
Failure-aware Resource Provisioning For Hybrid Cloud

Infrastructure

Bahman Javadia,∗, Jemal Abawajyb, Rajkumar Buyyac

aSchool of Computing, Engineering and Mathematics,
University of Western Sydney, Australia

bSchool of Information Technology,
Deakin University, Geelong, Australia

cCloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia

Abstract

Hybrid Cloud computing is receiving increasing attention in recent days.
In order to realize the full potential of the hybrid Cloud platform, an ar-
chitectural framework for efficiently coupling public and private Clouds is
necessary. As resource failures due to the increasing functionality and com-
plexity of hybrid Cloud computing are inevitable, a failure-aware resource
provisioning algorithm that is capable of attending to the end-users quality
of service (QoS) requirements is paramount. In this paper, we propose a scal-
able hybrid Cloud infrastructure as well as resource provisioning policies to
assure QoS targets of the users. The proposed policies take into account the
workload model and the failure correlations to redirect users’ requests to the
appropriate Cloud providers. Using real failure traces and workload model,
we evaluate the proposed resource provisioning policies to demonstrate their
performance, cost as well as performance-cost efficiency. Simulation results
reveal that in a realistic working condition while adopting user estimates for
the requests in the provisioning policies, we are able to improve the users’
QoS about 32% in terms of deadline violation rate and 57% in terms of
slowdown with a limited cost on a public Cloud.

Keywords: Hybrid Cloud Computing; Quality of Service; Deadline;

∗Corresponding author. Telephone: +61-2-9685 9181; Fax: +61-2-9685 9245
Email address: b.javadi@uws.edu.au (Bahman Javadi)

Preprint submitted to Journal of Parallel and Distributed Computing June 18, 2012

Workload Model; Resource Provisioning; Resource Failures

1. Introduction

Cloud computing is a new computing paradigm that delivers IT resources
(computational power, storage, hardware platforms, and applications) to
businesses and users as subscription-based virtual and dynamically scalable
services in a pay-as-you-go model. Utilization of Cloud platforms and ser-
vices by the scientific and business communities is increasing rapidly and
existing evidences demonstrate performance and monetary cost-benefits for
both scientific and business communities [1, 2, 3, 4]. In addition to provid-
ing massive scalability, another advantage of Cloud computing is that the
complexity of managing an IT infrastructure is completely hidden from its
users.

Generally, Cloud computing is classified into private Clouds, public Clouds,
and hybrid Clouds. Public Clouds provide shared services through large-scale
data centers that host very large number of servers and storage systems. The
purpose of public Cloud is to sell IT capacity based on open market offerings.
Any one can deploy applications from anywhere on the public Cloud and pay
only for the services used. Amazon’s EC2 [5] and GoGrid [6] are examples
of public Clouds. In contrast, the purpose of private Clouds is to provide
local users with a flexible and agile private infrastructure to run workloads
within their own administrative domain. In other words, private Clouds are
small-scale systems compared to public Clouds and usually managed by a
single organization. Examples of private Clouds include NASA’s Nebula [7]
and GoFront’s Cloud [8].

A hybrid Cloud [9] is the integration and utilization of services from both
public and private Clouds. The hybrid Cloud platform will help scientists
and businesses to leverage the scalability and cost effectiveness of the pub-
lic Cloud by paying only for IT resources consumed (server, connectivity,
storage) while delivering the levels of performance and control available in
private Cloud environments without changing their underlying IT setup. As
a result, hybrid Cloud computing is receiving increasing attentions recently.
However, a mechanism for integrating private and public Clouds is one of the
major issues that need to be addressed for realizing hybrid Cloud computing
infrastructure. Also, due to the increased functionality and complexity of
the hybrid Cloud systems, resource failures are inevitable. Such failures can

2

result in frequent performance degradation, premature termination of execu-
tion, data corruption and loss, violation of Service Level Agreements (SLAs),
and cause a devastating loss of customers and revenue [10, 11]. Therefore,
a failure-aware resource provisioning approaches is necessary for uptake of
hybrid Cloud computing. Although security and privacy are also major con-
cerns in hybrid Clouds systems, we will not address them in this paper and
interested reader can refer to [12, 13] for more information.

In this paper, we propose a flexible and scalable hybrid Cloud archi-
tecture along with failure-aware resource provisioning policies. Although
there are approaches that address how an organization using a private Cloud
utilize public Cloud resources to improve the performance of its users’ re-
quests [4, 14], existing approaches do not take into account the workload
type and the resource failures to make decision about redirection of requests.
In contrast, our proposed policies take into account the workload model and
the failure correlations to redirect resource requests to the appropriate Cloud
providers. The proposed policies also take advantage of knowledge-free ap-
proach, so they do not need any statistical information about the failure
model (e.g., failure distribution). This approach is in contrast to knowledge-
based techniques where we need specific characteristics of the failure events
in the form of statistical models. For instance, authors in [15] discovered
the statistical model of failures in a large-scale volunteer computing systems
and adopted these models for stochastic scheduling of Bag-of-Task jobs. Al-
though knowledge-based techniques could be more efficient, they are quite
complex and hard to implement.

In summary, our main contributions in this paper are threefold:

• We provide a flexible and scalable hybrid Cloud architecture to solve
the problem of resource provisioning for users’ requests;

• In the hybrid Cloud architecture, we propose various provisioning poli-
cies based on the workload model and failure correlations to fulfill a
common QoS requirement of users, request deadline;

• We evaluate the proposed policies under realistic workload and fail-
ure traces and consider different performance metrics such as deadline
violation rate, job slowdown, and performance-cost efficiency.

The rest of the paper is organized as follows. In Section 2, the background
and problem statement are presented. We describe related work in Section 3.

3

In Section 4, we present the system architecture and its implementation.
We then present the proposed resource provisioning policies in Section 5.
We discuss the performance evaluation of the proposed policies in Section 6.
Finally, we summarize our findings and present future directions in Section 7.

2. Background

In this section, we will present the problem statement, the workload and
failures models considered in this paper1.

2.1. System Model

In this paper, we focus on Infrastructure-as-a-Service (IaaS) Clouds, which
provide raw computing and storage in the form of Virtual Machines (VMs)
and can be customized and configured based on application demands.

Let Npub and Nprv denote the number of resources in public Cloud (Cpub)
and private Cloud (Cprv), respectively. The hybrid Cloud (H) of interest can
be expressed as follows:

H : Cpub
⋃

Cprv

NH = Npub +Nprv (1)

Since we focus on resource provisioning in the presence of failures, we
assume that the private Cloud resource to be homogeneous. We also assume
that some public Cloud resources have similar capacity in terms of memory
size and CPU speed as the private Cloud resources. As public Clouds have
diversity of resource types (e.g., 12 instance types in Amazon’s EC2 [5]), this
assumption is easy to hold. Although we are able to utilize more resources
from the public Cloud, for this research we consider using the same amount
of resource from both providers. In case of scaling of a job on more resources,
we can estimate the duration of the given job on the public Cloud resources
using a speedup model proposed by Downey [16]. We leave this extension
for the future work.

1System and hybrid Cloud are used interchangeably in this paper.

4

2.2. System Workload

In this paper, we consider a broad range of high-performance applica-
tions including many different jobs requiring large number of resources over
short periods of time. These jobs vary in terms of nature (data or compute-
intensive), size (small to large), and communication pattern. Computational
Fluid Dynamic (CFD) applications are examples of such applications. Each
job could include several tasks and they might be sensitive to communica-
tion networks in terms of delay and bandwidth. As this type of jobs may not
benefit heavily from using resources from multiple providers in virtualized
environments [17], we assume that the jobs are tightly-coupled and will be
allocated resources from a single provider.

Users submit their requests for Cloud resources to the private Cloud
through a gateway (i.e., broker) and the gateway makes the decision as to
which Cloud to service the requests. In this paper, a request corresponds to
a job. At the time of submitting request for Cloud resources, the user also
provides the following information:

• Type of required virtual machines

• Number of virtual machines (S)

• Estimated duration of the request (R)

• Deadline of the request (D)

The type of required VM can be chosen from an existing list which can
be deployed in both private and public Clouds. To be more precise, we can
define the system workload as the set of M requests each of them includes
several tasks:

Workload = {J1, J2, ..., JM} where Ji = {τ1, τ2, ..., τSi} (2)

For the sake of simplicity, we refer to Ji as request i. So, request i has Si
tasks (τi) where Di is specified based on the desired user’s QoS (i.e., deadline
to return the results)2. For each accepted request, the gateway must provide

2For instance, a given request x in cluster fs1 in DAS-2 systems [18] requires 4 VMs
for one hour (Sx = 4, Rx = 1h)

5

Si virtual machines for the duration of Ri time unit such that the results
must be ready before deadline Di as expressed in the following equation:

sti + Ti ≤ Di (3)

where sti and Ti are the submission time and execution time of request i.
Note that Ri is the estimated duration of the request while Ti is the actual
request duration. Therefore, user requests can be thought of as a rectangle
whose length is the request duration (Ti) and the width to be the number
of required VMs (Si) as is depicted in Figure 1. This can be helpful to
understand how the requests get served in the available resources.

