterizing,
analyzing and modeling such resources availability in volunteer computing
is becoming essential and important for efficient application scheduling. In
this paper, we focus on statistical modeling of volunteer resources, which
exhibit non-random pattern in their availability time. The proposed models
take into account the autocorrelation structure in individual and subset of
hosts whose availability has temporal correlation. We applied our method-
ology on real traces from the SETI@home project with more than 230,000
hosts. We showed that Markovian arrival process and ARIMA time series
can model the availability and unavailability intervals of volunteer resources
with a reasonable to excellent level of accuracy.
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1. Introduction

Volunteer computing systems are large-scale distributed systems with
large number of heterogeneous and unreliable Internet-connected hosts. These
platforms provide more than 10 PetaFLOPS computing power to more than
70 scientific projects in different areas such as astronomy, physics, mathe-
matics and chemistry [1, 2]. No doubt utilization of such resources is es-
sential and growing as it provides immense computational power on the or-
der of PetaFLOPS and storage on the order of PetaBytes at almost zero
costs [3]. However, volunteer computing resources are only suitable to run
High-Throughput Computing (HTC) applications due to their unavailability
rate and frequent churn (several times a day). So characterizing, analyzing
and modeling such resources availability in volunteer computing is an essen-
tial requirement to broaden the types of applications that can be executed
in this system, which is the main goal of this paper.

The overall objective of the modeling is to use the free resources of vol-
unteer computing systems for execution of scientific applications in form of
many task computing workloads. Many task computing (MTC) is a new
paradigm to bridge the gap between High-Throughput Computing (HTC)
and High-Performance Computing (HPC) [4]. The structure of MTC appli-
cations can be considered as graphs of discrete tasks. These tasks can be
different in terms of size, communication patterns and intensity. In most
cases, the data dependencies among tasks are handled through file sharing
that is a feasible way of tasks communication in volunteer computing plat-
forms. However, in contrast to HTC applications, MTC applications have
relatively short tasks (i.e., seconds to minutes long), so they need fast re-
sponse time. Therefore, resources availability and their temporal structure
is crucial and important for efficient scheduling of these applications.

In previous work, an analysis and methodology was proposed to form
subsets of hosts with similar statistical properties that can be modeled with
similar distribution functions [5]. This paper explained that about 21% of
hosts exhibit random availability, which can be modeled with a few distinct
distributions from different families. It was also shown how to apply the
proposed models for stochastic scheduling of Bag-of Tasks (BoT) applications
in a resource brokering context [6]. In this paper, we focus on statistical
modeling of volunteer resources which exhibit non-random pattern in their
availability time. To do this, we extended the existing methodology to further
characterize, analyze and consider autocorrelation structure in modeling the



subset of hosts whose availability has temporal correlation. Moreover, we are
interested to find a host model as well as a system model to help the system
to do more efficient task scheduling for MTC applications. In the host model,
the behavior of a single host will be modeled, while for the system model, the
behavior of all non-iid hosts will be modeled collectively. These two models
can be adapted by the scheduler to optimize the specific criteria based on
system and user requirements1.

We applied the proposed methodology on real traces from the SETI@home
project with more than 230,000 hosts. We selected various statistical models
that have the ability to fit traces with temporal dependencies at both host
and system levels. We conducted the model fitting and analyzed the model
complexity and accuracy through state reduction. We propose a queuing
simulation technique to evaluate quality of the modeling. The results show
that Markovian arrival process and ARIMA time series can model the avail-
ability and unavailability intervals of volunteer resources with a good degree
of accuracy.

The rest of this paper is organized as follows. Related work is described
in Section 2. In Section 3, we present the detail of modeling workflow and
real traces. Section 4 includes how statistical models are selected. The model
fitting and analysis of the model parameters are presented in Section 5. In
Section 6, the model evaluation through simulation experiments is discussed.
Conclusions and future work are presented in Section 7.

2. Related work

This section describes the related work in modeling and analysis of avail-
ability in volunteer computing systems. There are several research on col-
lecting of real availability traces in volunteer computing platforms. Most of
these studies are focused on host availability [8, 9, 10], which is different from
CPU availability considered in this paper. CPU availability is defined as the
time when a host’s CPU is available to run the application as a volunteer
resource. In other words, host availability might be a misleading metric as a
host can be available but not its CPU.

