
Hybrid Cloud Resource Provisioning Policy in the
Presence of Resource Failures

Bahman Javadi
School of Computing, Eng. and Math.

University of Western Sydney, Australia
Email: b.javadi@uws.edu.au

Jemal Abawajy
School of Information Technology

Deakin University, Australia
Email: jemal@deakin.edu.au

Richard O. Sinnott
Dept. of Computing and Information Sys.
The University of Melbourne, Australia

Email: rsinnott@unimelb.edu.au

Abstract—Resource provisioning is an important and chal-
lenging problem in the large-scale distributed systems such as
Cloud computing environments. Resource management issues
such as Quality of Service (QoS) further exacerbate the resource
provisioning problem. Furthermore, with the increasing function-
ality and complexity of Cloud computing, resource failures are
inevitable. Therefore, the question we address in this paper is how
to provision resources to applications in the presence of resource
failures in a hybrid Cloud computing environment. To this end,
we propose three Cloud resource provisioning policies where we
utilize workflow applications to drive the system workload. The
proposed strategies take into account the workload model and
the failure correlations to redirect requests to appropriate Cloud
providers. Using real failure traces and workload models, we
evaluated the performance and monetary cost of the proposed
policies. The results of our experiments show that we can decrease
the deadline violation rate of users’ requests to as low as 20%
with a limited cost on Amazon public Cloud.

Keywords-Resource provisioning; Hybrid Cloud Computing;
Failure-prone systems; Deadline;

I. INTRODUCTION

Cloud computing platforms provide easy access to a wide
range of IT resources such as raw computing and storage
in the form of Virtual Machines (VMs). Cloud computing
platforms provide massive scalability, high reliability, and high
performance to end users while at the same time hiding the
complexity of managing an IT infrastructure from end users.
One particular type of Cloud computing, which is known as
Infrastructure-as-a-Service (IaaS), allows users to customize
and configure the Cloud resources based on their application
demands.

Utilizing public Cloud services along with local resources
(e.g., private Cloud) to support Hybrid Clouds [34], is one of
the most widely used Cloud computing models. Hybrid Cloud
platforms help scientists and businesses leverage the scalability
and cost effectiveness of the public Cloud by paying only for
IT resources consumed (server, connectivity, storage) while
delivering the levels of performance and control available in
private Cloud environments without changing their underlying
IT setup. However, efficient policies to integrate public and
private Cloud to assure QoS target of the users remain a
challenge. These policies are further complicated when facing
resource failures in the system.

In this paper, we propose three brokering strategies that
take into account a workload model and resource failure

correlations when selecting specific Cloud providers. Several
papers have presented the adoption of public Cloud platforms
and services by the scientific community. Most of these work
demonstrate the performance and monetary cost-benefits for
scientific applications [5], [6], [21], [30]. Recently, Assunção
et al. [5] have investigated how an organization using a local
cluster can utilize Cloud resources to improve the performance
of its users’ requests. The existing strategies take into account
neither the workload type nor the resource failure to make
decision about redirection of requests.

In this paper, we consider resource failure that refers to
any anomaly caused by hardware or software faults that
lead to unavailability in service. Also, we assume that the
policies take advantage of a knowledge-free approach, i.e.,
they do not need any information about the failure model. Our
policies are proposed in the context of the Australian Urban
Research Infrastructure Network (AURIN)1 project, which is
an initiative aiming to develop an e-Infrastructure supporting
research in the urban and built environment domain [33].
It will deliver a lab in a browser infrastructure providing
federated access to heterogeneous data sources and facilitate
data analysis and visualization in a collaborative environment
to support multiple urban research activities. We consider the
workflow applications in the AURIN project as a workload
with the parallel jobs requesting for resources in the form of
VMs. Moreover, we assume that end-user QoS requirements
are defined as the deadline.

The rest of the paper is organized as follows. In Sec-
tion II, we present the system architecture of interest’s and
its implementation. Then, the provisioning policies which
include brokering strategies as well as scheduling algorithms
are proposed in Section III. The performance evaluation of the
proposed policies is presented in Section IV. Related work is
described in Section V. Conclusions and future directions are
presented in Section VI.

II. SYSTEM OVERVIEW

In this section, we briefly overview the architecture and
implementation of the AURIN project as well as the hybrid
Cloud system that is used in this paper.