Figure 1: Serving a request in the presence of resource failures.

2.3. Failure Model

We define a failure as an event in which the system fails to operate accord-
ing to its specifications. A system failure occurs when the system deviates
from fulfilling its normal system function, the latter being what the system
is aimed at. An error is that part of the system state which is liable to lead
to subsequent failure: an error affecting the service is an indication that a
failure occurs or has occurred. The adjudged or hypothesized cause of an
error is a fault. In this paper, we consider resource failures that refer to any
anomaly caused by hardware or software faults that make unavailability in
service. We term the continuous period of a service outage due to a failure

6

as an unavailability interval. A continuous period of availability is called an
availability interval.

The public Cloud providers adopt carefully engineered modules that in-
clude redundant components to cope with resource failures [19, 20]. We
assume that this design style is too expensive to consider for private Clouds
which make them less reliable as compared to the public Clouds. Thus, we
concentrate on resource failures in the private Cloud.

Suppose, we have some failure events (Fi) in compute nodes while a re-
quest is getting served. In the presence of a failure, hosted VMs on the
compute node stop working. Let Ts(.) and Te(.) be the functions that return
the start and end time of a failure event. Te(.) is the time when a resource
recovers form a failure event and starts its normal operation again. So, the
unavailability interval (i.e., recovery time) of a given VM in the presence of
failure Fi is Te(Fi)− Ts(Fi). As a given request i needs all VMs to be avail-
able for the whole required duration, any failure event in any of Si virtual
machines would stop execution of the whole request i. The request can be
started again, if and only if all VMs become available again. For instance,
in Figure 1, the given request can be started at the end of failure event F1

or F2, but can not be resumed at the end of failure event F3 and have to
wait until the end of event F5. We analyze the effect of failure events on the
requests in Section 4.3.

Furthermore, it has been shown that in distributed systems there are
spatial and temporal correlations in failure events as well as dependency of
workload type and intensity on the failure rate [21, 22, 23]. Spatial correlation
means multiple failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness of the failure
distribution over time. To be more precise about the temporal correlation
of failures, we can define the time distance between two failure events as
Lij = ||Fi − Fj||= |Ts(Fi) − Ts(Fj)|. To determine the temporal failure
correlation, a spherical covariance model is proposed in [22] as follows:

Ct(L) = 1− αL
θ

+ β

(
L

θ

)3

(4)

where θ is a timescale to quantify the temporal relation of two failure events,
and α and β are positive constants with α = β + 1. In this analysis, if
L > θ there is no temporal correlation (i.e., Ct(L) = 0). Moreover, we
can consider the failure events as a time series and use the Autocorrelation

7

function (ACF) to determine the temporal correlation. In this case, temporal
correlation means failure events exhibit considerable autocorrelation at small
time lags, so the failure rate changes over time [23].

In addition to temporal failure correlation, the occurrence of a failure in
a component can trigger a sequence of failures in other components of the
system within a short period [21]. Let us consider A as the set of failure
events according to increasing the start time of events as follows:

A = {Fi | Ts(Fi) < Ts(Fi+1), i > 0} (5)

So, we can define the space-correlated failures as follows:

Ec = {Fi | Ts(Fi) ≤ Ts(Fj) +4, Fi, Fj ∈ A} (6)

where 4 is a time window and we can quantify the space-correlated failures
by changing this parameter3.

These failure characteristics are essentially prominent for our case where
we are dealing with workload of parallel requests and any failure event could
violate the users’ QoS. To deal with these failure properties, in Section 5 we
propose different strategies which are based on the workload model for the
general failure events.

2.4. Problem Statement

The resource provisioning problem can be formulated as follows: Given a
set of requests (e.g., parallel jobs) and a hybrid Cloud system with a failure-
prone private Cloud, the problem is how to decide if a request should be
executed in a public Cloud or in a private Cloud such that the end-user QoS
requirements are satisfied.

3. Related Work

The related work can be classified in two groups: load sharing in the dis-
tributed systems and solutions utilizing Cloud computing resources to extend
the capacity of existing infrastructure. We also present a brief overview on
QoS-based scheduling algorithms to complete this section.

3It has been shown that value of 4 is between 100 to 250 seconds for several parallel
and distributed systems [21].

8

Iosup et al. [24] proposed a matchmaking mechanism for enabling resource
sharing across computational Grids. In the proposed mechanism, whenever
the current system load exceeds the delegation threshold, the delegation al-
gorithm will be run to borrow a resource from a remote site to execute the
request. They showed that by using this delegation mechanism, the number
of finished jobs will be considerably increased. In contrast, we utilize the
workload model in provisioning policies to borrow resources from a public
Cloud provider to improve the users’ QoS of an organization in the presence
of resource failures.

VioCluster [25] is a system in which a broker is responsible for dynami-
cally managing a virtual domain by borrowing and lending machines between
clusters. The authors proposed a heuristic brokering technique based on the
information provided by PBS scheduler. Given the current load and avail-
able machines in a cluster, they calculate the number of machines needed to
run the input jobs. They did not consider the workload characteristics and
resource failures in their proposed policy. Moreover, our proposed policies
do not rely on any information from the local schedulers.

Montero et al. [26] introduced GridWay architecture to deploy virtual
machines on a Globus Grid. They also proposed the GridGateWay [27] to
enable Grid interoperability of Globus Grids. They provided a basic broker-
ing strategy based on the load of the local resources. In contrast, we develop
the InterGrid environment that is based on virtual machine technology and
can be connected to different types of distributed systems through Virtual
Machine Manager (VMM). Moreover, we consider a new type of platform
which is commonly called hybrid Cloud and propose some provisioning poli-
cies, which are part of the InterGrid Gateway (IGG), to utilize the public
Cloud resources.

The applicability of public Cloud services for scientific computing has
been demonstrated in existing work. Kondo et al. [1], provided a cost-benefit
analysis between desktop grids and Amazon’s elastic model. They tried to
answer several questions pertaining to these two platforms. One of the issues
they addressed is the cost benefit of combining desktop grids with Cloud
platform to solve large scale compute intensive applications. They concluded
that hosting a desktop grid on a Cloud would be cheaper than running on
stand alone desktop grids if bandwidth and storage requirements are less
than 100Mbps and 10TB, respectively. In contrast to this work, we study
the cost-benefit analysis of a private Cloud augmented with public Cloud and
also propose different provisioning policies for scheduling requests between

9

these two platforms under resource failures.
In [28], the authors proposed a model that elastically extends the physical

site cluster with Cloud resources to adapt to the dynamic demands of the
application. The central component of this model is an elastic site manager
that handles resource provisioning. The authors provided extensive imple-
mentation, but evaluate their system under non-realistic workloads. In this
paper, we take into account the workload model and failure correlation to
borrow the public Cloud resources. Moreover, we evaluate the performance
of the system under the realistic workload and failure traces.

Assunção et al. [4] proposed scheduling strategies to integrate resources
from public Cloud provider and local cluster. In their work, the requests
are first instantiated on cluster and in the event more resources are needed
to serve user requests, IaaS Cloud provider virtual machines are added to
the cluster. This is done to reduce users’ response time. Their strategies,
however, do not take into consideration the workload characteristics when
making decisions on redirection of requests between local cluster and public
Cloud. Furthermore, the authors do not consider the trade-off between cost
and performance in case of resource failures on local cluster.

Recently, Moschakis and Karatza [29] have evaluated the performance of
applying Gang scheduling algorithms on Cloud. The authors addressed tasks
that require frequent communication for which Gang scheduling algorithms
are suitable. They compared two gang scheduling policies, Adaptive First
Come First Serve (AFCFS) and Largest Job First Served (LJFS) on a Cloud
computing environment. Their study is restricted to a single public Cloud
which consists of a cluster of VMs on which parallel jobs are dispatched. In
contrast, we develop our scheduling strategies on a hybrid Cloud computing
environment.

