
Decentralized Orchestration of Data-centric
Workflows Using the Object Modeling System

Bahman Javadi∗, Martin Tomko† and Richard O. Sinnott∗
∗Melbourne eResearch Group

Department of Computing and Information Systems,
The University of Melbourne, Australia

†Faculty of Architecture, Building and Planning,
The University of Melbourne, Australia

Emails: {bahmanj,tomkom,rsinnott}@unimelb.edu.au

Abstract—Data-centric and service-oriented workflows are
commonly used in scientific research to enable the composition
and execution of complex analysis on distributed resources.
Although there are a plethora of orchestration frameworks to
implement workflows, most of them are not suitable to execute
data-centric workflows. The main issue is transferring output of
service invocations through a centralized orchestration engine to
the next service in the workflow, which can be a bottleneck for the
performance of a data-centric workflow. In this paper, we propose
a flexible and lightweight workflow framework based on the
Object Modeling Systems (OMS). Moreover, we take advantage
of the OMS architecture to deploy and execute data-centric
workflows in a decentralized manner to avoid passing through the
centralized engine. The proposed framework is implemented in
context of the Australian Urban Research Infrastructure Network
(AURIN) project which is an initiative aiming to develop an
e-Infrastructure supporting research in the urban and built
environment research disciplines. Performance evaluation results
using spatial data-centric workflows show that we can reduce
20% of the workflows execution time while using Cloud resources
in the same network domain.

Keywords-Data-centric Workflows, Object Modeling System,
Decentralized Orchestration, Cloud Computing

I. INTRODUCTION

Service-oriented architectures based on Web services are
common architectural paradigms for developing software sys-
tems from loosely coupled distributed services. In order to co-
ordinate a collection of services in this architecture to achieve a
complex analysis, workflow technologies are frequently used.
Although the workflow concept was originally introduced for
automation of business processes, there is a huge interest from
scientists to utilize these technologies to automate distributed
experiments. A workflow can be considered as a template to
define the sequence of computational and/or data processing
tasks needed to manage a business, engineering or scientific
process.

Two popular architectural approaches to implement work-
flows are service orchestration and service choreography [5].
In service orchestration, there is a centralized engine that
controls the whole process including control flow as well as
data flow. An example of this implementation is the Business
Process Execution Language (BPEL), which is the current
defacto standard for orchestrating Web services [10]. On the

other hand, service choreography refers to a collaborative
process between a group of services to achieve a common goal
without a centralized controller. The Web Services Choreog-
raphy Description Language (WS-CDL) is an example of this
type of implementation based on XML language [17].

The main issue with service orchestration implementations
is transferring all data through a centralized orchestration en-
gine, which can be a bottleneck for the performance, especially
for data-centric workflows. To tackle this problem, we intro-
duce a new framework to implement data-centric workflows
based on the Object Modeling System (OMS). OMS is a
component-based modeling framework that utilizes an open-
source software approach to enable users to design, develop,
and evaluate loosely coupled cooperating service models [11].
The framework provides an efficient and flexible way to create
and evaluate workflow models in a scalable manner with a
good degree of transparency for model developers.

The OMS framework is currently being used to design
and implement a range of science models [3]. However, the
capability of this framework for data-centric and service-
oriented workflows has not been investigated, which is the
main goal of this paper. Although the OMS framework can
be generally classified as a service orchestration model, we
show how we can take advantage of the OMS architecture to
implement a decentralized service orchestration to bypass the
limitation of centralized data flow. This feature is crucial for
data-centric workflows that deal with large quantities of data
and data movement where use of a centralized engine could
decrease the performance of the workflow or indeed make
certain workflows impossible to enact.

The proposed framework is implemented in the context of
the Australian Urban Research Infrastructure Network (AU-
RIN)1 project, which is an initiative aiming to develop an
e-Infrastructure supporting research in the urban and built
environment research disciplines [20]. It will deliver a lab
in a browser infrastructure providing federated access to
heterogeneous data sources and facilitate data analysis and vi-
sualization in a collaborative environment to support multiple
urban research activities.

1http://aurin.org.au/

Fig. 1: The AURIN architecture.

We evaluate the proposed architecture through enactment
of realistic data-centric workflows containing data gathering
from federated Open Geospatial Consortium (OGC)2 services
and generation of a topology graph for urban analysis. The
performance evaluation experiments have been conducted on
different Cloud infrastructures to assess the flexibility and
scalability of the proposed architecture.