1http://aurin.org.au/



Fig. 1. The AURIN architecture.

A. The AURIN Architecture

The AURIN project is tasked with developing an e-
Infrastructure through which a wide range of urban and
built environment research activities will be supported [33].
The AURIN technical architecture approach is based on the
concept of a single sign-on point of entry portal2 (Figure 1).
The sign-on capability is implemented through the integration
of the Australian Access Federation (AAF)3, which provides
the backbone for the Internet2 Shibboleth-enabled4 decentral-
ized identity provision (authentication) across the Australian
university sector. The portal facilitates access to a diverse
set of data interaction capabilities implemented as JSR-286
compliant portlets. The portlets represent the user interface
component of the capabilities integrated within a loosely
coupled service-oriented architecture, exposing data search
and discovery, filtering and analytical capabilities, coupled
with a mapping service, and various visualization capabilities.

A rich library of local (e.g., Java) and federated (REST
or SOAP services) analytical tools are exposed through the
workflow environment based on the Object Modeling System
(OMS) framework [19]. These analytical processes allow
for advanced statistical analysis of spatial and aspatial data,
and also expose complex modeling environments to urban
researchers. The users in AURIN are able to compose different
types of workflows that might themselves be compute/data
intensive. Using the OMS framework as the basis for the
AURIN workflow environment allows to enact user workflows
on both Cluster and Cloud computing environments [19].

B. The Hybrid Cloud System

Hybrid Cloud [34] enables organizations that wants to sup-
ply their users’ with computing capacity from a public Cloud
provider when the local resources (i.e., private Cloud) fail short

2http://portal.aurin.org.au
3http://www.aaf.edu.au/
4http://shibboleth.internet2.edu/

to meet the needs of the users. Figure 2 shows the system
architecture used in this paper. In the architecture, we used the
InterGrid components designed and implemented in the Cloud-
bus5 research group [7] for its realization. The core component
for this architecture is the broker that selects suitable resource
providers offering computing services for incoming requests.
This broker is realized as an InterGrid Gateway (IGG), which
allows various types of resource manager to interconnect.
Currently, it is possible to connect to the OpenNebula [11]
or Eucalyptus [27] to manage the local resources. In addition,
two interfaces to connect to a grid middleware (i.e., Grid’5000)
and IaaS providers (i.e., Amazon’s EC2 [1] and the NeCTAR
Research Cloud [10]) have been developed.

C. Workload Model
In AURIN different users run a range of simulations and

access and use data in a variety of scenarios that can be
arbitrarily complex [19], [33]. Generally, it is the case that dif-
ferent jobs will require potentially large number of resources
over a short period of time. As such, we model workflows as
a job with several tasks that are sensitive to communication
networks and resource failures. The AURIN workflows defined
thus far are tightly coupled, i.e., where the simulations run
on a single Cloud environment (and not concurrently across
Cloud providers). As such, we assume that jobs are allocated
to virtualized resources from a single provider.

A user enacts a workflow by submitting a request to the
broker in the form of a request for VMs (see Figure 2).
Each user’s request has the following characteristics: type
of virtual machine; number of virtual machines; estimated
duration of the request; deadline for the request. When such
a request arrives at the broker, it determines which resource
provider to use. In the following section, we propose different
provisioning policies to be utilized by the broker to handle
such user’s requests.

5http://www.cloudbus.org



Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T )
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1) ≤ Te(Ei)} (1)

where 1 ≤ i ≤ n − 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
∑

∀Fi∈H

(max{Te(Fi)} −min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1− (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1−q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1− q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater



than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ, σ,
so the mean value is given as follows [22]:

T = eµ+
σ2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T ). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms

As described before, a resource provisioning policy consists
of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

M∑
i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)



TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL

Input Parameters Distribution/Value
Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)

No. of VMs Loguniform (l = 0.8,m, h = log2Ns, q = 0.9)
Request duration Lognormal (2.5 ≤ µ ≤ 3.5, σ = 1.7)

P1 0.02
P2 0.78

where Hpl is the Cloud usage per hour for the policy pl. That
means, if a request uses a VM for 45 minutes for example,
the cost of one hour is considered. Mpl is the fraction of
requests which are redirected to the public Cloud. Hu is the
startup time for initialization of operating systems on a VM
which is set to 80 seconds [29]. We take into account this
value as Amazon commences charging users when the VM
process starts. Bin is the amount of data which needs to be
transferred to the Amazon EC2 for each request. This is set to
100 MB per request. The cost of one specific instance on the
EC2 is determined as Cn and considered as 0.085 USD per
VM per hour for a small instance. The cost of data transfer to
the Amazon EC2 is also considered as Cx which is 0.1 USD
per GB. It should be noted that we consider a case where
requests’ output are very small and can be transferred to the
local resources for free [1].