There are several research works that investigated the QoS-based schedul-
ing in the parallel and distributed systems. QoPS [30] is a scheduler that
provide completion time guarantee for parallel jobs through job reservation
to meet the deadlines. He et al. [31] used Genetic algorithm for scheduling
of parallel jobs with QoS constraints (e.g., deadline). In addition, admission
control policies have been applied to provide QoS guarantees to parallel ap-
plications in resource sharing environments [32]. On the contrary, we utilize
the selective and aggressive (EASY) backfilling with checkpointing as the
fault-tolerant scheduling algorithms, due to their sub-optimal performance
and popularity in the production systems [33, 34, 35].

10

Figure 2: The hybrid Cloud architecture.

4. The Hybrid Cloud System

In this section, we present a flexible and scalable hybrid Cloud architec-
ture which is designed and implemented by the Cloudbus research group4.
In the following, an overview of the hybrid Cloud architecture of interest and
its implementation is presented.

4.1. System Architecture

Figure 2 shows the system architecture used in this paper. We use the
concepts developed for interconnecting Grids [36] to establish a hybrid Cloud
computing infrastructure that enables an organization which wants to sup-
ply its users’ requests with local infrastructure (i.e., private Cloud) as well
as computing capacity from a public Cloud provider. The system has several
components that includes InterGrid Gateways (IGGs), the Virtual Infrastruc-
ture Engine (VIE) and Distributed Virtual Environment (DVE) manager for
creating a virtual environment to help users deploy their applications [37].

Peering arrangements between the public and private Clouds is estab-
lished through an IGG. An IGG is aware of the peering terms between re-
source providers and selects suitable one that can provide the required re-
sources for incoming request. The provisioning policies is also part of the
IGG which include the scheduling algorithms of the private and the public

4http://www.Cloudbus.org/

11

Figure 3: Resource provisioning through IGG.

Cloud as well as brokering strategies to share the incoming workload with
the public Cloud provider.

The Virtual Infrastructure Engine (VIE) is the resource manager for the
private Cloud and can start, pause, resume, and stop VMs on the physical
resources. A three-step scenario in which an IGG allocates resources from
a private Cloud in an organization to deploy applications, is indicated in
Figure 2. In some circumstances, this IGG interacts with another IGG that
can provision resources from a public Cloud to fulfill the users’ requirements
(see Figure 3). Since we have a system that creates a virtual environment
to help users deploy their applications, a Distributed Virtual Environment
(DVE) manager has the responsibility of allocating and managing resources
on behalf of applications.

As many organizations intend to provide the best possible services to their
customers, they usually instrument their system’s middleware (e.g., VIE) to
monitor and measure the system workload. This information in short-term
can be used by system administrators to overcome the possible bottlenecks in
the system. Furthermore, characterization of the system workload based on a
long-term measurement can lead us to improve the system performance [38].
In this study, we assume that the organization has such a workload charac-
terization, so we can adopt it in the resource provisioning policies. However,

12

Figure 4: IGG components.

in Section 5 we also investigate a case where we do not have a comprehensive
workload model.

4.2. Systems Implementation

The IGG has been implemented in Java and a layered view of its com-
ponents is depicted in Figure 4. The core component of the IGG is the
Scheduler, which implements provisioning policies and peering with other
IGGs. The scheduler maintains the resource availability information as well
as creating, starting and stopping the VMs through the Virtual Machine
Manager (VMM). VMM implementation is generic, so different VIEs can be
connected and make a flexible architecture. Currently, VIE can connect to
OpenNebula [39], Eucalyptus [40], or Aneka [8] to manage the local resources
as a private Cloud. In addition, two interfaces to connect to a Grid middle-
ware (i.e., Grid’5000) and an IaaS provider (i.e., Amazon’s EC2 [5]) have
been developed. Moreover, an emulated VIE for testing and debugging has
been implemented for VMM.

The persistence database is used for storing information of the gateway
such as VM templates and peering arrangements. In this work, we assume the
case where the public Cloud provider has a matching VM template for each
available template at the database. The Management and Monitoring enables

13

gateway to manage and monitor resources such as Java applications. The
Communication Module provides an asynchronous message-passing mecha-
nism, and received messages are handled in parallel by a thread-pool. That
makes gateway loosely coupled and allows for more failure-tolerant commu-
nication protocols.

Figure 3 shows the main interactions in the system when the user sends
a request to the DVE manager. The local IGG tries to obtain resources
from the underlying VIEs. This is the point where the IGG must make
decision about selecting resource provider to supply the user’s request, so
the resource provisioning policies come to the picture. As it can be seen in
Figure 3, the request is redirected to the remote IGG to get the resource from
the public Cloud provider (i.e., Amazon’s EC2). Once the IGG has allocated
the requested VMs, it makes them available and the DVE manager will be
able to access the VMs and finally deploy the user’s application.

4.3. Fault-Tolerant Scheduling Algorithms

As depicted in Figure 4, we need an algorithm for scheduling the requests
for the private and public Clouds. For this purpose, we utilize a well-known
scheduling algorithm for parallel requests, which is called selective backfill-
ing [33]. Backfilling is a dynamic mechanism to identify the best place to
fit the requests in the scheduler queue. In other words, Backfilling works
by identifying hole in the processor-time space and moving forward smaller
requests that fit those holes. Selective backfilling grants reservation to a
request when its expected slowdown exceeds a threshold. That means, the
request has waited long enough in the queue. The expected slowdown of a
given request is also called eXpansion Factor (XFactor) and is given by the
following equation:

XFactor =
Wi + Ti
Ti

(7)

where Wi and Ti is the waiting time and the run time of request i, respec-
tively. We use the Selective-Differential-Adaptive scheme proposed in [33],
which lets the XFactor threshold to be the average slowdown of previously
completed requests. It has been shown that selective backfilling outperforms
other types of backfilling algorithms [33].

We used another scheduling algorithm, aggressive backfilling [41], in our
experiments as the base algorithm. In the aggressive backfilling (EASY),
only the request at the head of the queue, called the pivot, is granted a
reservation. Other requests are allowed to move ahead in the queue as long

14

as they do not delay the pivot. The reason we choose EASY backfilling as
the base policy is its popularity in the production systems [9, 34].

After submitting requests to the scheduler, each VM runs on one avail-
able node. In the case of resource failure during the execution, we assume
checkpointing so that the request is started from where it left off when the
VM becomes available again. To this end, we argue that having an optimal
fault-tolerant scheduling in a failure-prone private Cloud is not good enough
to meet the users’ QoS and utilizing public Cloud resources is required.

In case of k failure events, let Es and Eo be the set of singular and
overlapped failure events respectively ordered in ascending manner by the
start time. These sets can be defined as follows:

Es = {Fi | Te(Fi) < Ts(Fj), 1 ≤ i < j ≤ k} (8)

Eo = {Xi | Xi = (F1, ..., Fn), Ts(Fi+1) ≤ Te(Fi), 1 ≤ i ≤ n− 1} (9)

The union of these two sets is a series of failure events which causes the
service unavailability for a given request (i.e., E = Es ∪ Eo). It is worth
noting that since failures are numbered based on their occurrence, n-tuples
in Eo are time ordered. For each member of E, the service unavailability
time can be obtained by the following equations:

ds =
∑
∀Fi∈Es

[Te(Fi)− Ts(Fi)] (10)

do =
∑
∀Xi∈Eo

[max{Te(Xi)} −min{Ts(Xi)}] (11)

where ds applies for singular failures and do applies for overlapped failures.
As mentioned earlier, all VMs must be available for the whole requested
duration, so any failure event in any of Si virtual machines would stop the
execution of the whole request i.

For instance, E = {F1, F2, (F3, F4, F5)} is the failure set for Figure 1.
So, ds = [(Te(F1)− Ts(F1)) + (Te(F2)− Ts(F2))] and do = [Te(F5)− Ts(F3)]
would be the service unavailability time for singular failures and overlapped
failures, respectively.

The above analyses reveal that even in the presence of an optimal fault-
tolerant mechanism (e.g., perfect checkpointing) in the private Cloud, a given
request is faced with ds+do time unit of delay which may consequently breach
the request’s deadline. In other words, if the request only has been stalled

15

for the duration of singular and overlapped failures (i.e., ds + do), without
need to restart from the beginning or the last checkpoint, still we suffer a
long delay due to service unavailability. This is the justification of utilizing
highly reliable services from a public IaaS Cloud provider.

