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Abstract—Volunteer computing systems are large-scale dis-
tributed systems with large number of heterogeneous and un-
reliable Internet-connected hosts. Volunteer computing resources
are suitable mainly to run High-Throughput Computing (HTC)
applications due to their unavailability rate and frequent churn.
Although they provide Peta-scale computing power for many
scientific projects across the globe, efficient usage of this platform
for different types of applications still has not been investigated in
depth. So, characterizing, analyzing and modeling such resources
availability in volunteer computing is becoming essential and
important for efficient application scheduling. In this paper, we
focus on statistical modeling of volunteer resources, which exhibit
non-random pattern in their availability time. The proposed
models take into account the autocorrelation structure in subset
of hosts whose availability has short/long-range dependence. We
apply our methodology on real traces from the SETI@home
project with more than 230,000 hosts. We show that Markovian
arrival process can model the availability and unavailability
intervals of volunteer resources with a reasonable to excellent
level of accuracy.

Keywords-Volunteer Computing, Resource Availability, Statis-
tical Modeling, Markov Model.

I. INTRODUCTION

Volunteer computing systems are large-scale distributed
systems with large number of heterogeneous and unreliable
Internet-connected hosts. These platforms provide more than
10 PetaFLOPS computing power to more than 70 scientific
projects in different area such as astronomy, physics, mathe-
matics and chemistry [4], [7]. Obviously, we would like to use
volunteer resources as much as we can because they provide
immense computational power on the order of PetaFLOPS and
storage on the order of PetaBytes at near-zero costs [3]. How-
ever, volunteer computing resources are only suitable to run
High-Throughput Computing (HTC) applications due to their
unavailability rate and frequent churn (several times a day).
So, characterizing, analyzing and modeling such resources
availability in volunteer computing is an essential requirement
to broaden the types of applications that can be executed in
this system, which is the main goal of this paper.

The overall objective of the modeling is to use the free
resources of volunteer computing systems for execution of
scientific applications in form of many task computing work-
loads. Many task computing (MTC) is a new paradigm to
bridge the gap between High-Throughput Computing (HTC)
and High-Performance Computing (HPC) [26]. The structure

of MTC applications can be considered as graphs of dis-
crete tasks. These tasks can be different in terms of size,
communication patterns and intensity. In most cases, the data
dependencies among tasks are handled through file sharing that
is a feasible way of tasks communication in volunteer com-
puting platforms. However, in contrast to HTC applications,
MTC applications have relatively short tasks (i.e., seconds to
minutes long), so they need fast response time. Therefore,
resources availability and their temporal structure is crucial
and important for efficient scheduling of these applications.

Using the availability model, a scheduler would be able
to obtain the likelihood of successful task execution for a
given task runtime. Moreover, the resource availability model
can be used to optimize the checkpointing mechanisms in
terms of checkpoint intervals [9] as well as proposing suitable
resource selection strategies [19]. Since the number of active
and available hosts in volunteer computing systems are much
higher than number of tasks in scientific applications, resource
selection can be employed to reduce the execution time of
these applications.

In previous work, an analysis and methodology was pro-
posed to form subsets of hosts with similar statistical prop-
erties that can be modeled with similar distribution func-
tions [18]. This paper explained that about 21% of hosts
exhibit random availability, which can be modeled with a few
distinct distributions from different families. It was also shown
how to apply the proposed models for stochastic scheduling
of Bag-of Tasks (BoT) applications in a resource brokering
context [19]. In this paper, we focus on statistical modeling
of volunteer resources which exhibit non-random pattern in
their availability time. To do this, we extended the existing
methodology to further characterize, analyze and consider
autocorrelation structure in modeling the subset of hosts whose
availability have short/long-range dependence.

We applied the proposed methodology on real traces from
the SETI@home project with more than 230,000 hosts. We se-
lected three statistical models that have the ability to fit traces
with temporal dependencies. We conducted the model fitting
and analyzed the model complexity and accuracy through state
reduction. We propose a queuing simulation technique to eval-
uate quality of the modeling. We show that Markovian arrival
process can model the availability and unavailability intervals
of volunteer resources with a good degree of accuracy.



The rest of this paper is organized as follows. Related work
is described in Section II. In Section III, we present the detail
of modeling workflow and real traces. Section IV includes how
statistical models are selected. The model fitting and analysis
of the model parameters are presented in Section V. In Sec-
tion VI, the model evaluation through simulation experiments
is discussed. Conclusions and future work are presented in
Section VII.