A. Experimental Setup

Considering workflow applications in the AURIN project
as the parallel applications, we used the parallel job model
of the DAS-2 system which is a multi-cluster Grid [22] as
the workload model for evaluation scenarios. Based on the
workload characterization, the inter-arrival time (based on
Weibull distribution), the request size (based on Loguniform
distribution), and the request duration (based on Lognormal
distribution). These distributions with their parameters are
listed in Table I.

For each simulation experiment, statistics were gathered for
a two-month long period of DAS-2 workloads. The first week
of workloads during the warm-up phase were ignored to avoid
bias before the system reached a steady-state. Each data point
represents the average of 30 simulation rounds. The number
of resources in the private and the public Cloud were set
equally to Ns = Nc = 64 with a homogeneous computing
speed of 1000 MIPS6. The time to transfer the application
(e.g., configuration file or input file(s)) for the private Cloud is
negligible as the local resources are interconnected by a high-
speed network, so Ls = 0. However, to execute the application
on the public Cloud we must send the configuration file as well
as input file(s). Given this, we consider a network transfer time
of Lc = 80 sec., which is the time to transfer of 100 MB data
on a 10 Mbps network connection.

The failure trace for the experiments is obtained from the
Failure Trace Archive [20]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for a duration of 18

6This assumption is made just to focus on performance degradation due to
failure.

months, which includes on average 800 events per node. The
average availability and unavailability time in this trace archive
is 22.26 hours and 10.22 hours respectively.

In order to generate different workloads, we systematically
modified three parameters of the workload model. To change
the inter-arrival time, we modified the second parameter of
the Weibull distribution (the shape parameter β) as shown in
Table I. To have requests with different durations, we changed
the first parameter of the Lognormal distribution between 2.5
and 3.5 as described in Table I. Moreover, we also varied
the middle point of the Loguniform distribution (i.e., m) to
generate workloads with different number of VMs per request
where m = h−ω and ω is between 1.5 to 3.3. Thus the larger
value of ω, the fewer VMs required to service requests. The
same scheduling algorithms are used for the private and public
Cloud providers in all scenarios.

To generate the request deadlines we utilize the same
techniques given in [18], which provide a feasible schedule for
jobs. To obtain deadlines, we conducted experiments based on
scheduling requests on local resources without failure events
using aggressive backfilling. We used the following equations
to calculate the deadline for each request i:

di =

{
sti + (f · tai), if [sti + (f · tai)] < cti

cti, otherwise
(9)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., cti − sti).
We define f as a stringency factor that indicates how urgent
deadlines are. If f = 1, then the request’s deadline is uses
an aggressive backfilling scenario to ensure completion. We
evaluate strategies with different stringency factors, however
only report results where f = 1.3 (i.e., a normal deadline).

B. Results and discussions

The results of simulating violation rates versus different
workloads are depicted in Figure 3 for different provisioning
policies. In each figure, three brokering strategies are plotted
for a scheduling algorithm. In all the figures, Size, Time, and
Area refer to size-based, time-based and area-based broker-
ing strategies, respectively. Moreover, CB and SB stand for
Conservative and Selective Backfilling, respectively.

Based on Figure 3, by increasing the workload intensity
(i.e., arrival rate, duration or size7 of requests), we observe
an increase in the violation rate for all provisioning policies.
As illustrated in this figure, the size-based brokering strategy
yields a very low violation rate where the area-based strat-
egy also shows a comparable performance. The time-based
strategy has the worst performance in terms of violation rate
especially when the workload intensity increases.

It is worth noting that the violation rate of size-based broker-
ing strategy, in contrast to others, has an inverse relation with
the request size, i.e., we observe an increase in the number
of fulfilled deadlines by reducing the size of requests. This
behavior is due to increasing the number of redirected requests

7The larger value of ω, the fewer VMs required to service requests.