To complete these analyses, we consider a case of independent tasks in
the requests, so VMs can fail/recover independently. In this scenario, we
only take into accounts the singular failures. In other words, a single failure
just stops a single task and not the whole request. Therefore, the service
unavailability time can be obtained by Equation (10) for all failures events
(i.e., ∀Fi). Comparing to the previous scenario, a request with independent
tasks encounters less delay when getting service and consequently less likely
to breach the deadline. In this paper, we focus on the former scenario and
investigate requests with tightly-coupled tasks. We leave the details of mixed
workloads as the future work.

We modified the backfilling scheduling algorithms to support the per-
fect checkpointing mechanism and provide a fault tolerant environment for
serving requests in the private Cloud. The checkpointing issues are not in
the scope of this research and interested readers can refer to [42] to see how
checkpoint overhead and period can be computed based on the failure model.

5. The Proposed Resource Provisioning Policies

In this section, we propose a set of provisioning policies that include
the scheduling algorithms of private and public Clouds as well as brokering
strategies to share the incoming workload with the public Cloud provider.
The scheduling algorithms are discussed in Section 4.3, so in the following
we present some brokering strategies to complete provisioning policies.

The proposed strategies are based on the workload model as well as the
failure correlations and aimed to fulfill the deadline of users’ requests. They
also take advantage of knowledge-free approach, so they do not need any sta-
tistical information about the failure model (e.g., failure distribution) which
subsequently makes the implementation of these policies easier in the IGG
(see Section 4.2).

5.1. Size-based Brokering Strategy

There are several studies that found the spatial correlation in failure
events in distributed systems [21, 22]. That means, one failure event could
trigger multiple failures on different nodes within a short time interval. In

16

other words, resource failures occur often in bursts. For instance, a single
power supply fault in a rack server can creates a series of failure events in
the nodes within the rack server. This property is very detrimental for our
case where each request needs all VMs to be available for the whole required
duration. Moreover, as it is mentioned in Equations (10) and (11), the service
unavailability is dependent on the spatial behavior of the failures in the sys-
tem (i.e., number of elements in Fs and Fo). Therefore, the more requested
VMs, the more likely the request to be affected by nearly simultaneous fail-
ures.

To cope with this situation, we propose a redirecting strategy that sends
wider requests (i.e., larger Si) to the highly reliable public Cloud resources,
while serving the narrow requests in the failure-prone private Cloud. This
strategy needs a value to distinguish between wide and narrow requests and
we specify it as the mean number of VMs per request.

To find the mean number of VMs per request, we need the probability of
different number of VMs in the incoming requests. Without loss of generality,
we assume that Pone and Ppow2 are probabilities of request with one VM and
power of two VMs in the workload, respectively. So, the mean number of
virtual machines required by requests is given as follows:

S = Pone + 2dre(Ppow2) + 2r (1− (Pone + Ppow2)) (12)

where r is the mean value of requests in form of power of two. Based on
the parallel workload models, the size of each request follows a two-stage
uniform distribution with parameters (l,m, h, q) [18, 43]. This distribution
consists of two uniform distributions where the first distribution would be
in the interval of [l, m] with probability of q and the second one with the
probability of 1 − q would be in the interval of [m, h]. So, m is the middle
point of possible values between l and h. Intuitively, this means that size
of requests in the real parallel workloads tend to be in a specific range. For
instance, in a system with 64 nodes, the parallel requests would be in a range
of [21...26]. In this case, l = 1 and h = 6 where m and q are determined based
on the tendency of parallel requests. For a two-stage uniform distribution,
the mean value is (l+m)/2 with probability q and (m+h)/2 with probability
1− q. Hence, r in Equation (12) can be found as the mean value of the two-
stage uniform distribution as follows:

r =
ql +m+ (1− q)h

2
(13)

17

The redirection strategy submits requests to the public Cloud provider
if the number of requested VMs is greater than S, otherwise the request is
served by the private Cloud resources.

5.2. Time-based Brokering Strategy

In addition to spatial correlation, failure events are correlated in the time
domain which means the skewness of the failure distribution over time [22].
So, the failure rate is time-dependent and some periodic failure patterns can
be observed in the different time-scale [23]. The larger requests in terms
of duration mainly have been affected by this temporal correlation as these
requests stay longer in the system and are likely to see more failures. So, there
is a strong relation between the service unavailability and the (estimated)
request duration.

On the other hand, the requests duration (job runtime) in real distributed
systems are long-tailed [38, 44]. This means that a very small fraction of all
requests are responsible for the main part of the load. To be more precise,
Figure 5 shows the mass-count disparity of the request duration in a typical
parallel workload (i.e., cluster fs3 in multi-cluster DAS-2 system [18]). We
can observe that the shortest 80% of the requests contribute only the 20%
of the total load. The remaining longest 20% of requests contribute about
80% of the total load. This reveals the long-tailed distribution for request
duration in such systems [38].

In the time-based brokering strategy, we propose to redirect longer re-
quests to the public Cloud to handle the above-mentioned issues. For this
purpose, we can adopt a single or combination of global statistics of the re-
quest duration (e.g., mean, median, or variance) on the basis of the desired
level of QoS and system performance. In this paper, we use the mean re-
quest duration as the decision point for the gateway to redirect the incoming
requests to the Cloud providers.

In this strategy, if the request duration is less than or equal to the mean
request duration, the request will be redirected to the private Cloud. By this
technique, majority of short requests could meet their deadlines as it is less
likely to encounter many failures. Moreover, longer requests will be served
by the public Cloud resources and can meet their deadlines under nearly
unlimited resource availability in the public Cloud provider. However, some
short requests which are affected with the long failures in the private Cloud,
or the requests with long waiting time in the public Cloud provider, may not
meet their deadlines.

18

Figure 5: Mass-Count of the request duration in a typical parallel workload (cluster fs3 in
DAS-2 system).

Global statistics of the request duration can be obtained from the fitted
distribution provided by the workload model. For instance, the request du-
ration of the DAS-2 multi-cluster system is the Lognormal distribution with
parameters µ and σ [18], so the mean value is given as follows:

T = eµ+
σ2

2 (14)

Another advantage of this strategy is better utilization of the allocated
public Cloud resources. For example in Amazon’s EC2, if a request uses a
VM for less than one hour, the cost of one hour must be paid. So, when we
redirect longer requests to the public Cloud, the money paid will be worth
for the service received. This advantage is explored in detail in Section 6.4.

5.3. Area-based Brokering Strategy

The two aforementioned strategies are based on only one aspect of the
request i: the number of VMs (Si) or duration (Ti). The third proposed
strategy is aimed to make a compromise between the size-based and the
time-based strategies. Hence, we utilize the area of a request which is the
area of the rectangle with length Ti and width Si as the decision point for
the gateway (see Figure 1). We are able to calculate the mean request area
by multiplying the mean number of VMs by the mean request duration, as
follows:

A = T · S (15)

19

The redirection strategy submits requests to the public Cloud provider if the
area of the request is greater than A, otherwise it is served in the private
Cloud. This strategy sends long and wide requests to the public Cloud
provider, so it would be more conservative than the size-based strategy and
less conservative than the time-based strategy.

5.4. Estimated Time-based Brokering Strategy

All three proposed strategies are based on the workload model, which
must be known beforehand. However, in the absence of such a workload
model we should be able to adopt an alternative strategy for a typical hy-
brid Cloud system. As mentioned in Section 2.2, users provide an estimated
duration at the submission time of the request i (i.e., Ri). There are sev-
eral studies about utilizing user estimates in the scheduling of parallel work-
loads [45, 34, 35]. It has been shown that users do not provide accurate
estimate for the duration of requests where they are usually modal (i.e.,
users tend to provide round values). However, it has been shown that there
is a strong correlation between estimated duration and actual duration of a
request [18]. That means, requests with larger estimated duration generally
run longer. Therefore, we can leverage this correlation to determine longer
requests and redirect them to the public Cloud.

For instance, Figure 6 shows the cumulative distribution function (CDF)
of the estimated and actual duration of requests in a typical parallel workload
(i.e., cluster fs4 in DAS-2 multi-cluster system). We can easily observe the
positive correlation in this figure. Besides, since CDF of the estimated request
duration is below the CDF of actual request duration, we can conclude that
users usually overestimate the request duration. This fact has been observed
in distributed-memory parallel systems as well [45].