II. RELATED WORK

This section describes the related work in modeling and
analysis of availability in volunteer computing systems. There
are several research on collecting of real availability traces
in volunteer computing platforms. Most of these studies are
focused on host availability [6], [28], [30], which is different
from CPU availability considered in this paper. CPU availabil-
ity is defined as the time when a host’s CPU is available to
run the application as a volunteer resource. In the other words,
host availability might be a misleading metric as a host can
be available but not its CPU.

Moreover, some papers only focused on volunteer resources
in the enterprise or university [8], [21] while we use real traces
that includes hosts in the enterprise, university and home.
Some studies such as [14], [24] used availability traces of
hundreds of hosts over a limited time period (e.g., a few
weeks). In contrast, we study a real traces of hundreds of
thousands hosts over the period of 1.5 years.

There are many related work for availability modeling of
volunteer systems, but most of them if not all did not take into
account the temporal dependence of resource availability [13],
[15], [20]. For instance, in [20], authors used the average
availability as a distance metric to find cluster of hosts with the
similar level of availability. So, the availability intervals were
ignored as the goal was to find the correlated hosts. It has
been shown that effective resource selection and scheduling
is strongly depended on temporal structure of availability in
such platforms [5], [29]. Hence, we propose statistical models
considering the autocorrelation structure in subset of hosts
whose availability has short/long-range dependence.

In previous work, modeling and methodology to form
subsets of hosts with purely random availability was intro-
duced [18], [19]. Clustering technique was also used to form
group of hosts that can be modeled with similar distribution
functions. It was revealed that cluster formation by static
criteria such as host location, time zone and CPU speeds can
not have the same results as clustering by availability distri-
bution. In other words, there is no correlation between host
location, time zone and CPU speeds of host with the length
of availability intervals. In contrast, we consider statistical
modeling of volunteer resources, which exhibit non-random
pattern in their availability time.

III. MODELING METHODOLOGY

In this section, we present the details of real traces as well
as the modeling workflow used in this paper.

A. Availability Trace

We used a real CPU availability trace from 230,000
hosts over the Internet between April 1, 2007 to January 1,
2009 [18]. The CPU availability is considered as a binary value
indicating whether the CPU was free or not. The traces record
the start and end time of CPU availability.

This trace is collected using BOINC server [2] from
the SETI@home volunteer resources. BOINC is a middle-
ware for volunteer computing and has been used in more
than 60 projects such as SETI@home, Einstein@home and
Rosetta@home with over one million hosts [4], [7]. The traces
is application independent since they are in the level of BOINC
client. In total, the traces captured 57,800 years of CPU
time and 102,416,434 continues intervals of CPU availability.
This trace is publicly available in the Failure Trace Archive
(http://fta.scem.uws.edu.au/) [17].

B. Modeling Workflow

Previous work [19] proposed a modeling workflow to model
CPU availability and unavailability for large-scale distributed
systems. Time series of availability and unavailability of each
host in the system was used as shown in Figure 1. As you
can see in this figure, Ax and Uy are random variables of
availability and unavailability intervals, respectively. Different
behaviors in these intervals in terms of randomness and peri-
odicity were examined. For significant and accurate modeling,
we need to capture and distinguish these different behaviors
among available resources in the system.

Fig. 1. CPU availability and unavailability intervals on one host.

In order to classify hosts whose availability is truly random,
a set of randomness tests were used. We conduct three well-
known non-parametric tests, called runs test, runs up/down
test and Kendall-tau test [33]. Randomness tests were applied
on both variables Ax and Uy and when significant they were
classified as iid hosts. This means that they have identical
and independent distribution for availability and unavailability
intervals. Otherwise they will be considered as non-iid hosts.
It was observed that 21% of total hosts in the given volunteer
computing system have random availability [19].

For iid hosts, clustering approach based on a distance metric
that measures the difference between two distributions was
applied, this resulted to six different clusters of hosts. The
availability and unavailability intervals of these clusters can be
accurately modeled by several distinct families such as Gamma
and hyper-exponential distributions. The results of clustering
and modeling of iid hosts are briefly listed in Table I. For more
details about modeling of iid hosts, you can refer to [18], [19].

In this paper, we focus on CPU availability of non-iid hosts,
which are the majority of the hosts in the volunteer computing



TABLE I
PROPERTIES OF IID HOSTS AND ALL CLUSTERS.