Moreover, some papers only focused on volunteer resources in the enter-
prise or university [11, 12] while we use real traces that includes hosts in the

1 This paper is the extended version of [7]



enterprise, university and home. Some studies such as [13, 14] used availabil-
ity traces of hundreds of hosts over a limited time period (e.g., a few weeks).
In contrast, we study real traces of hundreds of thousands hosts over the
period of 1.5 years.

There are many related work for availability modeling of volunteer sys-
tems, but most of them if not all did not take into account the temporal
dependency of resource availability [15, 16, 17]. For instance, in [17], authors
used the average availability as a distance metric to find cluster of hosts with
the similar level of availability. So, the availability intervals were ignored as
the goal was to find the correlated hosts. It has been shown that effective
resource selection and scheduling is strongly depended on temporal structure
of availability in such platforms [18, 19]. Hence, we propose statistical models
considering the autocorrelation structure in subset of hosts whose availability
has temporal correlation.

There are very limited work for availability modeling at the host level
and most of them are related to the CPU load modeling [20, 21]. In [22], a
forecasting approach based on vector autoregressive models and a tendency-
based technique is proposed. In this approach, for each host, three different
prediction will be examined and selected automatically and the prediction for
the next hour will be provided. In contrast, we are looking at the modeling
of the CPU availability and unavailability for the whole lifetime of the host
using time series approaches.

In previous work, modeling and methodology to form subsets of hosts
with purely random availability was introduced [6, 5]. Clustering technique
was also used to form groups of hosts that can be modeled with similar dis-
tribution functions. It was revealed that cluster formation by static criteria
such as host location, time zone and CPU speeds can not have the same
results as clustering by availability distribution. In other words, there is no
correlation between host location, time zone and CPU speeds of host with
the length of availability intervals. In contrast, we consider statistical model-
ing of volunteer resources, which exhibit non-random pattern with temporal
correlation in their availability time.

3. Modeling Methodology

In this section, we present the details of real traces as well as the modeling
workflow used in this paper. The list of all abbreviations used in the paper
is shown in Table 4.



3.1. Availability Trace

We used a real CPU availability trace from 230,000 hosts over the Inter-
net between April 1, 2007 to January 1, 2009 [5]. The CPU availability is
considered as a binary value indicating whether the CPU was free or not.
The traces record the start and end time of CPU availability.

This trace is collected using BOINC server [23] from the SETI@home
volunteer resources. BOINC is a middleware for volunteer computing and has
been used in more than 60 projects such as SETI@home, Einstein@home and
Rosetta@home with over one million hosts [1, 2]. The traces is application
independent since they are in the level of BOINC client. In total, the traces
captured 57,800 years of CPU time and 102,416,434 continues intervals of
CPU availability. This trace is publicly available in the Failure Trace Archive
(http://fta.scem.uws.edu.au/) [24].

3.2. Modeling Workflow

Previous work [6, 7] proposed a modeling workflow to model CPU avail-
ability and unavailability for large-scale distributed systems. Time series of
availability and unavailability of each host in the system was used as shown
in Figure 1. As you can see in this figure, Ax and Uy are random variables of
availability and unavailability intervals, respectively. Different behaviors in
these intervals in terms of randomness and periodicity were examined. For
significant and accurate modeling, we need to capture and distinguish these
different behaviors among available resources in the system. Therefore, a
set of randomness tests were used to classify hosts whose availability is truly
random [5, 6].

Randomness tests were applied on both variables Ax and Uy and when
significant they were classified as iid hosts. This means that they have identi-
cal and independent distribution for availability and unavailability intervals.
Otherwise they will be considered as non-iid hosts. Also, it was observed that
21% of total hosts in a large-scale volunteer computing systems have random
availability. For iid hosts, clustering approach based on a distance metric
that measures the difference between two distributions was applied, this re-
sulted to six different clusters of hosts. The availability and unavailability
intervals of these clusters can be accurately modeled by several distinct fam-
ilies such as Gamma and hyper-exponential distributions. For more detail
about modeling of iid hosts, you can refer to [5, 6].