The modality of the estimated request durations can help us to find a
decision point for the brokering strategy. As it is depicted in Figure 6, re-
quests with estimation bigger than 2 × 105 seconds are good candidates to
redirect to the public Cloud as they are the longest 30% of the requests. In
Section 6.2, we illustrate the simulation results of this strategy with a real
workload trace.

6. Performance Evaluation

In order to evaluate the performance of the proposed policies, we imple-
mented a discrete event simulator using CloudSim [46]. We used simulation

20

Figure 6: Cumulative distribution function of the estimated and actual request duration
in a typical parallel workload (cluster fs4 in DAS-2 system).

as experiments are reproducible and controllable.
The performance metrics that are considered in all simulation scenarios

are the deadline violation rate and the bounded slowdown [47]. The violation
rate is the fraction of requests that do not meet their deadlines. The bounded
slowdown is response time normalized by running time and can be defined
as follows:

Slowdown =
1

M

M∑
i=1

Wi +max(Ti, bound)

max(Ti, bound)
(16)

where Wi and Ti is the waiting time and the run time of request i, respec-
tively. Also, bound is set to 10 seconds to eliminate the effect of very short
requests [47].

To show the efficiency of public Cloud resource provisioning to reduce the
violation rate, we define the Performance-Cost Efficiency (PCE) as follows:

PCE =
Vbase − Vpo
CloudCostpo

(17)

where Vbase and Vpo are the number of deadline violations using a base policy
and po policy, respectively. The CloudCostpo is the price to be paid to utilize
the public Cloud resources for the po policy. We consider, the base policy
as the EASY backfilling in the Earliest Deadline First (EDF) manner on the
private Cloud without using the public Cloud resources. It should be noted
that bigger value of PCE means the higher efficiency in terms of spending
money to decrease the violation rate.

21

Table 1: Input parameters for the workload traces.

Input Parameters Distribution/Value (fs4) Distribution/Value (fs1)

Inter-arrival time trace-based trace-based
No. of VMs Loguniform (l = 0.8,m = 3.5, h, q = 0.9) Loguniform (l = 0.8,m = 3.0, h, q = 0.6)

Request duration Lognormal (µ = 5.3, σ = 2.5) Lognormal (α = 4.4, β = 1.7)
Pone 0.009 0.024
Ppow2 0.976 0.605

R 2× 105 3× 103

To compute the cost of using resources from a public Cloud provider,
we use the amounts charged by Amazon to run basic virtual machines and
network usage at EC2. The cost of using EC2 for policy po can be calculated
as follows:

CloudCostpo = (Upo +Mpo · Us)Cn + (Mpo ·Bin)Cx (18)

where Upo is the public Cloud usage per hour for the policy po. That means,
if a request uses a VM for 40 minutes for example, the cost of one hour is
considered. Mpo is the fraction of requests which are redirected to the public
Cloud. Also, Us is the startup time for initialization of operating system on
a virtual machine which is set to 80 seconds [48]. We take into account this
value as Amazon commences charging users when the VM process starts.
Bin is the amount of data which transfer to Amazon’s EC2 for each request.
The cost of one specific instance on EC2 is determined as Cn and considered
as 0.085 USD per virtual machine per hour for a small instance (in us-east).
The cost of data transfer to Amazon’s EC2 is also considered as Cx which is
0.1 USD per GB 5. It should be noted that we consider a case where requests’
output are very small and can be transfered to the private Cloud for free [5].

6.1. Experimental Setup

For evaluation of the proposed policies under realistic and various working
conditions, we choose two different workloads. First, we use two different
real workload traces of DAS-2 multi-cluster system (i.e., fs4 and fs1 cluster)
obtained from Parallel Workload Archive [49]. Second, we use the workload
model of the DAS-2 system [18], as a typical parallel workload to analyze
performance of the proposed policies while input workload changes. The aim

5All prices obtained at time of writing this paper.

22

of the first experiment is to validate our policies and show their ability to
perform in a real hybrid Cloud system. However, as we want to explore the
system performance with various workloads, we run extensive simulations in
the second experiment with some synthetic workload traces.

Table 1 illustrates the parameters for two different traces for the first
experiment. The parameters for the second experiments are listed in Ta-
ble 2. Based on the workload characterization, the inter-arrival time, request
size, and request duration follow Weibull, two-stage Loguniform and Lognor-
mal distributions, respectively [18]. In the trace experiment, we only used
the workload distributions in the brokering strategies, while in the second
experiment, the synthetic workload is also generated by the corresponding
distributions.

In order to generate different workloads for the second experiment, we
modified three parameters of the workload model, one at a time (see Ta-
ble 2). To change the inter-arrival time, we modified the second parameter
of the Weibull distribution (the shape parameter β). Also, to have requests
with different duration, we changed the first parameter of the Lognormal
distribution between 4.0 and 5.0 which is mentioned in Table 2. Moreover,
we vary the middle point of the Loguniform distribution (i.e., m) to generate
the workload with different number of VMs per request where m = h−ω and
h = log2Nprv, where Nprv is the number of resources in the private Cloud.
We modified the value of ω between 2.0 to 3.0, where the larger value of
ω, the narrower the requests. It should be noted that when we change one
parameter in the workload model, other parameters are fixed and set to be
in the middle of their interval. For instance, when we change the arrival
rate (β), we set ω = 2.5 and µ = 4.5. These values have been chosen in a
way that the generated synthetic workloads can reflect the realistic parallel
workloads [18].

For each simulation experiment, statistics were gathered for a two-month
period of the DAS-2 workloads. For the workload traces, we choose eight
months of the traces in four two-months partitions. The first week of work-
loads during the warm-up phase were ignored to avoid bias before the system
reached steady-state. For the second experiment, each data point is the av-
erage of 50 simulation rounds including with number of jobs varying between
3,000 to 25,000 (depends on the workload parameters). In our experiments,
the results of simulations are accurate with a confidence level of 95%.

The number of resources in the private and the public Cloud is equal to

23

Table 2: Input parameters for the workload model.
Input Parameters Distribution/Value

Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)
No. of VMs Loguniform (l = 0.8,m, h, q = 0.9)

Request duration Lognormal (4.0 ≤ µ ≤ 5.0, σ = 2.0)
Pone 0.024
Ppow2 0.788

Nprv = Npub = 64 with homogeneous computing speed of 1000 MIPS6. The
time to transfer the application (e.g., configuration file or input file(s)) for
the private Cloud is negligible as the local infrastructures are interconnected
by a high-speed network, so Lprv = 0. However, to execute the application on
the public Cloud we must send the configuration file as well as input file(s).
So, we consider the network transfer time as Lpub = 64 sec., which is the time
to transfer 80 MB data7 on a 10 Mbps network connection8. So, Bin is equal
to 80 MB in Equation (18).

The failure trace for the experiments is obtained from the Failure Trace
Archive [52]. We analyzed 9 different failure traces from the Failure Trace
Archive to choose the suitable failure trace. Grid’5000 traces has “medium”
volatility, availability and scale over the period of 18 months (see [52] for
more details). So, we use the failure trace of a cluster in the Grid’5000 with
64 nodes for duration of 18 months, which includes on average 800 events per
node. The average availability and unavailability time in this trace is 22.26
hours and 10.22 hours, respectively. Nevertheless, the proposed strategies are
based on the general characteristics of failure events in distributed systems
and can be utilized with any failure pattern.

To generate the deadline of requests, we utilize the same technique de-
scribed in [30], which provides a feasible schedule for the jobs. To obtain
the deadlines, we conduct the experiments by scheduling requests on the pri-
vate Cloud without failure events using EASY backfilling. Then we used the

6This assumption is made just to focus on performance degradation due to failures.
7This is the maximum amount of data for a real scientific workflow application [50].
8The network latency is negligible as it is less than a second for public Cloud environ-

ments [51].

24

following equations to calculate the deadline di for request i:

Di =

{
sti + (f · tai) if [sti + (f · tai)] < cti

cti otherwise
(19)

where sti is the request’s submission time, cti is its completion time, tai is the
request’s turn around time (i.e., tai = cti− sti). We define f as a stringency
factor that indicates how urgent the deadlines are. If f = 1.0, then the
request’s deadline is the completion under the EASY backfilling scenario.
We evaluate the strategies with different stringency factors where f is 1.0,
1.3 and 1.7 termed tight, normal and relaxed deadline scenarios, respectively.
This assumption generates a realistic deadline for each request and has been
applied by similar studies such as [4].