(a) Request arrival rate (b) Requset duration (c) Request size

Fig. 3. Violation rate for all provisioning policies versus different workloads.

to the failure-prone private Cloud in the size-based brokering
strategy. Additionally, in all experiments, the policies using a
selective backfilling scheduler have a better performance than
the correspondent experiments using conservative backfilling.

Figure 4 expresses the slowdown of requests for all pro-
visioning policies versus different workloads with the same
configuration as per the previous experiments. As illustrated
in Figure 4(a), increasing the request arrival rate results in a
slowdown with size-based and area-based strategies, both of
which have a more gradual slope than the time-based strategy.
Moreover, the slowdown versus request duration has been
plotted in Figure 4(b) reveals that this slowdown is not very
sensitive to the request duration given the almost non-variant
lines. Based on the results in Figure 4(c), slowdown decreases
by decreasing the request size (number of VMs per request)
for the time-based and the area-based strategies. However,
the size-based strategy has gradually increased slowdown
due to increasing the number of redirected requests to the
more failure-prone private Cloud. Nevertheless, the size-based
strategy has the better slowdown in the most cases with respect
to other strategies for different workload types.

Figure 5 shows the amount of money spent on the EC2
per month to respond to the incoming requests with different
workload types. It is worth noting that Cloud usage is in-
dependent of the scheduling algorithm as depicted in these
figures. As observed in all workload types, the size-based
strategy utilizes more Cloud resources than other strategies,
and this is the reason for lower violation rates and slowdown
as described previously. Moreover, the time-based strategy has
the lowest Cloud cost on the EC2 while the area-based strategy
always incurs the cost between the size-based and time-based
strategies.

Since the proposed strategies have different cost and perfor-
mance, selecting a suitable policy for a real case is strongly
dependent on many issues such as desired level of QoS as well
as budget constraints. For instance, by using the time-based
brokering policy (CB or SB), we can decrease the deadline
violation rate of users’ requests to as low as 20% with the

less than 1200 USD on Amazon public Cloud (see Figures 3(a)
and 5(a)).

V. RELATED WORK

Related work can be classified into two groups: load
sharing in the distributed systems and solutions utilizing
Cloud computing resources to extend the capacity of existing
infrastructures. Several load sharing mechanisms have been
proposed for different types of distributed systems. Iosup et
al. [17] proposed a matchmaking mechanism for enabling
resource sharing across computational Grids. Balazinska et al.
[2] investigated a mechanism for migrating stream process-
ing operators in a federated distributed system. We address
resource provisioning using leased resources from a Cloud
provider to improve the users’ and organisations’ QoS in the
presence of failure.

VioCluster [32] is a system in which a broker is responsible
for dynamically managing a virtual domain by borrowing and
lending machines between clusters. Montero et al. [31] also
used GridWay to deploy virtual machines on a Globus Grid;
They also proposed GridGateWay [16] as a means to support
interoperability of Globus Grids. In [34], the authors developed
virtual infrastructure management through two open source
projects: OpenNebula and Haizea8. In contrast to this, we
adopted the InterGrid environment that is based on the virtual
machine technology and can be connected to any distributed
systems through a Virtual Machine Manager (VMM) [7].
Moreover, we consider a new type of platform which is
commonly called Hybrid Cloud and propose three brokering
strategies which are part of InterGrid Gateway (IGG) and
allow to utilize public Cloud resources.

The applicability of public Cloud services for Grid com-
puting has been demonstrated in existing work. In [30],
the authors consider the Amazon data storage service S3
for scientific data-intensive applications. They conclude that
monetary costs are as high as the collective costs for storage

8http://haizea.cs.uchicago.edu



(a) Request arrival rate (b) Request duration (c) Request size

Fig. 4. Slowdown for all provisioning policies versus different workloads.

(a) Request arrival rate (b) Requset duration (c) Request size

Fig. 5. Cloud cost on EC2 per month for all provisioning policies versus different workloads.

service groups such as availability, durability, and access
performance. In contrast, data-intensive applications often do
not need all of these features. In [14], the author conducts a
general cost-benefit analysis of Clouds. However, no specific
type of scientific application is considered. In [6], the authors
determine the cost of running a scientific workflow over a
Cloud. They found that the computational costs outweighed
storage costs for their Montage application. Kondo et al. [21]
also provided a cost-benefit analysis of Cloud computing
versus desktop grids for compute-intensive tasks. In our work,
in contrast to others, we consider workload based on user’
requests which can be data or compute intensive workflows.