The rest of the paper is organized as follows. We provide an
overview of the AURIN project in Section II. In Section III, we
present the Object Modeling System framework. Section IV
explains the implementation of data-centric workflows using
the OMS framework. The performance evaluation of the
proposed architecture is presented in Section V. The related
work is also illustrated in Section VI. We finally conclude our
findings and discuss the future work in Section VII.

II. AURIN SYSTEM OVERVIEW

The AURIN project is tasked with developing an e-
Infrastructure through which a wide range of urban and built
environment research activities will be supported. The AURIN
technical architecture approach is based on the concept of a
single sign-on point of entry portal3 (Figure 1). The sign-
on capability is implemented through the integration of the
Australian Access Federation (AAF)4, which provides the
backbone for the Internet2 Shibboleth-enabled5 decentral-
ized identity provision (authentication) across the Australian
university sector. The portal facilitates access to a diverse
set of data interaction capabilities implemented as JSR-286
compliant portlets. The portlets represent the user interface
component of the capabilities integrated within a loosely

2http://www.opengeospatial.org/
3http://portal.aurin.org.au
4http://www.aaf.edu.au/
5http://shibboleth.internet2.edu/

coupled service-oriented architecture, exposing data search
and discovery, filtering and analytical capabilities, coupled
with a mapping service, and various visualization capabilities.

The federated datasets feeding into AURIN are typically
accessed through programmatic APIs. The dominantly spatial
nature of datasets used in the urban research domain requires
the interfacing with services implementing OGC standards for
access to federated data resources. In particular, the Web Fea-
ture Service (WFS) standard implementations [18] represent
one of the most common sources of urban spatial data, served
through spatial data infrastructures.

A rich library of local (e.g., Java) and federated (REST
or SOAP services) analytical tools is exposed through the
workflow environment based on the OMS framework. These
analytical processes allow for advanced statistical analysis of
spatial and aspatial data, and also expose complex modeling
environments to urban researchers. The workflow environment
presents an important backbone of the AURIN infrastructure,
by supporting:

• Complex data-centric workflows to be repeatedly exe-
cuted, leading to a better reproducibility of data analysis
and scientific results;

• Workflows that can be re-executed with altered parame-
ters, thus effectively supporting the generation of multiple
version of scenarios;

• Workflows that support the interruption of the analysis de-
sign process, enabling research spanning across extended
periods of time;

• Workflows that can be shared with collaborators and used
outside of AURIN;

• Workflows that are encoded in a human-readable manner,
effectively carrying metadata about the analytical process
that can be scrutinized by peers, thus supporting greater
transparency and research quality.

The results of data selection and analysis can be fed to
a variety of visual data analytics components, supporting
visual exploration of spatio-temporal phenomena. 2D (and
soon 3D) visualization of spatial data, their temporal filtering,
and multidimensional data slicing and dicing are amongst
the most sought-after components of AURIN, that will be
integrated with a collaborative environment. Thus will allow
researchers from geographically remote locations to collabo-
rate and coordinate on their research problems.

AURIN is also leveraging the resources of other Australian-
wide research e-Infrastructures such as the National eResearch
Collaboration Tools and Resources (NeCTAR)6 project, which
provides infrastructure services for the research community,
and the Research Data Storage Infrastructure (RDSI)7 project,
which provides large-scale data storage. At the moment, the
AURIN portal is running on several virtual machines (VMs)
within the NeCTAR NSP (National Servers Program) while
we utilize NeCTAR Research Cloud as the processing infras-
tructure to execute complex workflows.

III. OBJECT MODELING SYSTEM

The Object Modeling System (OMS) is a pure Java and
object-oriented modeling framework that enables users to
design, develop, and evaluate science models [11]. OMS
version 3.0 (OMS3) provides a general-purpose framework
to make easier integration of such models in a transparent
and scalable manner. OMS3 is a highly inter-operable and
lightweight modeling framework for component-based model
and simulation development on different computing platforms.
The term component is a concept in software engineering
which extends the reusability of code from the source level to
the binary executable. OMS3 simplifies the design and devel-
opment of model components through programming language
annotations which capture metadata to be used by the model.
Interested readers can refer to [3], [11] for more information
about the OMS3 architecture.