6.2. Validation Through Trace-based Simulations

In this section, we present the results of simulation experiments where
the input workload is a real trace. The violation rate, Cloud cost per month,
and slowdown for different brokering strategies are reported in Table 3 and
Table 4 for fs4 and fs1 traces, respectively. In these tables, Size, Time, Area,
and EsTime refer to size-based, time-based, area-based, and estimated time-
based brokering strategies, respectively. SB stands for Selective Backfilling.
For the EsTime-SB strategy, we adopt Ri > R to redirect requests to the
public Cloud. The last row of each table, EASY, is the case when we do not
redirect the requests to the public Cloud and the private Cloud serves all
incoming requests while using EASY backfilling algorithm.

The results, at first, confirm the validity and functionality of the pro-
posed strategies under realistic working conditions. As it is illustrated in
Table 3 and Table 4, our brokering strategies are able to improve the slow-
down in any circumstance where the improvement on the violation rate is
mainly for the tight deadlines. Moreover, the proposed strategy based on the
estimated request duration (EsTime-SB) yields comparable performance to
other strategies in terms of the violation rate and slowdown. For instance,
using EsTime-SB strategy with fs4 trace, an organization can improve its
services to the users’ requests about 32% in terms of violation rate for the
tight deadlines and 57% in terms of slowdown by only paying 135 USD per
month. This indicates that we are able to use the user estimates for requests
to improve the system performance.

25

Table 3: Results of simulation for fs4 trace.
Violation rate (%) Cloud cost/month (USD) Slowdown

Strategy tight normal relaxed

Size-SB 22.52 0.19 0.0 471.65 315.65
Time-SB 39.18 0.29 0.0 220.08 1016.55
Area-SB 38.72 0.22 0.0 253.53 761.89

EsTime-SB 36.49 0.02 0.0 134.97 1051.25
EASY 53.99 0.94 0.1 0.0 2447.76

Table 4: Results of simulation for fs1 trace.
Violation rate (%) Cloud cost/month (USD) Slowdown

Strategy tight normal relaxed

Size-SB 38.14 0.0 0.0 1794.23 797.91
Time-SB 43.14 0.0 0.0 649.85 904.09
Area-SB 41.09 0.0 0.0 901.20 812.71

ESTime-SB 41.58 0.0 0.0 861.17 919.32
EASY 59.60 1.67 0.52 0.0 4427.28

The results in these tables express that the performance of area-based
strategy is between size-based and time-based strategies while size-based
strategy outperforms others in terms of violation rate as well as slowdown.
However, the difference between performance of size-based and area-based
strategies is marginal for fs1 trace, while the size-based strategy is much
better than the area-based for fs4 trace. The reason of this difference is
the correlation between request duration and request size in these workload
traces, which can be positive or negative [18, 43]. The positive correlation
means requests with longer duration have larger number of VMs.

To be more precise, cumulative distribution functions of request dura-
tion and request size for fs1 and fs4 traces are depicted in Figure 7. We
observe that fs1 has much wider request size with respect to fs4, while fs4
has marginally longer request duration in comparing to fs1. Focusing on
Figure 7(a) and Figure 7(b) reveals that fs4 has negative correlation between
request duration and request size, while this correlation is positive for fs1
trace. This observation is quantitatively confirmed through Spearman’s rank
correlation coefficient [18]. In this circumstance, we find that the perfor-
mance of the size-based and area-based strategies gets closer when there is
a positive correlation between request duration and request size. It should

26

(a) CDFs of request duration (b) CDFs of request size

Figure 7: Cumulative distribution functions of request duration and request size for con-
sidered workload traces.

be noted that we conducted some experiments with other real traces and the
same behavior has been observed.

As these trace-based experiments only reveal a few possible points from
the state space, so they are not sufficient to conclude about the performance
of our brokering strategies. In the following section, we present the simulation
results for the workload model to analyze the performance of the provisioning
policies under various working conditions. It is worth noting that as we do
not have any model for the estimated duration of requests, we are not able to
explore the performance of EsTime-SB for the workload model simulations.

6.3. Performance Analysis Through Model-based Simulations

The results of workload model simulations for the violation rate versus
various workloads are depicted in Figure 8, Figure 9, and Figure 10 for dif-
ferent provisioning policies and tight, normal and relaxed deadline scenarios,
respectively. As it can be seen in Figure 8, the size-based strategy has the
lowest violation rate while the other two strategies have about the same vi-
olation rates for the tight deadlines. Based on Figure 9 and Figure 10, by
increasing the workload intensity (i.e., arrival rate, duration or size9 of re-
quests), we observe increase in the violation rate for all provisioning policies.

However, the violation rate of size-based brokering strategy, in contrast to
others, has reverse relation with the request size where we observe increasing
in the number of fulfilled deadlines by reducing the size of requests. This

9The larger value of ω, the narrower the requests.

27

(a) Request arrival rate (b) Request duration (c) Request size

Figure 8: Violation rate for all provisioning policies versus different workloads with tight
deadlines (f = 1.0).

behavior is due to increasing the number of redirected requests to the failure-
prone private Cloud in the size-based brokering strategy. This fact is more
pronounced in Figure 8(c).

Moreover, the size-based brokering strategy yields a very low violation
rate for normal and relaxed deadlines, as illustrated in Figure 9 and Figure 10.
The area-based strategy also shows a comparable performance to the size-
based brokering where the time-based strategy has the worst performance
specially when the workload intensity increases.

Based on the results of trace-based simulations, we observe a considerable
improvement in terms of violation rate mainly in the case of tight deadlines.
However, model-based simulations with various workloads elaborate more on
results. Here, for the tight deadlines, the violation rate is improved about
39.78%, 16.61%, and 15.11% with respect to the single private Cloud (EASY)
for the size-based, time-based, and area-based strategies, respectively. How-
ever, for the normal and relaxed deadline scenarios, the improvement is much
higher and it is more than 90% for all cases. This is because of higher work-
load intensity in the model-based simulation with respect to the workload
traces used in Section 6.2. Therefore, the proposed policies are able to im-
prove the users’ QoS in all circumstances, specially when we have an intensive
workload with normal deadlines.

Figure 11 expresses the slowdown of requests for all provisioning poli-
cies versus different workloads with the same configuration as previous ex-
periments. It is worth noting that the slowdown is independent from the
requests’ deadlines.

As it is illustrated in Figure 11(a), with increasing in the request ar-

28

(a) Request arrival rate (b) Request duration (c) Request size

Figure 9: Violation rate for all provisioning policies versus different workloads with normal
deadlines (f = 1.3).

(a) Request arrival rate (b) Request duration (c) Request size

Figure 10: Violation rate for all provisioning policies versus different workloads with re-
laxed deadlines (f = 1.7).

rival rate the slowdown will be increased where size-based and area-based
strategies have a more gradual slope than the time-based strategy.

Moreover, the slowdown versus request duration, which is plotted in Fig-
ure 11(b), reveals that slowdown is decreasing gradually by increasing the
request duration. Based on the results in Figure 11(c), slowdown diminishes
by reducing the request size (number of VMs per request) for the time-based
and area-based strategies. In contrast, slowdown gradually increases in the
size-based strategy due to more redirection of requests to the failure-prone
private Cloud. Nevertheless, size-based strategy has the best slowdown in all
cases with respect to other strategies for different workload types.

Based on these results, utilizing the proposed brokering strategies can
improve the slowdown of requests more than 95% with compare to the single
failure-prone private Cloud as we are able to use highly reliable resources
form the public Cloud platform.

29

(a) Request arrival rate (b) Request duration (c) Request size

Figure 11: Slowdown for all provisioning policies versus different workloads.

As mentioned in Section 6.2, we have a positive or negative correlation
between request duration and request size. Although the workload model
does not take into account this correlation, we synthetically generate this
correlation by changing the parameters of the workload model. For instance,
for a given request duration, we changed the request size from large number
of VMs to small number of VMs. The results of this correlation are more
pronounced in the third figure of each row (Figure (c)) from Figure 8 to
Figure 11. As it can be seen in these figures, positive correlation makes the
performance of area-based strategy to get closer to the size-based strategy.

(a) Request arrival rate (b) Request duration (c) Request size

Figure 12: Cloud cost on EC2 per month for all provisioning policies versus different
workloads.