Clusters % of hosts Avai. Model Unavai. Model
All iid hosts 21 Weibull Log-Normal

Cluster 1 4 Gamma Hyper-exponential
Cluster 2 11 Gamma Hyper-exponential
Cluster 3 66 Weibull Log-Normal
Cluster 4 1 Gamma Hyper-exponential
Cluster 5 9 Gamma Hyper-exponential
Cluster 6 9 Gamma Hyper-exponential

system (about 79%). To this end, we propose the statistical
analysis and modeling of the availability and unavailability
intervals for non-iid hosts.

IV. MODEL SELECTION

For iid hosts the focus was on discovering a statistical
model to fit the cumulative distribution function (CDF) of
availability and unavailability intervals. This means that there
is no dependencies in time series and the autocorrelation
function (ACF) vanishes for all nonzero lags. It was clear
that phase-type distribution such as hyper-exponential was an
attractive model for distribution fitting of heavy-tail behavior
in unavailability intervals. However, availability intervals with
shorter tails can be accurately modeled by simpler models such
as Gamma distribution (see Table I).

Fig. 2. Mass-count for availability and unavailability intervals of non-iid hosts.

In contrast, non-iid hosts have some dependencies in their
availability and unavailability intervals which cannot be cap-
tured by renewal models. So the first step is to nominate a
set of statistical models that can consider both CDF and ACF
of the target random variables. To do that, we need to first
inspect the characteristics of the non-iid hosts in terms of
distribution as well as dependencies. Figure 2 shows the mass-
count disparity of availability and unavailability intervals for
non-iid hosts. From this figure we can clearly observe that
about 20% of total availability is created by 90% of short
availability intervals. So, the 10% of long availability interval

contribute for the rest of 80% of total availability. This shows
that availability has long-tail behavior. Based on this figure,
unavailability distribution has a much heavier tail compared
to availability. That means we need to focus on modeling of
larger intervals as they have higher contribution.

The temporal dependencies of non-iid hosts can be pre-
sented by autocorrelation function. When the ACF of the time
series decays slowly we have a long memory or long-range
dependence (LRD) [31]. Also, any time series X has a long-
range dependence property if the ACF satisfies the following
condition:

R(k) ∼ ck2H−2, k →∞ (1)

where R(k) is the autocorrelation of lag k, c is a constant
and H is the Hurst parameter. The LRD property can be
measured by the Hurst parameter which has a value between
0.5 and 1.0 (0.5 ≤ H ≤ 1.0). The higher value of H ,
the greater the degree of LRD. We used three well-known
estimation methods, namely Aggregate Variance, R/S statistic
and Periodogram [31] to calculate the Hurst parameter. The
mean and standard deviation values of the H parameter are
listed in Table II for non-iid hosts as well as the six clusters in
the iid-hosts situation. As it can be seen in this table, non-iid
hosts have the LRD property while clusters of iid hosts show
short to middle-range of dependencies. We can also observe
that in most cases, availability intervals have longer temporal
dependencies in compare with unavailability intervals.

Fig. 3. CCDF of the availability models and real traces.

Based on the observations of distribution and temporal de-
pendency of non-iid hosts, we investigated and selected three
statistical models for the fitting, which are briefly explained
as follows. Markov modulated Poisson process (MMPP) is
a doubly stochastic Poisson process where intensity is con-
trolled by a finite state continues-time Markov chain (CTMC).
MMPP(n) is parametrized with n Poisson arrival rates and
one n × n matrix (Q) as n-state CTMC with infinitesimal
generator. Therefore, the number of parameters for MMPP(n)



TABLE II
THE HURST PARAMETER FOR AVAILABILITY AND UNAVAILABILITY INTERVALS.

Trace Non-iid hosts iid hosts
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Availability 0.71±0.04 0.61±0.04 0.61±0.03 0.63±0.09 0.65±0.03 0.61±0.04 0.63±0.04
Unavailability 0.70±0.05 0.55±0.00 0.54±0.02 0.64±0.05 0.60±0.02 0.56±0.02 0.58±0.03

(a) First 200 lags (b) Full lags

Fig. 4. Autocorrelation function for the availability models and real traces.

is n2 + n. MMPP has been widely used for modeling of
network traffic and workload in distributed systems [11], [23].
Although MMPP has interesting features and can be used in
tractable analytical model, it is not able to capture the LRD
property [22]. Therefore, we selected another model called
Markovian arrival processes (MAPs), a class of Markovian
models developed by Neuts [25] that encompasses MMPP and
phase-type distribution as special cases. A MAP(n) is defined
by two n × n matrices where D0 includes hidden transitions
and elements and D1 describes transitions rated between n
states. The matrix Q = D0 +D1 is the transition rate matrix
for a CTMC. The number of parameters in MAP(n) will be
2n2 − n. In the special case where D1 is a diagonal matrix,
the model is simply a MMPP(n).