The main features of the OMS3 framework are:
• OMS3 adopts a non-invasive approach for model or

component integration based on annotating ’existing’
languages. In other words, using and learning new data
types and traditional application programming interfaces
(API) for model coupling is mostly eliminated.

• The framework utilizes multi-threading as the default
execution model for defined components. Moreover,
component-based parallelism is handled by synchroniza-
tions on objects passed from and to components. There-
fore, without explicit programming by the developer, the
framework is able to be deployed on multi-core Cluster
and Cloud computing environments.

• OMS3 simplifies the complex structure for model de-
velopment by leveraging recent advantages in Domain
Specific Languages (DSL) provided by the Groovy pro-
gramming language. This feature helps assembling model
applications or model calibration and optimization.

6http://nectar.org.au
7http://rdsi.uq.edu.au

A. Components in the Object Modeling System

Components are basic elements in OMS3 which represent
self-contained software packages that are separated from the
framework. OMS3 takes advantage of language annotations for
component connectivity, data transformation, unit conversion,
and automated document generation. A sample OMS3 com-
ponent to calculate the average of a given vector is illustrated
in Listing 1. All annotations start with @ symbol.

Listing 1: A sample OMS3 component
package oms . components ;
im por t oms3 . a n n o t a t i o n s .∗ ;

@Desc r ip t i on (” Average o f a g i v e n v e c t o r . ”)
@Author (name = ”Bahman J a v a d i ”)
@Keywords (” S t a t i c t i c , Average ”)
@Status (S t a t u s . CERTIFIED)
@Name(” a v e r a g e ”)
@License (” G e n e r a l P u b l i c L i c e n s e V e r s i o n 3 (GPLv3) ”)

p u b l i c c l a s s AverageVec to r {
@Desc r ip t i on (” The i n p u t v e c t o r . ”)
@In
p u b l i c L i s t<Double> inVec = n u l l ;

@Desc r ip t i on (” The a v e r a g e o f t h e g i v e n v e c t o r . ”)
@Out
p u b l i c Double outAvg = n u l l ;

@Execute
p u b l i c v o i d p r o c e s s () {

Double sum ;
i n t c ;
sum = 0 . 0 ;
f o r (c = 0 ; c < inVec . s i z e () ; c ++)

sum = sum + inVec . g e t (c) ;
outAvg = sum / inVec . s i z e () ;

}

As one can see, the only dependency on OMS3 packages is
for annotations (import oms3.annotations.*), which
minimizes dependencies on the framework. This enables
multi-purposing of components, which is hard to accomplish
with the traditional APIs. In other words, components are
Plain Java Objects (PJO) enriched with descriptive metadata
by means of language annotations. Annotations in OMS3 have
the following features:
• Dataflow indications are provided by using @In and
@Out annotations.

• The name of the computational method is not important
and must be only tagged with @Execute annotation.

• Annotations can be used for specification and documen-
tation of the component (e.g., @Description).

In the AURIN application of OMS3, we have developed a
package to generate a html-based document for each compo-
nent, which is itself accessible through the system portal.

B. Model in the Object Modeling System

As mentioned before, OMS3 leverages the power of a
Domain Specific Language (DSL) to provide a flexible in-
tegration layer above the modeling components. To do this,
OMS3 gets benefit from the builder design-pattern DSL, which
is expressed as a Simulation DSL provided by the Groovy
programming language. DSL elements are simple to define

and use in development of model applications, which is very
useful to create complex workflows.

A model/workflow in OMS3 has three parts that need to be
specified (see Listing 2):
• components: to declare the required components;
• parameter: to initialize the component parameters;
• connect: to connect the existing components.

Since OMS3 supports component-based multi-threading, each
component is executed in its own separate thread managed by
the framework runtime. Each thread communicates to other
threads through @Out and @In fields, which are synchronized
using a producer/consumer-like synchronization pattern. It
is worth nothing that any object can be passed between
components at runtime. We can also send any Java object as
a parameter to the model.