In this paper, we focus on CPU availability of non-iid hosts, which are the
majority of the hosts in the volunteer computing system (about 79%). The
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Figure 1: CPU availability and unavailability intervals on one host.

behavior of these hosts in contrast to iid hosts could be deterministic due to
periodicity or trends, such as hour-in-day or day-in-week time effects as well
as temporal correlation. To this end, we propose the statistical analysis and
modeling of the availability and unavailability intervals for non-iid hosts.

4. Model Selection

For iid hosts the focus was on discovering a statistical model to fit the
cumulative distribution function (CDF) of availability and unavailability in-
tervals. This means that there is no dependencies in time series and the
autocorrelation function (ACF) vanishes for all nonzero lags. It was clear
that phase-type distribution such as hyper-exponential was an attractive
model for distribution fitting of heavy-tail behavior in unavailability inter-
vals. However, availability intervals have shorter tails and can be accurately
modeled by simpler models such as Gamma distribution [5]. In contrast,
non-iid hosts have some dependencies in their availability and unavailability
intervals which cannot be captured by renewal models. Moreover, we are
interested to find a host model as well as a system model to be used by
the system for better task scheduling. In the host model, the behavior of a
single host will be modeled, while for the system model, the behavior of all
non-iid hosts will be modeled collectively. So the first step is to nominate a
set of statistical models that can consider both CDF and ACF of the target
random variables. To do that, we need to first inspect the characteristics of
the non-iid hosts in terms of distribution as well as dependencies.

4.1. System Model

For the system model, we look at all the non-iid hosts collectively. Fig-
ure 2 shows the mass-count disparity of availability and unavailability inter-
vals for non-iid hosts. From this figure we can clearly observe that about
20% of total availability is created by 90% of short availability intervals. So,
the 10% of long availability interval contribute for the rest of 80% of total



Figure 2: Mass-count for availability and unavailability intervals of non-iid hosts.

availability. This shows that availability has long-tail behavior. Based on
this figure, unavailability distribution has a much heavier tail compared to
availability. That means we need to focus on modeling of larger intervals as
they have higher contribution.

The temporal dependencies of non-iid hosts can be presented by autocor-
relation function. When the ACF of the time series decays slowly we have
a long memory or long-range dependence (LRD) [25]. Also, any time series
X has a long-range dependence property if the ACF satisfies the following
condition:

R(k) ∼ ck2H−2, k →∞ (1)

where R(k) is the autocorrelation of lag k, c is a constant and H is the Hurst
parameter, which is referred to as index of dependence. The LRD property
can be measured by the Hurst parameter which has a value between 0.5
and 1.0 (0.5 ≤ H ≤ 1.0). The higher value of H, the greater the degree of
LRD, which indicates a time series with long-term positive autocorrelation.
We used three well-known estimation methods, namely Aggregate Variance,
R/S statistic and Periodogram [25] to calculate the Hurst parameter. The
mean and standard deviation values of the H parameter are listed in Table 1
for non-iid hosts as well as the six clusters in the iid-hosts situation. The H
values in Table 1 were also confirmed when using Wavelet-based and Wavelet
lifting estimators with irregular sample and no missing intervals [41], [42].



Table 1: The Hurst parameter for availability and unavailability intervals.

Trace Non-iid hosts iid hosts
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Availability 0.71±0.04 0.61±0.04 0.61±0.03 0.63±0.09 0.65±0.03 0.61±0.04 0.63±0.04
Unavailability 0.70±0.05 0.55±0.00 0.54±0.02 0.64±0.05 0.60±0.02 0.56±0.02 0.58±0.03

While clusters of iid hosts show short to middle-range of dependencies, non-
iid hosts have the LRD property as the H parameter is about 0.7 (highlighted
in Table 1). We can also observe that in most cases, availability intervals
have longer temporal dependencies compared to unavailability intervals.