The third model that we used to fit the (un)availability time
series is Multifractal Wavelet Model (MWM) [27]. This model
utilizes the power of multifractals as well as the efficiency
of the wavelet transform to provide a flexible framework to
capture behavior of positive LRD data. As (un)availability
intervals are non-negative values this model can be used as
an alternative to capture the behavior of non-iid hosts. The
MWM works as a stochastic process via scaling techniques
where at each scale a series of scaling coefficients and wavelet
coefficient are generated to model the real traces. The MWM
uses the symmetric beta distribution to fit wavelet coefficients
to generate beta parameter ~p. Finally, MWM produces the
mean and variance of scaling coefficient (µc, σc) to complete
the model parameters. So the number of parameters in the
MWM is m + 2 where m is the number of factors in beta

parameter ~p. For more information about this model, you can
refer to [27].

V. MODEL FITTING

In this section, we provide the techniques and results of
fitting the suggested three statistical models for non-iid hosts.
We utilized KPC-Toolbox [10] for fitting of MMPP and MAP
models and a toolbox from the Digital Signal Processing
(DSP) group at Rice University [1] for MWM model fitting.
Both toolboxes are in Matlab, which are along with other stan-
dard Statistical Toolbox. We also implemented and modified
some statistical functions ourselves.

KPC-Toolbox has a fitting technique that is more focused on
higher-order correlations than higher order of moments. The
toolbox automatically searches for the best order of MAP (i.e.,
n) that can accurately fit the trace using Bayesian Information
Criterion (BIC) [10]. Given the order of target MAP, toolbox
can generate the model that capture the the most essential
characteristics of the trace. We used the automatic fitting for
the MAP model while using two-state fitting for the MMPP
model.

Similar to KPC-Toolbox, the MWM toolbox also uses an
automatic modeling procedure for model fitting, which is
based on creating a tree-like structure to generate a series of
scaling coefficients and wavelet coefficients. The number of
coefficients are dependent on the input trace and calculated
by a recursive technique [1], [27]. So the number of factors
in ~p will be obtained automatically based on the input trace
(see Section IV).



The results of the fitting for availability intervals of non-iid
hosts are plotted in Figure 3 as a complementary cumulative
distribution function (CCDF) diagram. As one can see, all
models seem to be a good fit especially for the end of
the tail while MWM shows better fit throughout the whole
distribution. MMPP has some discrepancies at the beginning
of the tail as illustrated in this figure. In terms of ACF as
depicted in Figure 4(a), MAP shows a close fit for the first
200 lags. The MWM also captured the autocorrelation with a
reasonable accuracy for larger lags as shown in Figure 4(b).
It was observed that the MAP model was not able to capture
the autocorrelation feature for lags larger than 104, and as we
expected MMPP failed to capture the LRD property of the
non-iid hosts.

We conducted the same fitting for unavailability intervals
of the non-iid hosts. The results of fitting in form of CCDF
digram are plotted in Figure 5. This reveals that both MAP and
MMMP are good fit in terms of distribution, but MWM can
not model the beginning of the tail for the unavailability traces.
The results of fitting for ACF depicted in Figure 6 show that
MAP and MWM can expectedly fit the LRD property while
MMPP failed to do so. Similar to the availability case, the
MAP model can accurately fit the short lags of unavailability
traces while MWM is able to fit the longer lags as illustrated
in Figure 6(b).

Fig. 5. CCDF of the unavailability models and real traces.

As it can be seen in Figure 4(a) and Figure 6(a), the autocor-
relation function of the availability traces decays much slower
than the unavailability traces for non-iid hosts, which means
availability intervals have longer range of dependencies. This
fact confirms the quantitative results using Hurst parameter
given in Table II.