In [24], the authors developed a model of an Elastic Site
that utilized services provided by a site, to take advantage
of elastically provisioned resources in a public Cloud. The
authors in [5] investigated whether an organization using a
local cluster could benefit from using Cloud providers to
improve the performance of their user’ requests. The authors
in [25] utilized gang scheduling to dispatch parallel jobs to
a cluster of VMs hosted on Amazon EC2. In this paper, we
take into account the workload model and failure correlation

to borrow the public Cloud resources. Moreover, we evaluate
the performance of the system under realistic workloads and
failure traces.

VI. CONCLUSIONS

In this paper, we considered the problem of QoS-based
resource provisioning in a hybrid Cloud computing system
where private Clouds can potentially be failure-prone. We
proposed a variety of brokering strategies based upon a hybrid
Cloud model where an organization that operates its own
private Cloud aims to improve the QoS for its user’ requests by
utilizing public Cloud resources. Various brokering strategies
which adopt the workload model and take into account the
failure correlations were described and presented.

The proposed policies take advantage of a
context/knowledge-free approach in that they do not
need any statistical information about the failure model of
the local resources in the private Cloud. We evaluated the
proposed policies and considered their impact on different
performance metrics such as deadline violation rate and
slowdown. Experimental results under realistic workload



and failure events, reveal that we are able to adopt user the
workload model to provide flexibility in the choice of strategy
based on the desired level of QoS, the needed performance,
and the available budget.

In future work, we intend to use a set of real workflow
applications from the AURIN project and run real experiments.
For this purpose, we shall investigate different checkpointing
mechanisms augmenting our analysis and implementation.

REFERENCES

[1] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2.

[2] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based
load management in federated distributed systems. In 1st Symposium
on Networked Systems Design and Implementation (NSDI), pages 197–
210, San Francisco, USA, March 2004.

[3] M. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent. A flexible
checkpoint/restart model in distributed systems. In 9th International
Conference on Parallel Processing and Applied Mathematics, volume
6067 of LNCS, pages 206–215. Springer, 2010.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms. Software: Practice and Experience, 41(1):23–50, 2011.

[5] M. D. de Assunção, A. di Costanzo, and R. Buyya. Evaluating
the cost-benefit of using cloud computing to extend the capacity of
clusters. In 18th International Symposium on High Performance Parallel
and Distributed Computing (HPDC 2009), pages 141–150, Garching,
Germany, June 2009.

[6] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of
doing science on the Cloud: The montage example. In 19th ACM/IEEE
InternationalConference on Supercomputing (SC 2008), pages 1–12,
Piscataway, NJ, USA, 2008.

[7] A. di Costanzo, M. D. de Assunção, and R. Buyya. Harnessing cloud
technologies for a virtualized distributed computing infrastructure. IEEE
Internet Computing, 13(5):24–33, 2009.

[8] D. G. Feitelson. Workload Modeling for Computer Systems Performance
Evaluation. 2009.

[9] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong. Theory and practice in parallel job scheduling. In 3rd Job
Scheduling Strategies for Parallel Processing (IPPS’97), pages 1–34,
London, UK, 1997.

[10] T. Fifield. NeCTAR research Cloud node implementation plan. Re-
search Report Draft-2.5, Melbourne eResearch Group, The University
of Melbourne, October 2011.

[11] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and I. M. Llorente.
OpenNEbula: The open source virtual machine manager for cluster
computing. In Open Source Grid and Cluster Software Conference –
Book of Abstracts, San Francisco, USA, May 2008.

[12] S. Fu and C.-Z. Xu. Quantifying event correlations for proactive failure
management in networked computing systems. Journal of Parallel and
Distributed Computing, 70:1100–1109, November 2010.

[13] M. Gallet, N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, and D. Epema.
A model for space-correlated failures in large-scale distributed systems.
In Euro-Par 2010, volume 6271 of Lecture Notes in Computer Science,
pages 88–100. 2010.

[14] S. Garfinkel. Commodity grid computing with Amazons S3 and EC2.
In USENIX LOGIN, volume 32, pages 7–13, 2007.