Based on the observations of distribution and temporal dependency of
non-iid hosts, we investigated and selected three statistical models for the fit-
ting, which are briefly explained as follows. Markov modulated Poisson pro-
cess (MMPP) is a doubly stochastic Poisson process where intensity is con-
trolled by a finite state continues-time Markov chain (CTMC). MMPP(n) is
parametrized with n Poisson arrival rates and one n×n matrix (Q) as n-state
CTMC with infinitesimal generator. Therefore, the number of parameters for
MMPP(n) is n2 + n. MMPP has been widely used for modeling of network
traffic and workload in distributed systems [26, 27]. Although MMPP has
interesting features and can be used in tractable analytical model, it is not
able to capture the LRD property [28]. Therefore, we selected another model
called Markovian arrival processes (MAPs), a class of Markovian models de-
veloped by Neuts [29] that encompasses MMPP and phase-type distribution
as special cases. A MAP(n) is defined by two n × n matrices where D0 in-
cludes hidden transitions and elements and D1 describes transitions rated
between n states. The matrix Q = D0 + D1 is the transition rate matrix
for a CTMC. The number of parameters in MAP(n) will be 2n2 − n. In the
special case where D1 is a diagonal matrix, the model is simply a MMPP(n).

The third model that we used to fit the (un)availability time series is
Multifractal Wavelet Model (MWM) [30]. This model utilizes the power
of multifractals as well as the efficiency of the wavelet transform to pro-
vide a flexible framework to capture behavior of positive LRD data. As
(un)availability intervals are non-negative values this model can be used as
an alternative to capture the behavior of non-iid hosts. The MWM works
as a stochastic process via scaling techniques where at each scale a series of
scaling coefficients and wavelet coefficient are generated to model the real



traces. The MWM uses the symmetric beta distribution to fit wavelet coeffi-
cients to generate beta parameter ~p. Finally, MWM produces the mean and
variance of scaling coefficient (µc, σc) to complete the model parameters. So
the number of parameters in the MWM is m + 2 where m is the number of
factors in beta parameter ~p. For more information about this model, you can
refer to [30].

4.2. Host Model

Modeling availability intervals at a host (node) level requires flexible class
of stochastic modeling that can be generalised with less conditions and softer
model fitting that is in most situations difficult to achieve. Data characteris-
tics of such nodes are important to achieving both suitability and generalisa-
tion of the model. As mentioned earlier, the availability/unavailability values
of the series to model here is from a non-iid hosts and the observations are
shown to be statistically dependent or related to each other. One of the best
methods to model a series of such a historical data properties is Box-Jenkins
method [31]. It uses an iterative approach of identifying a possible useful
model from a general class of models. The suggested model is then checked
and tested against the actual data in the series to determine the suitability
and accuracy of the model. The model fits well if the residuals between the
theoretical model and the actual data values are small, independent, and
randomly distributed. When a particular model is not satisfactory, another
model is suggested to improve on the original one. This process is repeated
until a suitable model is achieved.

A general class of Box-Jenkis models for a stationary time series is the
ARIMA, AutoRegressive Integrated Moving Average, models. A stationary
time series is defined to be a kind of statistical equilibrium around a constant
mean value, as well as a constant dispersion around that mean value (or
series without trend, and its average value is not changing over time). There
are different type of stationarity. A series is said to be stationary in the
wide sense or weak sense if it has a fixed mean and constant variance, and
it is strictly stationary if it has, in addition to fixed mean and constant
variance, a constant autoregressive structure. ARIMA models for a time
series which can be made to be stationary by differencing, if required, or
in conjunction with some transformations such as logging if necessary. This
can also be tested and confirmed using statistical tests for stationarity or
trend-stationarity (also known as Unit Root test). The most popular and



wildly applied stationarity tests are; Augmented Dicky-Fuller (ADF) [32],
KPSS [33]and Ljung-Box (LBQ) [34].

Once the stationarity of a series is confirmed the selection of appropriate
ARIMA model will depend on the best fit of the distributions of autocorre-
lation coefficients of the time series being fitted and the theoretical distribu-
tions for the various models. A general ARIMA class of models is formed
from a combination of autoregressive (AR) and moving-average (MA) models
as given in the equation below:

Yt = φ0+φ1Yt−1+φ2Yt−2+ ...+φpYt−p+εt−w1εt−1−w2εt−2− ...−wqεt−q (2)

Where, Yt = dependent vaiable at time t,
φ0, φ1, ..., φp = autoregressive coefficients,
w0, w1, ......, wq = moving average weights,
εt = Residual term representing the random events not explained by the
model,
εt−1, εt−2, ..., εt−q = Previous values of residuals.