As mentioned earlier, we used automatic fitting for both
MAP and MWM while using two-state structure for the
MMPP model. In the following, we will analyze the fitted
models in terms of number of parameters. The number of
states for the MAP and MMPP models as well as number

of factors for the MWM model are listed in Table III for
availability and unavailability intervals (refer to Section IV
about detail of parameters in these models). Based on this
table, both MMPP and MWM have reasonable number of
parameters. Although the MAP model showed a good fit for
both availability and unavailability traces, but the number of
states and number of parameters are very high and that might
limit the application of the model. To address this issue, we
consider the effect of state reductions by factor of 50% and
25% on the MAP model. To do this, we used the same fitting
method with the number of states as a given value equals to
half and quarter of the number of states listed in Table III for
availability and unavailability intervals. We observed that the
two new models have very similar behavior in terms of CCDF
and ACF in compare with the original MAP model. For the
sake of brevity, we used these models in the model evaluation
in Section VI.

VI. MODEL EVALUATION

In this section, we present the evaluation of the pro-
posed models in the previous section. Goodness of fit (GoF)
tests are the basic methods for evaluating the quality of
fitting [12]. These tests include visual methods such as
probability-probability (PP) plot as well as quantitative tests
such as Kolmogrov-Smirnov (KS) and Anderson-Darling (AD)
tests [18]. However, all of these tests are focus only on the
distribution of the model (e.g., CDF) and do not consider
any autocorrelation structure. In our modeling, we need to
utilize a method that can combine both features (distribution
and autocorrelation) and evaluate them at the same time.

Since our modeling technique is similar to modeling of
inter-arrival time in network traffic and workload traces, we
used the same approach for model evaluation. In this method,
due to time-varying characteristics in the real traces, the qual-
ity of modeling will be evaluated by comparing the behavior
of Model/M/1 queue versus Trace/M/1 queue [11], [16].
This means that they simulate two queues where the inter-
arrival time to each queue will be generated by the fitted
model or the real traces. They usually compare the queue
length probabilities of two queues under different levels of
utilizations. Since we model the process of (un)availability
interval, we need to modify this queuing system for model
evaluation appropriately.

As it is illustrated in Figure 1, a CPU on host i can
serve as a queue to run incoming jobs. So if we consider
jobs as the incoming requests then CPU works as a server
with a variable service time. Hence, we can use M/Model/1
and M/Trace/1 queuing systems for model evaluation. We
consider the exponential distribution for the inter-arrival time
of input jobs to focus only on the target metric, which is the
queue service time. But the question is how to generate the
service times while we have two separate series for availability
and unavailability for the server.

In order to generate service times for these queues, we
proposed Algorithm 1. In this algorithm, the input variables
are time series of availability and unavailability that can be



TABLE III
PARAMETERS FOR THE FITTED MODELS.

Model Availability Model Unavailability Model
No. of states/factors No. of parameters No. states/factors No. of parameters

MMPP 2 6 2 6
MAP 16 2× 162 − 16 32 2× 322 − 32

MWM 22 24 22 24

(a) First 200 lags (b) Full lags

Fig. 6. Autocorrelation function for the unavailability models and real traces.

fed from the real traces or fitted models. The output is the
service time vectors with N elements. We first generate a job
where its run time follows an exponential distribution with the
given mean value of T (Line 6). If the job size is less than
the current CPU availability time, then the job size will be the
service time since the job doesn’t experience any interruption
due to CPU unavailability. (Line 27). Otherwise, we need to
add one or more unavailability intervals into the service time
until the job get served (Line 8,17). In other words, we need
to add unavailability times to the service time as jobs need to
wait until the next availability intervals to continue execution.
In this algorithm, residual keeps track of the current value of
the CPU availability. For the sake of simplicity, we ignore the
CPU power heterogeneity in this algorithm. This assumption
doesn’t have any effect on the generality of this algorithm
as we observed that CPU speed and availability time has no
correlation [18].

A. Simulation Setup

In order to simulate the two queuing systems, we imple-
mented a discrete-event simulator using the Objective Modular
Network Testbed in C++ (OMNeT++) [32]. This simulation
environment is open-source, component-based and modular,
which has been widely used for network simulations. We
consider the response time of the queue as the performance
metric for the model evaluation. It should be noted that we
utilize the same model for availability and unavailability to
generate the service times. We leave the other combinations
such as the MAP model for availability and the MWM model

for unavailability for the future work.
The simulator uses the service times generated by Algo-

rithm 1 from the fitted models or the real traces. Based on the
characterization of real BOINC projects, the average job size
is about 1.2 hours [14], so we used the T = 4320sec in this
algorithm. We simulate each single queue with two different
utilization values. To do this, we changed the input job rate in
each queue to obtained different queue utilizations. We used
20% and 40% utilizations for the simulation experiments.