IV. OMS-BASED DATA-CENTRIC WORKFLOWS

In order to create an OMS workflow, we need to provide
some basic components. The most important components are
the Web service clients needed for different service standards;
in the case of OGC service, this might be WFS client, or for
statistical data this might be SDMX client [1], which are used
to get access to various datasets. To create OMS3 components,
there are two main methods to annotate the existing codes:
• Embedded metadata using annotations;
• Attached metadata using annotations;
For the first method, it is necessary to modify the source

code (see Listing 1) while for the second one, we can attach
a separate file e.g. a Java class or an XML file for the
annotations. Using the attached annotations, we do not need
to modify the source code, so the method is well suited for
annotation of existing libraries, e.g. common maths libraries
can be used as the OMS3 components.

In our system, we have developed a package for OMS-based
workflows including several OMS3 components, mainly using
embedded annotations for the provided components. We also
developed a few Web service clients with OMS3 annotations to
access to the distributed datasets. In the following, we illustrate
how we can compose and enact a typical service-oriented and
data-centric workflow in the AURIN system.

A. Workflow Composition

To create a workflow, it is necessary to either write an OMS
script (similar to Listing 2) or save the workflow through the
system portal. As users in AURIN are looking for a simple
way to compose a workflow, we focus on the second method
where users start making some queries through the portal. In
this case, they can choose as many datasets as they want and
then make the queries through Web service interfaces to get the
data as shown in Figure 1. The collected data can be analyzed
in the provided portlets in the AURIN portal. At this stage, we
can save the current workflow as an OMS3 script. To do this,
we developed a package to collect the required parameters for
the Web service interfaces used to generate an OMS script.
The workflow itself is saved as a text file and can be easily
share with other users through the AURIN portal.

Fig. 2: Centralized service orchestration using the OMS3
engine.

An example of an OMS workflow including one WFS
client is illustrated in Listing 2. Parameters of this compo-
nent are automatically generated based on the Web service
invocations made through the portal. In this example, the
dataset is provided by the Landgate WA8 through its SLIP
services9. The bbox parameter determines the geographical
area filter (bounding box) applied to the requested tables (i.e.,
datasetSelectedAttributes). As see in this example, DSL makes
the workflow very descriptive, which provides flexibility and
scalability to generate and share complex workflows.

B. Workflow Enactment

To support workflow enactment, we developed a JSR-268
portlet available through the AURIN portal (see Section II). In
this portlet, a list of existing workflows is available that can be
executed by users. New workflows can also be composed and
inserted in this list as well. When a user selects a workflow
to run, the execution will be handled by the OMS3 engine.

A sample workflow enactment scenario is illustrated in
Figure 2 where WS stands for Web service and DB stands
for database. The dashed lines and solid lines show the
control and data flow, respectively. As seen, in this workflow
three distributed datasets are accessed through Web services.
The workflow portlet then forwards the received data to the
processing infrastructure. Finally, the output of processing is
sent back to the visualization portlet for user observation.
Focusing on the architectural approach of the OMS-based
workflows, it can be seen that its model is based on service
orchestration, which can be a bottleneck to the performance
of data-centric workflows.

As we are dealing with data-centric workflows, the output
of a service invocation should be ideally directly passed to the
processing infrastructure rather than to the centralized engine.

8The provided datasets are from Australian Bureau of Statistics (ABS)
9http://landgate.wa.gov.au

Listing 2: An OMS workflow with one WFS client
/ / t h i s i s an example f o r a wfs query
d e f s i m u l a t i o n = new oms3 . S i m B u i l d e r (l o g g i n g : ’ALL ’) . sim (name : ’ w f s t e s t ’) {

model {

components {
’ w f s c l i e n t 0 ’ ’ w f s c l i e n t ’

}
p a r a m e t e r {

’ w f s c l i e n t 0 . da t a se tName ’ ’ABS−078 ’
’ w f s c l i e n t 0 . w f s P r e f i x ’ ’ s l i p ’
’ w f s c l i e n t 0 . d a t a s e t R e f e r e n c e ’ ’ Landga te ABS ’
’ w f s c l i e n t 0 . datasetKeyName ’ ’ s s c c o d e ’
’ w f s c l i e n t 0 . d a t a s e t S e l e c t e d A t t r i b u t e s ’ ’ s sc code , e m p l o y e d f u l l t i m e , e m p l o y e d p a r t t i m e ’
’ w f s c l i e n t 0 . bbox ’ ’ 129.001336896 ,−38.0626029895 ,141.002955616 ,−25.996146487500003 ’