The first part of the above ARIMA equation is the AR model of order
p, where p is the number of past observations to be considered for next
observation in the model, and the second part is the MA of order q, where q
is the number of past error terms to be considered in the model to represent
the next observation. Moving-Average (MA) model is based on a linear
combination of past errors, whereas autoregressive (AR) model express the
series as a linear function of some number of actual past values of the series.
ARIMA(p,d,q) models are determined by the above two values (p,q) and d,
where d is the number differences needed for stationarity.

Analysis details for two examples with best suitable ARIMA models are
given in Section 5.2.

5. Model Fitting

In this section, we provide the techniques and results of fitting the sug-
gested statistical models for a single host as well as for the whole system.

5.1. System Model

For the system model, we utilized KPC-Toolbox [35] for fitting of MMPP
and MAP models and a toolbox from the Digital Signal Processing (DSP)



group at Rice University [36] for MWM model fitting. Both toolboxes are in
Matlab, which are along with other standard Statistical Toolbox. We also
implemented and modified some statistical functions ourselves.

KPC-Toolbox has a fitting technique that is more focused on higher-
order correlations than higher order of moments. The toolbox automatically
searches for the best order of MAP (i.e., n) that can accurately fit the trace
using Bayesian Information Criterion (BIC) [35]. Given the order of target
MAP, toolbox can generate the model that capture the the most essential
characteristics of the trace. We used the automatic fitting for the MAP
model while using two-state fitting for the MMPP model.

Similar to KPC-Toolbox, the MWM toolbox also uses an automatic mod-
eling procedure for model fitting, which is based on creating a tree-like struc-
ture to generate a series of scaling coefficients and wavelet coefficients. The
number of coefficients are dependent on the input trace and calculated by a
recursive technique [30, 36]. So the number of factors in ~p will be obtained
automatically based on the input trace (see Section 4).

The results of the fitting for availability intervals of non-iid hosts are
plotted in Figure 3 as a complementary cumulative distribution function
(CCDF) diagram. As one can see, all models seem to be a good fit especially
for the end of the tail while MWM shows better fit throughout the whole
distribution. MMPP has some discrepancies at the beginning of the tail
as illustrated in this figure. In terms of ACF as depicted in Figure 4(a),
MAP shows a close fit for the first 200 lags. The MWM also captured
the autocorrelation with a reasonable accuracy for larger lags as shown in
Figure 4(b). It was observed that the MAP model was not able to capture the
autocorrelation feature for lags larger than 104, and as we expected MMPP
failed to capture the LRD property of the non-iid hosts.

We conducted the same fitting for unavailability intervals of the non-iid
hosts. The results of fitting in form of CCDF digram are plotted in Figure 5.
This reveals that both MAP and MMPP are good fit in terms of distribution,
but MWM can not model the beginning of the tail for the unavailability
traces. The results of fitting for ACF depicted in Figure 6 show that MAP
and MWM can expectedly fit the LRD property while MMPP failed to do
so. Similar to the availability case, the MAP model can accurately fit the
short lags of unavailability traces while MWM is able to fit the longer lags
as illustrated in Figure 6(b).

As it can be seen in Figure 4(a) and Figure 6(a), the autocorrelation
function of the availability traces decays much slower than the unavailability



Figure 3: CCDF of the availability models and real traces.

(a) First 200 lags (b) Full lags

Figure 4: Autocorrelation function for the availability models and real traces.

Table 2: Parameters for the fitted system models.

Model Availability Model Unavailability Model
No. of states/factors No. of parameters No. states/factors No. of parameters

MMPP 2 6 2 6
MAP 16 2× 162 − 16 32 2× 322 − 32
MWM 22 24 22 24



Figure 5: CCDF of the unavailability models and real traces.

traces for non-iid hosts, which means availability intervals have longer range
of dependencies. This fact confirms the quantitative results using Hurst
parameter given in Table 1.