For each simulation experiment, we used the batch means
method to gather the statistics where we had 100 batches each
of which with 20,000 jobs. The first and the last batch were
ignored as warm-up and drain phases of the simulation. In our
experiments the coefficient of variation of the results was very
low (CV<0.01).

B. Results and Discussions

The simulation results for the response time of the queues
while using three different proposed models as the service
time are depicted in Figure 7. The CCDF of response time
in four different queues for 20% and 40% utilizations are
plotted in Figure 7(a) and 7(b), respectively. As can be seen in
these figures, under lower utilization, both MAP and MWM
are good matches while for higher utilization MAP model
shows a closer fit to the real data. We can also observe that
although MMPP model doesn’t seem to be a good fit based on
discussion in Section V, it has a reasonable match especially
for higher utilization queue.

These results reveal that the Markovian arrival process can



model the availability and unavailability intervals of volunteer
resources with a reasonable to excellent level of accuracy. The
main advantage of MAPs is that they can be easily integrated
within queuing systems or queuing networks, and then used
in the evaluation of system performance. However, as we
discussed at the end of Section V, number of states in the
MAP model could be a disadvantage for practical performance
analysis. In the following, we analyze the result of state
reduction for the proposed MAP model.

As mentioned before, we have reduced the number of states
in the MAP model by a factor of 50% and 25%. To analyze the
effect of this reduction on the quality of fitting, we used the
same queuing systems with the new MAP models and repeat
the experiments. The result of simulations under two different
utilizations are plotted in Figure 8 where MAP, MAP50 and
MAP25 refer to full state model, 50% and 25% of the full state
model, respectively (see Table III). As one can see, MAP50
shows a very close match with the original MAP as well as the
real trace results. Moreover, MAP25 has a good fit near the
end of tail while it has some discrepancies at the beginning of
the tail. This result shows that we can use the simpler version
of the MAP model with almost same accuracy.

Summarizing, this subsection has shown that MAP model is
a good candidate to model the (un)availability traces with the
LRD properties. While MMPP model is not able to capture
the LRD properties in the (un)availability traces, it can be a
reasonable candidate to simplify the performance modeling of
the volunteer computing systems.

VII. CONCLUSIONS

Statistical modeling of resource availability in volunteer
computing systems is a key factor for efficient application
scheduling in these platforms. We considered statistical mod-
eling of volunteer resources, which exhibit non-random pattern
in their availability time. We observed that non-iid hosts have
long-tailed availability distribution with long-rang dependence.
So, the proposed models take into account the autocorrelation
structure in subset of hosts whose availability has short/long-
range dependence.

We applied three statistical models namely MMPP, MAP,
and MWM on real traces from the SETI@home project with
more than 230,000 hosts. We showed that MAP model can
fit the availability and unavailability intervals of volunteer
resources with a good to excellent level of accuracy. It has been
shown that reduction of states by factor of 50% in the MAP
model doesn’t have much effect on the quality of the model.
We also observed that the MAP model can accurately fit the
autocorrelation for limited number of lags (i.e., 200 lags), and
this is sufficient-enough for resource scheduling when using
this model.

For future work, we would like to generalize and apply
our modeling to include the iid-hosts model for application
scheduling on volunteer computing resources. We also want to
modify the BOINC middleware to support execution of MTC
applications based on the stochastic scheduling techniques.

Algorithm 1: Service Time Generation
Input: Avai, Unavai, T,N
Output: Service.T ime

1 residual = Avai(1);
2 i = 1, k = 1;
3 while sizeof(Service.T ime) ≤ N do
4 Service.T ime(i) = 0;
5 //job run time;
6 job.size = exprnd(T );
7 if job.size > residual then
8 Service.T ime(i) =

Service.T ime(i) + residual + Unavai(k);
9 i = i+ 1, k = k + 1;

10 if k > sizeof(Avai) then
11 return;

12 //remaining time for job completion;
13 job.size = job.size− residual;
14 while job.size ≥ 0 do
15 residual = Avai(k);
16 if k > residual then
17 Service.T ime(i) =

Service.T ime(i) +Avai(k) + Unavai(k);
18 job.size = job.size−Avai(k);
19 i = i+ 1, k = k + 1;
20 if k > sizeof(Avai) then
21 return;

22 else
23 break;

24 residual = Avai(k)− job.size;
25 else
26 residual = residual − job.size

27 Service.T ime(i) = Service.T ime(i) + job.size;
28 i = i+ 1
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