}
c o n n e c t {
}}
}
r e s u l t = s i m u l a t i o n . run () ;

To address this, we take advantage of the OMS3 architecture,
which is deliberately designed to be flexible and lightweight.
To do this, we utilize the OMS3 core and a command-
line interface that includes a workflow script and libraries
of annotated components to execute a workflow. In many
respects, workflow enactment can be thought of as simple
execution of a shell script on the command-line. Therefore,
when a user requests to enact a workflow from the AURIN
portal, the workflow script along with the OMS3 core is
sent to the processing infrastructure. In this case, the output
of a service invocation can be sent directly to where it is
subsequently required in the workflow. This can be considered
as a decentralized service orchestration or a hybrid model
of service orchestration and service choreography. Using this
approach, we can decrease the amount of intermediate data
and potentially improve the performance of workflows.

Figure 3 shows a decentralized architecture to execute
the same workflow as in Figure 2 utilizing a processing
infrastructure offered through the Cloud. Here, the data flow
is not being passed through the workflow portlet. Rather we
delegate the OMS3 core to enact the workflows and receive
the data in a place where they are going to be analyzed with
computational scalability. Therefore, the decentralized service
orchestration can decrease intermediate data and as a result
decreases network traffic.

C. Cloud-based Execution

Cloud computing environments provide easy access to scal-
able high-performance computing and storage infrastructures
through Web services. One particular type of Cloud services,
which is known as Infrastructure-as-a-Service (IaaS), provides
raw computing and storage in the form of virtual machines,
which can be customized and configured based on application
demands [23]. We utilize Cloud resources as the processing
infrastructure to execute the complex workflows for both
centralized and decentralized approaches.

As noted, OMS3 supports parallelism at the component
level without any explicit knowledge of parallelization and

Fig. 3: Decentralized service orchestration using the OMS3
core.

threading patterns from a developer. In addition to multi-
threading, OMS3 can be scaled to run on any Cluster and
Cloud computing environment. Using Distributed Shared Ob-
jects (DSO) in Terracotta10, created workflows can share data
structures and process them in parallel within a workflow.
These features enable us to enact any OMS workflow on Cloud
infrastructures as illustrated in Figure 2 and Figure 3.

As we discussed in Section II, the AURIN project is also
running in the context of many major e-Infrastructure invest-
ment activities that are currently taking place across Australia.
One of these projects is NeCTAR which has a specific focus
on eResearch tools, collaborative research environment, and
Cloud infrastructure. The NeCTAR Research Cloud [15] is
aiming to offer three types of VMs to Australian researchers
as follows:
• Small: 1 core, 4GB RAM, 30GB storage

10http://www.terracotta.org/

TABLE I: Number of geometries per state in Australia.

State No. of Geometries
Suburbs LGA

Western Australia (WA) 952 142
South Australia (SA) 946 136
Tasmania (TAS) 402 28
Queensland (QLD) 2112 160
Victoria (VIC) 1833 111
New South Wales (NSW) 3146 178

TABLE II: Workflows for the experiments.

Workflow Data size (MB)
Geometries Graph

WA 33.02 2.97
WA, SA 66.44 5.90
WA, SA, TAS 119.75 6.30
WA, SA, TAS, QLD 170.35 21.53
WA, SA, TAS, QLD, VIC 244.97 33.90
WA, SA, TAS, QLD, VIC, NSW 399.04 69.43

• Medium: 2 cores, 8GB RAM, 60GB storage
• Extra-Large: 8 cores, 32GB RAM, 240GB storage
At the moment, we use all types of NeCTAR instances

as the processing infrastructures based on complexity of the
workflows. In addition to NeCTAR Cloud, we developed an
interface to execute the OMS workflows on Amazon’s EC2 [2].
This provides an opportunities to utilize Cloud resources
from other providers in case of unavailability of the national
research Cloud. The OMS3 core is very portable and flexible
and can be adopted in any Cloud infrastructure.

V. PERFORMANCE EVALUATION

In order to validate the proposed framework, a set of perfor-
mance analysis experiments have been conducted. We analyze
the execution of some realistic data-centric workflows in the
urban research domain on two different Cloud infrastructures.