As mentioned earlier, we used automatic fitting for both MAP and MWM
while using two-state structure for the MMPP model. In the following, we
will analyze the fitted models in terms of number of parameters. The number
of states for the MAP and MMPP models as well as number of factors for
the MWM model are listed in Table 2 for availability and unavailability
intervals (refer to Section 4 about detail of parameters in these models).
Based on this table, both MMPP and MWM have reasonable number of
parameters. Although the MAP model showed a good fit for both availability
and unavailability traces, but the number of states and number of parameters
are very high and that might limit the application of the model. To address
this issue, we consider the effect of state reductions by factor of 50% and 25%
on the MAP model. To do this, we used the same fitting method with the
number of states as a given value equals to half and quarter of the number
of states listed in Table 2 for availability and unavailability intervals. We
observed that the two new models have very similar behavior in terms of
CCDF and ACF in compare with the original MAP model. For the sake of
brevity, we used these models in the model evaluation in Section 6.



(a) First 200 lags (b) Full lags

Figure 6: Autocorrelation function for the unavailability models and real traces.

5.2. Host Model

For the host model, we utilised R time series packages and Matlab tool-
boxes. All the host’s availability and unavailability series were tested for
stationarity using ADF, KPSS and LBQ tests as mentioned in Section 4.2.
The test result showed that 15% of the non-iid hosts passed these tests; not
to reject the stationary hypothesis at 0.05 level of significance, for both avail-
ability and unavailability. It was also noted that most of the series had few
large interval values, to eradicate this and also have stronger stationarity we
took the log (of base 10) for all of the raw data/series. This showed almost all
the data, particularly the 15% mentioned above, were significantly stationary
and it further qualified for better and smoother ARIMA Model.

Auto ARIMA in R was used to generate the best fitted ARIMA model for
the data, it also provided the estimates for the parameters (p,d,q), optimal
lags, Akaie information criterion (AIC) [37], and log likelihood values. A
large number of hosts was analysed, and as an example we randomly selected
two hosts, Node1 and Node2. The stationary tests for these two nodes were
strongly significant at less than 0.05 level of significance, for all the above
mentioned three stationarity tests.

The Autocorrelation Function (ACF) for the first 200 lags for both sam-
ples are given in Figure 7(b)and Figure 8(b) for availability of Node1 and
unavailability of Node2, respectively. These two graphs showed, as for most
of the other hosts, the stationary process is decaying fast over time indicat-
ing short-memory dependency and good ARIMA fit (red color dots). It was



Table 3: Parameters for the fitted host models.

Host Availability Model Unavailability Model
Best ARIMA model No. of parameters Log Likelihood AIC Best ARIMA model No. of parameters Log Likelihood AIC

Node1 (1,0,0) 2 -548.7 1103.5 (3,1,2) 7 -555.1 1122.1
Node2 (0,0,0) 1 -625.6 1253.2 (1,0,1) 3 -620.6 1247.3

expected that ARIMA models will fit availability data better than unavail-
ability, as the last, usually is harder to fit due to long interval breaks and
other properties mentioned earlier, see Figures 7(a) and 8(a) . In general
ARIMA models fit the data structure very well and significant when the best
selected ARIMA model was determined by the maximum log likelihood and
minimum AIC values over all possible class of models. The best model for
both nodes with their analysis details are reported in Table 3. Even though
ARIMA models fit the availability data very well, we still couldn’t more
closely capture the upper long tail of some series as can be seen in these
figures.
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Figure 7: CDF and autocorrelation function for the availability model of Node1 (Log
values)

6. Model Evaluation

In this section, we present the evaluation of the proposed models in the
previous section. Goodness of fit (GoF) tests are the basic methods for
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Figure 8: CDF and autocorrelation function for the unavailability model of Node2 (Log
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evaluating the quality of fitting [38]. These tests include visual methods
such as probability-probability (PP) plot as well as quantitative tests such
as Kolmogrov-Smirnov (KS) and Anderson-Darling (AD) tests [5]. However,
all of these tests are focus only on the distribution of the model (e.g., CDF)
and do not consider any autocorrelation structure. In our modeling, we
need to utilize a method that can combine both features (distribution and
autocorrelation) and evaluate them at the same time.

Since our modeling technique is similar to modeling of inter-arrival time
in network traffic and workload traces, we used the same approach for model
evaluation. In this method, due to time-varying characteristics in the real
traces, the quality of modeling will be evaluated by comparing the behavior
of Model/M/1 queue versus Trace/M/1 queue [26, 39]. This means that
they simulate two queues where the inter-arrival time to each queue will be
generated by the fitted model or the real traces. They usually compare the
queue length probabilities of two queues under different levels of utilizations.
Since we model the process of (un)availability interval, we need to modify
this queuing system for model evaluation appropriately.