Figure 12 shows the amount of money spent on EC2 per month to re-
spond to the incoming requests for different workload types. Similar to the
slowdown, cost on EC2 is not dependent on the requests’ deadlines. As it
can be observed in all workload types, the size-based strategy utilizes more
resources from the public Cloud than other strategies and this is the reason

30

of the lower violation rate and slowdown which were described before in this
section. Moreover, the time-based strategy has the lowest Cloud cost on
EC2 while the area-based incurs the cost between size-based and time-based
strategies. Expectedly, the Cloud cost has direct relation with the workload
intensity, specially with the request arrival rate as depicted in Figure 12(a).

The validity of the presented results in this section can be confirmed by
the trace simulation in Section 6.2 where we present the performance met-
rics only for two workload traces. In general, size-based brokering strategy
surpass other strategies in terms of violation rate and slowdown for all dead-
line scenarios, specially when there is negative correlation between request
duration and request size. Moreover, time-based strategy incurs the lowest
Cloud cost while the area-based and size-based strategies are in the next
ranks, respectively.

6.4. Discussions

Selecting a suitable strategy for an organization is strongly dependent
on many issues like desired level of QoS as well as budget constraints. In
this section, to compare the different proposed policies in terms of cost and
performance under different working conditions, we applied the Performance-
Cost Efficiency (PCE) metric. For all provisioning policies, the measurements
using the PCE metric for tight, normal, and relaxed deadlines are shown in
Figures 13, 14, and 15, respectively.

We can infer that time-based brokering strategy has the best PCE among
all proposed strategies, which means more efficiency in terms of fulfilled dead-
lines with respect to the amount spent for the public Cloud resources. This
result confirms the better resource utilization in the time-based strategy,
which is mentioned at the end of Section 5.2.

For the tight deadlines (Figures 13), the size-based strategy has better
PCE with respect to the area-based brokering. However, for other deadline
scenarios (Figure 14, and 15), area-based yields the better PCE. This reveals
that to select a proper brokering strategy, the users’ requirements in terms
of slowdown and QoS must be taken into account carefully.

One possible question about selecting the best brokering strategy for a
hybrid Cloud is the effect of failure patterns on the system performance. For
instance, if we have a highly reliable or highly volatile private Cloud, which
strategy would be the best. As mentioned earlier, the reported results are
based on a system with medium reliability. However, we are able to provide
some advices for other cases as well. In case of highly reliable private Cloud,

31

we may need to redirect a limited number of requests to the public Cloud, so
we can adopt time-based strategy which is a low-cost brokering strategy with
reasonable performance improvement. In contrast, if an organization has a
volatile private Cloud (e.g., an old system), the size-based strategy might be
a good candidate to fulfill the users’ QoS while incurs reasonable monetary
cost for utilizing the public Cloud resources.

(a) Request arrival rate (b) Request duration (c) Request size

Figure 13: Performance-Cost Efficiency for all provisioning policies versus different work-
loads with tight deadlines (f = 1.0).

(a) Request arrival rate (b) Request duration (c) Request size

Figure 14: Performance-Cost Efficiency for all provisioning policies versus different work-
loads with normal deadlines (f = 1.3).

7. Conclusions

We considered the problem of QoS-based resource provisioning in a hy-
brid Cloud computing system where the private Cloud is failure-prone. Our
specific contributions in this work were as follows:

32

(a) Request arrival rate (b) Request duration (c) Request size

Figure 15: Performance-Cost Efficiency for all provisioning policies versus different work-
loads with relaxed deadlines (f = 1.7).

• We developed a flexible and scalable hybrid Cloud architecture to solve
the problem of resource provisioning for users’ requests. The proposed
architecture utilizes the InterGrid concepts which is based on the vir-
tualization technology and adopt a gateway (IGG) to interconnect dif-
ferent resource providers;

• We proposed brokering strategies in the hybrid Cloud system where an
organization that operates its private Cloud aims to improve the QoS
for the users’ requests by utilizing the public Cloud resources. Various
failure-aware brokering strategies which adopt the workload model and
take into account the failure correlations are presented. The proposed
policies take advantage of knowledge-free approach, so they do not need
any statistical information about the failure model of the local resources
in the private Cloud;

• We evaluated the proposed policies and consider different performance
metrics such as deadline violation rate and job slowdown. Experimental
results under realistic workload and failure events, reveal that we are
able to adopt the user estimates in the brokering strategy while using
the workload model provides flexibility to choose the suitable strategy
based on the desired level of QoS, needed performance, and available
budget.

In future work, we intend to implement the proposed strategies inside the
IGG and run real experiments. For this purpose, we will investigate different
checkpointing mechanisms in our analysis and implementation as well. In

33

addition, we are going to investigate another type of applications like loosely-
coupled Many-Task Computing (MTC) with ability of resource co-allocation.
In this case, moving VMs between private and public Cloud will be another
approach to deal with resource failures in the local infrastructure.

Acknowledgments

The authors would like to thank Rodrigo N. Calheiros and Prof. Andrzej
Goscinski for useful discussions. The authors also would like to thank the
reviewers for their comments that help improve this paper.

References

[1] D. Kondo, B. Javadi, P. Malecot, F. Cappello, D. P. Anderson, Cost-
benefit analysis of Cloud computing versus desktop grids, in: Proceed-
ings of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2009), IEEE Computer Society, Washington, DC,
Rome, Italy, 2009, pp. 1–12.

[2] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of
doing science on the Cloud: The montage example, in: Proceedings of
the 19th ACM/IEEE International Conference on Supercomputing (SC
2008), IEEE Press, Piscataway, NJ, Austin, Texas, 2008, pp. 1–12.

[3] M. R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3
for science Grids: a viable solution?, in: Proceedings of the 1st Inter-
national Workshop on Data-aware Distributed Computing (DADC’08)
in conjunction with HPDC 2008, ACM, New York, NY, Boston, MA,
2008, pp. 55–64.

[4] M. D. de Assunção, A. di Costanzo, R. Buyya, Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters, in:
Proceedings of the 18th International Symposium on High Performance
Parallel and Distributed Computing (HPDC 2009), ACM, New York,
NY, Garching, Germany, 2009, pp. 141–150.

[5] Amazon Inc., Amazon Elastic Compute Cloud (Amazon EC2), http:
//aws.amazon.com/ec2.

[6] GoGrid Inc., GoGrid Cloud Hosting, http://www.gogrid.com/.

34

[7] J. McKendrick, NASA’s Nebula: a stellar example of private clouds in
government, http://nebula.nasa.gov/.

[8] C. Vecchiola, X. Chu, R. Buyya, Aneka: A Software Platform for .NET-
based Cloud Computing, IOS Press, Amsterdam, 2009, pp. 267–295.

[9] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Virtual infras-
tructure management in private and hybrid clouds, IEEE Internet Com-
puting 13 (5) (2009) 14 –22.

[10] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, S. Quinlan, Availability in globally distributed storage sys-
tems, in: Proceedings of the 9th USENIX conference on Operating sys-
tems design and implementation, USENIX Association, Berkeley, CA,
Vancouver, BC, Canada, 2010, pp. 1–7.

[11] D. Oppenheimer, A. Ganapathi, D. A. Patterson, Why do internet ser-
vices fail, and what can be done about it?, in: Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and Sys-
tems, USENIX Association, Berkeley, CA, Seattle, WA, 2003, pp. 1–15.

[12] T. Mather, S. Kumaraswamy, S. Latif, Cloud Security and Privacy: An
Enterprise Perspective on Risks and Compliance, O’Reilly Media, Inc.,
2009.

[13] J. H. Abawajy, Determining service trustworthiness in Intercloud com-
puting environments, in: The 10th International Symposium on Perva-
sive Systems, Algorithms, and Networks (ISPAN 2009), 2009, pp. 784–
788.

[14] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing
cloud infrastructure services from a spot market, in: Proceedings of the
12th IEEE International Conference on High Performance Computing
and Communications (HPCC 2010), IEEE Press, Piscataway, NJ, Mel-
bourne, Australia, 2010, pp. 180–188.

[15] B. Javadi, D. Kondo, J.-M. Vincent, D. P. Anderson, Discovering sta-
tistical models of availability in large distributed systems: An empirical
study of seti@home, IEEE Trans. Parallel Distrib. Syst. 22 (11) (2011)
1896–1903.

35

[16] A. Downey, A model for speedup of parallel programs, Technical Report
UCB/CSD-97-933, Computer Science Division, U.C. Berkeley, Califor-
nia, CA (1997).