A. Experimental Setup

The workflows that have been considered for the perfor-
mance evaluation are the initial part of a typical urban analysis
task. Spatial data analysis workflows typically start with a
data intensive stage where multiple datasets are gathered, and
prepared for analysis by building computationally efficient
data structures. Most types of spatial analysis include the
interrogation of fundamental topological spatial relationships
between the constituent spatial objects, such as when two
objects touch or overlap [13]. These relationships fundamen-
tally underpin applications in the spatial sciences, from spatial
autocorrelation analysis [8], trip planning [12] and route di-
rections communication [22]. Graph-based data structures are
efficient representations supporting the encoding of topological
relationships and their computational analysis. (e.g., least-cost
path algorithms [16]).

In our use case, the collection of suburb and LGA (Lo-
cal Government Area)11 boundaries for each of the major

11Each LGA contains a number of suburbs.

Australian states are considered as the input datasets. Each
boundary is presented as a geometry encoded in the Geography
Markup Language [19] (and XML encoding of geographic
features). The number of geometries for each state are listed
in Table I. The datasets for each individual state originate from
the Australian Bureau of Statistics (ABS)12 and are provided
through a OGC WFS service provided by Landgate WA (see
Listing 2). The series of WFS getFeature queries result in
individual feature collections (records) for suburbs/LGAs of
each state. The result sets are combined into a single feature
collection as part of the workflow, and their topology, based
on the spatial relationship (i.e., touch) have been computed.
The result of the workflow is a topology graph representing
adjacencies between suburbs/LGAs with a computational task
with a complexity of O(n2) (unless optimized by a spatial
index). This graph then serves as a basic structure for further
analysis by urban researchers.

The series of test workflows based on the aforementioned
scenarios is listed in Table II where each workflow generates
a topology graph for a different number of Australian states.
Moreover, the size of input geometries and output graph for
these workflows reveal that they are good examples of realistic
data-centric workflows.

The AURIN portal has been deployed in VMs hosted
by NeCTAR NSP, and for each experiment, we enact the
workflow on a Cloud infrastructure through this portal. We
utilize Extra-Large instances from NeCTAR Research Cloud
and Hi-CPU Extra-Large instances from Amazon’s EC2 [2]13.
The characteristics of these two instances in terms of CPU
power, memory size, and operation system (i.e., Linux) are
similar (see Section IV-C). Each workflow was executed 50
times on both Cloud infrastructures where results are accurate
within a confidence level of 95%.

B. Results and Discussions

The experimental results for the centralized and decentral-
ized approach for given workflows on the NeCTAR and EC2
Cloud are depicted in Figure 4. In these figures, y-axis and
x-axis display execution time and the total data transferred
to the Cloud resources for each workflow listed in Table II,
respectively. It should be noted that in both architectures, the
result of the workflow enactment (i.e., topology graph) must
be returned to the AURIN portal, so it is not shown in these
figures.

These figures reveal that decentralized service orchestration
reduces the workflow execution time in all cases compared
to centralized orchestration. For the case of the EC2 Cloud
(Figure 4(b)), we can observe more significant difference
between the two architectures, due to limited network band-
width in Amazon instances. Therefore, decreasing the network
traffic using decentralized architecture substantially reduces
the execution time of the data-centric workflows. For the
results in Figure 4(a), the system portal and Cloud resources

12http://www.abs.gov.au/
13We choose Asia Pacific region (ap-southeast) to reduce the network

latency.

(a) NeCTAR (Australia) (b) Amazon’s EC2 (Singapore)

Fig. 4: Execution time of data-centric workflows on two Cloud infrastructures for centralized and decentralized orchestration
(Each point corresponds to a workflow).

are in the same network domain (i.e., NeCTAR network), so
higher network traffic can be handled and less improvements
obtained.

It should be noted that in our experiments, the Web service
provider (i.e., Landgate WA) and NeCTAR Cloud infrastruc-
ture are in Australia while Amazon’s EC2 resources are in
Singapore (ap-southeast region). So, larger network latency is
another reason of the higher execution time for a workflow
on Amazon’s EC2 with respect to the NeCTAR Cloud while
using the same orchestration architecture.