As it is illustrated in Figure 1, a CPU on host i can serve as a queue
to run incoming jobs. So if we consider jobs as the incoming requests then
CPU works as a server with a variable service time. Hence, we can use
M/Model/1 and M/Trace/1 queuing systems for model evaluation. We
consider the exponential distribution for the inter-arrival time of input jobs



to focus only on the target metric, which is the queue service time. But the
question is how to generate the service times while we have two separate
series for availability and unavailability for the server.

In order to generate service times for these queues, we proposed Algo-
rithm 1. In this algorithm, the input variables are time series of availability
and unavailability that can be fed from the real traces or fitted models. The
output is the service time vectors with N elements. We first generate a job
where its run time follows an exponential distribution with the given mean
value of T (Line 6). If the job size is less than the current CPU availability
time, then the job size will be the service time since the job doesn’t experi-
ence any interruption due to CPU unavailability. (Line 27). Otherwise, we
need to add one or more unavailability intervals into the service time until
the job get served (Line 8,17). In other words, we need to add unavailability
times to the service time as jobs need to wait until the next availability in-
tervals to continue execution. In this algorithm, residual keeps track of the
current value of the CPU availability. For the sake of simplicity, we ignore
the CPU power heterogeneity in this algorithm. This assumption doesn’t
have any effect on the generality of this algorithm as we observed that CPU
speed and availability time has no correlation [5].

6.1. Simulation Setup

In order to simulate the two queuing systems, we implemented a discrete-
event simulator using the Objective Modular Network Testbed in C++ (OM-
NeT++) [40]. This simulation environment is open-source, component-based
and modular, which has been widely used for network simulations. We con-
sider the response time of the queue as the performance metric for the model
evaluation. It should be noted that we utilize the same model for availability
and unavailability to generate the service times. We leave the other com-
binations such as the MAP model for availability and the MWM model for
unavailability for the future work.

The simulator uses the service times generated by Algorithm 1 from the
fitted models or the real traces. Based on the characterization of real BOINC
projects, the average job size is about 1.2 hours [13], so we used the T =
4320sec in this algorithm. We simulate each single queue with two different
utilization values. To do this, we changed the input job rate in each queue
to obtained different queue utilizations. We used 20% and 40% utilizations
for the simulation experiments.



Algorithm 1: Service Time Generation
Input: Avai, Unavai, T,N
Output: Service.T ime

1 residual = Avai(1);
2 i = 1, k = 1;
3 while sizeof(Service.T ime) ≤ N do
4 Service.T ime(i) = 0;
5 //job run time;
6 job.size = exprnd(T );
7 if job.size > residual then
8 Service.T ime(i) = Service.T ime(i) + residual + Unavai(k);
9 i = i + 1, k = k + 1;

10 if k > sizeof(Avai) then
11 return;

12 //remaining time for job completion;
13 job.size = job.size− residual;
14 while job.size ≥ 0 do
15 residual = Avai(k);
16 if k > residual then
17 Service.T ime(i) = Service.T ime(i) + Avai(k) + Unavai(k);
18 job.size = job.size−Avai(k);
19 i = i + 1, k = k + 1;
20 if k > sizeof(Avai) then
21 return;

22 else
23 break;

24 residual = Avai(k)− job.size;

25 else
26 residual = residual − job.size

27 Service.T ime(i) = Service.T ime(i) + job.size;
28 i = i + 1



For each simulation experiment, we used the batch means method to
gather the statistics where we had 100 batches each of which with 20,000
jobs. The first and the last batch were ignored as warm-up and drain phases
of the simulation. In our experiments the coefficient of variation of the results
was very low (CV<0.01).

(a) 20% utilization (b) 40% utilization

Figure 9: CCDF of the queue response time with different utilizations for the fitted models.