[17] M. Tatezono, N. Maruyama, S. Matsuoka, Making wide-area, multi-site
MPI feasible using Xen VM, in: Proceedings of the 4th Workshop on
Frontiers of High Performance Computing and Networking in conjuction
with ISPA 2006, Springer-Verlag, Berlin, Sorrento, Italy, 2006, pp. 387–
396.

[18] H. Li, D. Groep, L. Wolters, Workload characteristics of a multi-cluster
supercomputer, in: Proceedings of the 10th International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP ’04), Springer-
Verlag, Berlin, New York, USA, 2004, pp. 176–193.

[19] J. Varia, Best Practices in Architecting Cloud Applications in the AWS
Cloud, Wiley Press, Hoboken, NJ, 2011, pp. 459–490.

[20] U. Hoelzle, L. A. Barroso, The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines, Morgan and Claypool
Publishers, San Rafael, CA, 2009.

[21] M. Gallet, N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, D. Epema, A
model for space-correlated failures in large-scale distributed systems, in:
Proceedings of the 16th International European Conference on Parallel
and Distributed Computing (Euro-Par 2010), Springer-Verlag, Berlin,
Ischia, Italy, 2010, pp. 88–100.

[22] S. Fu, C.-Z. Xu, Quantifying event correlations for proactive failure man-
agement in networked computing systems, Journal of Parallel and Dis-
tributed Computing 70 (2010) 1100–1109.

[23] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, D. Epema, Analysis and
modeling of time-correlated failures in large-scale distributed systems,
in: Proceedings of the 11th IEEE/ACM International Conference on
Grid Computing (Grid 2010), IEEE Computer Society, Washington,
DC, Brussels, Belgium, 2010, pp. 65 – 72.

[24] A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-
operating Grids through delegated matchmaking, in: Proceedings of the

36

18th ACM/IEEE Conference on Supercomputing (SC 2007), ACM, New
York, NY, Reno, Nevada, 2007, pp. 1–12.

[25] P. Ruth, P. McGachey, D. Xu, VioCluster: Virtualization for dynamic
computational domain, in: Proceedings of the 7th IEEE International
Conference on Cluster Computing (Cluster 2005), IEEE Press, Piscat-
away, NJ, Burlington, MA, 2005, pp. 1–10.

[26] A. J. Rubio-Montero, E. Huedo, R. S. Montero, I. M. Llorente, Manage-
ment of virtual machines on Globus Grids using GridWay, in: Proceed-
ings of the 21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007), IEEE Press, Piscataway, NJ, Long Beach,
USA, 2007, pp. 1–7.

[27] E. Huedo, R. S. Montero, I. M. Llorente, Grid architecture from a
metascheduling perspective, IEEE Computer 43 (7) (2010) 51 –56.

[28] P. Marshall, K. Keahey, T. Freeman, Elastic site: Using clouds to elasti-
cally extend site resources, in: Proceedings of the 10th IEEE/ACM In-
ternational Conference on Cluster, Cloud and Grid Computing (CCGrid
2010), IEEE Computer Society, Washington, DC, Melbourne, Australia,
2010, pp. 43–52.

[29] I. Moschakis, H. Karatza, Evaluation of gang scheduling performance
and cost in a cloud computing system, The Journal of Supercomputing
1 (2010) 1–18.

[30] M. Islam, P. Balaji, P. Sadayappan, D. K. Panda, QoPS: A QoS based
scheme for parallel job scheduling, in: Proceedings of the 9th Interna-
tional Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP ’03), Springer-Verlag, Berlin, Seattle, WA, 2003, pp. 252–268.

[31] L. He, S. A. Jarvis, D. P. Spooner, X. Chen, G. R. Nudd, Dynamic
scheduling of parallel jobs with QoS demands in multiclusters and Grids,
in: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing (Grid 2004), IEEE Computer Society, Washington, DC,
Pittsburgh, USA, 2004, pp. 402–409.

[32] P. Xavier, W. Cai, B.-S. Lee, A dynamic admission control scheme to
manage contention on shared computing resources, Concurrency and
Computation: Practice and Experience 21 (2) (2009) 133–158.

37

[33] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan, Selective
reservation strategies for backfill job scheduling, in: Proceedings of the
8th International Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP ’02), Springer-Verlag, London, Edinburgh, Scotland,
UK, 2002, pp. 55–71.

[34] D. Tsafrir, Y. Etsion, D. G. Feitelson, Backfilling using system-generated
predictions rather than user runtime estimates, IEEE Transations on
Parallel and Distributed Systems 18 (2007) 789–803.

[35] W. Tang, N. Desai, D. Buettner, Z. Lan, Analyzing and adjusting user
runtime estimates to improve job scheduling on the Blue Gene/P, in:
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2010), IEEE Press, Piscataway, NJ, At-
lanta, USA, 2010, pp. 1–11.

[36] M. D. de Assunção, R. Buyya, S. Venugopal, InterGrid: A case for inter-
networking islands of Grids, Concurrency and Computation: Practice
and Experience 20 (8) (2008) 997–1024. doi:10.1002/cpe.1249.

[37] A. di Costanzo, M. D. de Assunção, R. Buyya, Harnessing cloud tech-
nologies for a virtualized distributed computing infrastructure, IEEE
Internet Computing 13 (5) (2009) 24–33.

[38] D. G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation, e-Book, http://www.cs.huji.ac.il/~feit/wlmod/, 2009.

[39] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, I. M. Llorente,
OpenNEbula: The open source virtual machine manager for cluster com-
puting, in: Open Source Grid and Cluster Software Conference, Book
of Abstracts, San Francisco, CA, 2008.

[40] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, D. Zagorodnov, The Eucalyptus open-source cloud-computing sys-
tem, in: Proceedings of the 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2009), IEEE Computer
Society, Washington, DC, Shanghai, China, 2009, pp. 124–131.

[41] D. A. Lifka, The ANL/IBM SP scheduling system, in: Proceedings of
the 1st Workshop on Job Scheduling Strategies for Parallel Processing

38

(JSSPP ’95), Springer-Verlag, London, Santa Barbara, CA, 1995, pp.
295–303.

[42] M. Bouguerra, T. Gautier, D. Trystram, J.-M. Vincent, A flexible check-
point/restart model in distributed systems, in: Proceedings of the 9th
International Conference on Parallel Processing and Applied Mathemat-
ics (PPAM 2010), Springer-Verlag, Berlin, Torun, Poland, 2010, pp.
206–215.

[43] U. Lublin, D. G. Feitelson, The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs, Journal of Parallel and Dis-
tributed Computing 63 (11) (2003) 1105–1122.

[44] L. F. Orleans, P. Furtado, Fair load-balancing on parallel systems for
QoS, in: Proceedings of the 36th International Conference on Parallel
Processing (ICPP 2007), IEEE Computer Society, Los Alamitos, CA,
XiAn, China, 2007, pp. 22 –30.

[45] A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling,
IEEE Transactions on Parallel and Distributed Systems 12 (6) (2001)
529–543.

[46] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: a toolkit for modeling and simulation of Cloud computing
environments and evaluation of resource provisioning algorithms, Soft-
ware: Practice and Experience 41 (1) (2011) 23–50.

[47] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, P. Wong,
Theory and practice in parallel job scheduling, in: Proceedings of the
3rd International Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP ’97), Springer-Verlag, London, Seattle, WA, 1997,
pp. 1–34.

[48] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
D. Epema, A performance analysis of EC2 Cloud computing services
for scientific computing, in: Proceedings of the 1st International Confer-
ence on Cloud Computing (CloudComp 2009), Springer-Verlag, Berlin,
Beijing, China, 2009, pp. 115–131.

39

[49] Parallel Workload Archive, http://www.cs.huji.ac.il/labs/

parallel/workload/.

[50] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. E. Dobson,
K. Chiu, A grid workflow environment for brain imaging analysis on
distributed systems, Concurrency and Computation: Practice and Ex-
perience 21 (16) (2009) 2118–2139.

[51] CloudHarmony, http://cloudharmony.com/.

[52] D. Kondo, B. Javadi, A. Iosup, D. H. J. Epema, The Failure Trace
Archive: Enabling comparative analysis of failures in diverse distributed
systems, in: Proceedings of the 10th IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing (CCGrid 2010), IEEE
Computer Society, Washington, DC, Melbourne, Australia, 2010, pp.
398–407.

40