[15] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, San Rafael, CA, 2009.

[16] E. Huedo, R. S. Montero, and I. M. Llorente. Grid architecture from a
metascheduling perspective. IEEE Computer, 43(7):51 –56, Jul. 2010.

[17] A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, and
M. Livny. Inter-operating Grids through delegated matchmaking. In
18th ACM/IEEE Conference on Supercomputing (SC 2007), pages 1–
12, New York, USA, November 2007.

[18] M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda. QoPS: A QoS based
scheme for parallel job scheduling. In 9th International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP ’03), volume
2862 of LNCS, pages 252–268, Seattle, WA, USA, 2003.

[19] B. Javadi, M. Tomko, and R. O. Sinnott. Decentralized orchestration of
data-centric workflows using the object modeling system. In CCGRID,
pages 73–80, 2012.

[20] D. Kondo, B. Javadi, A. Iosup, and D. H. J. Epema. The Failure Trace
Archive: Enabling comparative analysis of failures in diverse distributed
systems. In 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGRID), pages 398–407, 2010.

[21] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson.
Cost-benefit analysis of Cloud computing versus desktop grids. In
Proceedings of the 23rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2009), pages 1–12, Rome, Italy, 25-28
May 2009. IEEE Computer Society, Washington, DC.

[22] H. Li, D. Groep, and L. Wolters. Workload characteristics of a
multi-cluster supercomputer. In 10th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), pages 176–193,
New York, USA, 2004.

[23] U. Lublin and D. G. Feitelson. The workload on parallel supercomput-
ers: Modeling the characteristics of rigid jobs. Journal of Parallel and
Distributed Computing, 63(11):1105–1122, 2003.

[24] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using clouds
to elastically extend site resources. In 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGRID), pages
43–52, 2010.

[25] I. Moschakis and H. Karatza. Evaluation of gang scheduling per-
formance and cost in a cloud computing system. The Journal of
Supercomputing, pages 1–18, 2010.

[26] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling. IEEE Transactions on Parallel and Distributed Systems,
12(6):529–543, 2001.

[27] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The Eucalyptus open-source cloud-computing
system. In 1st Workshop of Cloud Computing and Its Applications,
October 2008.

[28] L. F. Orleans and P. Furtado. Fair load-balancing on parallel systems for
QoS. In 36th International Conference on Parallel Processing (ICPP
2007), pages 22 –22, 2007.

[29] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. A performance analysis of EC2 cloud computing services
for scientific computing. In 1st International Conference on Cloud
Computing (CloudComp 2009), pages 115–131, Munich, Germany,
2009.

[30] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon
S3 for science Grids: a viable solution? In 1st International Workshop
on Data-aware Distributed Computing (DADC’08) in conjunction with
HPDC 2008, pages 55–64, New York, NY, USA, 2008.

[31] A. J. Rubio-Montero, E. Huedo, R. S. Montero, and I. M. Llorente.
Management of virtual machines on Globus Grids using GridWay. In
21st IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–7, Long Beach, USA, March 2007.

[32] P. Ruth, P. McGachey, and D. Xu. VioCluster: Virtualization for dynamic
computational domain. In 7th IEEE International Conference on Cluster
Computing (Cluster 2005), pages 1–10, Burlington, USA, September
2005.

[33] R. O. Sinnott, G. Galang, M. Tomko, and R. Stimson. Towards an e-
infrastructure for urban research across australia. In eScience, pages
295–302, 2011.

[34] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet
Computing, 13(5):14 –22, Sep. 2009.

[35] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selec-
tive reservation strategies for backfill job scheduling. In 8th International
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP
’02), volume 2537 of LNCS, pages 55–71, London, UK, 2002.

[36] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema. Analysis and
modeling of time-correlated failures in large-scale distributed systems.
In 8th IEEE/ACM International Conference on Grid Computing, October
2010.

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

	Introduction
	System Overview
	The AURIN Architecture
	The Hybrid Cloud System
	Workload Model

	The Proposed Resource Provisioning Policies
	User Request
	Size-based Strategy
	Time-based Strategy
	Area-based Strategy
	Scheduling Algorithms

	Performance Evaluation
	Experimental Setup
	Results and discussions

	Related Work
	Conclusions
	References