(a) 20% utilization (b) 40% utilization

Figure 10: CCDF of the queue response time with different utilizations for the modified
MAP models.
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(b) 40% utilization

Figure 11: CDF of the queue response time with different utilizations for the fitted models
for Node1
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(b) 40% utilization

Figure 12: CDF of the queue response time with different utilizations for the fitted models
for Node2



6.2. Results and Discussions

First, we present the results of the system model. The simulation re-
sults for the response time of the queues while using three different proposed
system models as the service time are depicted in Figure 9. The CCDF of
response time in four different queues for 20% and 40% utilizations are plot-
ted in Figure 9(a) and 9(b), respectively. As can be seen in these figures,
under lower utilization, both MAP and MWM are good matches while for
higher utilization MAP model shows a closer fit to the real data. We can
also observe that although MMPP model doesn’t seem to be a good fit based
on discussion in Section 5, it has a reasonable match especially for higher
utilization queue.

These results reveal that the Markovian arrival process can model the
availability and unavailability intervals of volunteer resources with a reason-
able to excellent level of accuracy. The main advantage of MAPs is that
they can be easily integrated within queuing systems or queuing networks,
and then used in the evaluation of system performance. However, as we dis-
cussed at the end of Section 5, number of states in the MAP model could
be a disadvantage for practical performance analysis. In the following, we
analyze the result of state reduction for the proposed MAP model.

As mentioned before, we have reduced the number of states in the MAP
model by a factor of 50% and 25%. To analyze the effect of this reduction on
the quality of fitting, we used the same queuing systems with the new MAP
models and repeat the experiments. The result of simulations under two dif-
ferent utilizations are plotted in Figure 10 where MAP, MAP50 and MAP25
refer to full state model, 50% and 25% of the full state model, respectively
(see Table 2). As one can see, MAP50 shows a very close match with the
original MAP as well as the real trace results. Moreover, MAP25 has a good
fit near the end of tail while it has some discrepancies at the beginning of
the tail. This result shows that we can use the simpler version of the MAP
model with almost same accuracy.

The results of simulation for the host model based on ARIMA are pre-
sented in Figure 11 and Figure 12 for two different hosts. For these nodes,
we plotted the CDF of response time in two different queues for 20% and
40% utilizations as we are interested to see the whole distribution. It can
been seen from these figures, the models fit the body of the distribution with
a good accuracy, however there are some differentiation on the tail of the
distribution.



In Summary, MAP model is a good candidate to model the (un)availability
traces with the LRD properties. While MMPP model is not able to capture
the LRD properties in the (un)availability traces, it can be a reasonable
candidate to simplify the performance modeling of the volunteer computing
systems. Moreover, we observe that ARIMA model is able to capture a host
behavior with its short rang dependency.

7. Conclusions

Statistical modeling of resource availability in volunteer computing sys-
tems is a key factor for efficient application scheduling in these platforms.
We considered statistical modeling of volunteer resources, which exhibit non-
random pattern in their availability time. The proposed models take into ac-
count the autocorrelation structure in subset of hosts whose availability has
temporal correlation. We applied various statistical models namely MMPP,
MAP, and MWM for the system level and ARIMA for the host model using
real traces from the SETI@home project with more than 230,000 hosts. The
results showed that for the system level, MAP model can fit the availability
and unavailability intervals of volunteer resources with a good to excellent
level of accuracy. It also shown that the reduction of states by factor of 50%
in the MAP model doesn’t have much effect on the quality of the model. We
also observed that the MAP model can accurately fit the autocorrelation for
limited number of lags (i.e., 200 lags), and this is sufficient-enough to apply
the model for resource scheduling. We also observed that ARIMA is a rea-
sonable model for a single host with short rang dependency and can capture
the behavior of each host with a good degree of accuracy. In future work,
we would like to generalize and apply our modeling to include the iid-hosts
model for application scheduling on volunteer computing resources.
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Appendix



Table 4: The list of abbreviations in the paper.

Abbreviation Meaning
iid independent and identically distributed

CDF Cumulative Distribution Function
CCDF Complementary Cumulative Distribution Function
ACF Autocorrelation Function
LRD Long-Range Dependence

MMPP Markov Modulated Poisson Process
CTMC Continues-Time Markov Chain
MAP Markovian Arrival Processes
MWM Multifractal Wavelet Model

ARIMA AutoRegressive Integrated Moving Average
H Hurst parameter

BIC Bayesian Information Criterion
AIC Akaie Information Criterion
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