To compare the effect of the proposed framework in each
Cloud infrastructure, Figure 5 plots the average performance
improvement for each workflow enactment on the NeCTAR
and EC2 Clouds. As expected, the performance improvement
for Amazon’s EC2 is much higher due to lower network
bandwidth. In addition, we execute theses workflows on EC2
instances in the ap-southeast region. Using resources from
other regions such as us-east or us-west will increase this
improvement. A decentralized architecture thus provides more
flexibility in terms of resource selection compared to the
centralized service orchestration, which is highly dependent
on the network capacity.

As illustrated in Figure 5, the average performance improve-
ment of decentralized orchestration with respect to the central-
ized one, using NeCTAR Cloud resources is about 20% when
we have more than 100MB data to transfer. This improvement
can be more than 100% on Amazon’s EC2 for such workflows.
The reason of lesser performance improvement for the case of
the biggest workflow (i.e., for all states) is the limitation of
Web service provider (i.e., Landgate WA) for parallel queries,
so the OMS3 engine can not utilize available parallelism in the
workflow. This issue could be disappeared if datasets provided
by different Web services are requested in parallel.

VI. RELATED WORK

In this section, we present an overview on the related work
in orchestration of data-centric workflows.

Fig. 5: The average performance improvement of decentralized
orchestration with respect to centralized orchestration on two
Cloud infrastructures (Each point corresponds to a workflow).

The most relevant work is done by Barker et al. [4],
[6], where a proxy-based architecture for orchestration of
data-centric workflows is proposed. In this architecture, the
response to the Web service queries can be redirected by
proxies to the place that they are needed for analysis. Although
the proposed architecture can reduce data transfer through a
centralized engine, it involves deploying proxies in the vicinity
of Web services. Moreover, proxy APIs must be invoked by
an orchestration engine to take advantage of the deployed
proxies. In contrast, our approach does not need any additional
component or API calls and can be deployed in any high-
performance computing environment as well.

Wieland et al. [24] provide a concept of pointers in service-
oriented architecture to pass data by reference rather than by
value from Web services. This can reduce the data load on
the centralized engine and reduce the network traffic. Service
Invocation Trigger [7] is a decentralized architecture for work-
flows deal with large-scale datasets. To utilize this architecture,

the input workflow must be first decomposed into sequential
fragments without a loop or conditional statement. Moreover,
data dependencies must be encoded with the triggers to allow
collection of input data before service invocation. In the
approach proposed in this paper, a workflow can contain any
structure and does not need to be modified prior to execution.

An architecture for decentralized orchestration of composite
Web services defined in BPEL is proposed by Chafle et al. [9].
In contrast to our approach, this architecture is very complex
and requires code partitioning and synchronization analysis.
Moreover, they do not address how these concepts operate in
Internet-based Web services.

Another series of works rely on a shared space to exchange
information between nodes of a decentralized architecture,
more specifically called a tuplespace. In [21], authors trans-
form a centralized BPEL definition into a set of coordinated
processes. Through a shared tuplespace working as a com-
munication infrastructure, the control and data dependencies
exchange among processes to make the different nodes interact
between them. In [14] an alternative approach is presented,
based on the chemical analogy. The proposed architecture is
composed by nodes communicating through a shared space
containing both control and data flows, called the multiset. In
contrast, we do not use any shared memory in our proposed
framework.

VII. CONCLUSION

In this paper, we proposed a new framework to implement
data-centric workflows based on the Object Modeling System
(OMS). Moreover, we take advantage of the flexibility of the
OMS architecture to implement the decentralized service or-
chestration and thereby bypass the potential bottleneck caused
by data flow through centralized engine. We designed and
implemented our proposed framework in the context of the
AURIN project to provide a workflow environment for urban
researchers across Australia.

Using realistic data-centric workflows from the urban re-
search domain, we evaluated the performance improvement of
the proposed architecture whilst utilizing resources from two
different Cloud infrastructures: NeCTAR and Amazon’s EC2.
Performance evaluation results reveal that decentralize service
orchestration can substantially improve the performance of
data-centric workflows, especially in the presence of network
capacity limitations.

For future work, we intend to extend the evaluation of this
architecture using various Web services and network environ-
ment to assess the impact of network distance and network
configuration. Moreover, we are working on an algorithm
to automate provisioning of Cloud resources for data-centric
workflows using the OMS framework based on dynamic user
demand.

ACKNOWLEDGMENTS

We would like to thank the AURIN architecture group
for their support. The AURIN project is funded through the
Australian Education Investment Fund SuperScience initiative.

REFERENCES

[1] The SDMX technical specification. Technical Report Version 2.1, 2011.
[2] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). http:

//aws.amazon.com/ec2.
[3] J. Ascough II, O. David, P. Krause, M. Fink, S. Kralisch, H. Kipka,

and M. Wetzel. Integrated agricultural system modeling using OMS
3: component driven stream flow and nutrient dynamics simulations. In
International Congress on Environmental Modeling and Software, 2010.

[4] A. Barker and R. Buyya. Decentralised orchestration of service-oriented
scientific workflows. In CLOSER, pages 222–231, 2011.

[5] A. Barker and J. van Hemert. Scientific Workflow: A Survey and
Research Directions. In Seventh International Conference on Parallel
Processing and Applied Mathematics, Revised Selected Papers, volume
4967 of LNCS, pages 746–753. Springer, 2008.

[6] A. Barker, J. B. Weissman, and J. van Hemert. Orchestrating Data-
Centric Workflows. In 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), pages 210–217. IEEE Computer
Society, May 2008.

[7] W. Binder, I. Constantinescu, and B. Faltings. Decentralized orchestra-
tion of composite web services. In International Conference on Web
Services, pages 869 –876, September 2006.

[8] A. Can. Weight matrices and spatial autocorrelation statistics using a
topological vector data model. International Journal of Geographical
Information Systems, 10(8):1009–1017, 1996.

[9] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized
orchestration of composite web services. In Proceedings of the 13th
international World Wide Web conference on Alternate track papers &
posters, pages 134–143, New York, NY, USA, 2004.

[10] T. O. Committee. Web services business process execution language
(WS-BPEL). Technical Report Version 2.0, 2007.

[11] O. David, J. Ascough II, G. Leavesley, and L. Ahuja. Rethinking mod-
eling framework design: Object Modeling System 3.0. In International
Congress on Environmental Modeling and Software, 2010.

[12] M. Duckham and L. Kulik. ”simplest paths”: Automated route selection
for navigation. In Spatial Information Theory (COSIT 2003), volume
2825 of LNCS, pages 169–185. Springer-Verlag, 2003.

[13] M. J. Egenhofer. A formal definition of binary topological relationships.
In W. Litwin and H. Schek, editors, 3rd International Conference on
Foundations of Data Organization and Algorithms, volume 367, pages
457–472. Springer-Verlag, 1989.

[14] H. Fernandndez, T. Priol, and C. Tedeschi. Decentralized approach for
execution of composite web services using the chemical paradigm. In
2010 IEEE International Conference on Web Services (ICWS), pages
139 –146, July 2010.

[15] T. Fifield. NeCTAR research Cloud node implementation plan. Re-
search Report Draft-2.5, Melbourne eResearch Group, The University
of Melbourne, October 2011.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4:100–107, 1968.

[17] N. Kavantzas and et al. Web services choreography description language
(WS-CDL). Technical Report Version 1.0, November 2005.

[18] A. Panagiotis. Web feature service (WFS) implementation specification.
OGC document, pages 04–094, 2005.

[19] C. Portele. Geography markup language (gml3.2.1) encoding standard.
specification, Open Geospatial Consortium, Inc., 2007.

[20] R. O. Sinnott, G. Galang, M. Tomko, and R. Stimson. Towards
an e-infrastructure for urban research across Australia. In 7th IEEE
International Conference on e-Science, pages 295 – 302, December
2011.

[21] M. Sonntag, K. Grlach, D. Karastoyanova, F. Leymann, and M. Reiter.
Process space-based scientific workflow enactment. International Jour-
nal of Business Process Integration and Management IJBPIM Special
Issue on Scientific Workflows, 5(1):32–44, 2010.

[22] M. Tomko and S. Winter. Pragmatic construction of destination de-
scriptions for urban environments. Spatial Cognition and Computation,
9(1):1–29, 2009.

[23] J. Varia. Cloud Computing: Principles and Paradigms, chapter 18: Best
Practices in Architecting Cloud Applications in the AWS Cloud, pages
459–490. Wiley Press, 2011.

[24] M. Wieland, K. Grlach, D. Schumm, and F. Leymann. Towards reference
passing in web service and workflow-based applications. In EDOC’09,
pages 109–118, 2009.

